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Introduction	  
This document describes the technical design of a hardware-software system that could 
enable crewmembers during surface Extra-Vehicular Activities (EVAs), such as while 
exploring Mars, to interactively track, understand, and control their physiological 
performance based on real-time biosensor data. The objective is to increase astronaut self 
sufficiency given the time-delayed communications that prevent real-time monitoring and 
advising from Earth to manage workload within resource and safety requirements.  
 
At the start of the project, NASA Johnson Space Center provided the following task 
description to the Ames Research Center (ARC): 
 
The EVA Physiology, Systems and Performance Project (EPSP) is funding the Intelligent 
Systems Group at ARC to develop a Laptop Demonstration System of an EVA Biomedical 
Advisory Algorithm with Speech Recognition Capability. Specific tasks associated with 
this effort include the following: 
 

1. ARC shall develop/code a data input module that allows manual data entry of 
EPSP-specified parameters via keyboard. The module shall also be capable of 
using EPSP-provided data to create simulated data for each variable and 
generate a simulated, real-time data stream varying with respect to time. 

2. ARC shall develop/code a metabolic algorithm module built from the 
equations embedded in the EPSP Excel metabolic algorithm (LEGACI). 
Outputs from the equations in this module shall exactly reflect those in the 
EPSP Excel algorithm. 

3. ARC shall integrate their iMAS [individual Mobile Agents System] speech 
recognition system into the EVA Advisory Algorithm Demonstrator. The 
demonstrator shall allow the EVA crewmember (subject) to query the 
database for specific data to be defined by the EPSP. The system shall 
recognize the request, query the database/met algorithm module and provide 
the information to the crewmember (subject) both audibly and visually on the 
laptop screen. 

 
iMAS, described subsequently, is an EVA support system that allows individual 
explorers who are not connected to a wireless network to log science data and receive 
navigation and plan advice, as well as biosensor interpretation and alerting—where 
throughout the explorer and speech system communicate with each other in natural 
language. iMAS is constructed using an interoperability framework called the Mobile 
Agents Architecture. 
 
The requirements stated by JSC highlight the use of a speech recognition system, but this 
is actually just one module that is part of the Metabolic Rate Advisor. Other modules 
include email, biosensors, GPS, and a camera.  
 
More specifically, the technology of importance here is not the speech system but the 
multi-agent architecture and “dual-API” method that enables interoperability among 
legacy software and hardware components.  This architecture made it possible to directly 
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integrate the previously developed iMAS system with the Excel implementation of the 
metabolic algorithm. This approach was faster, more reliable, and more general than 
developing a new module (item #2). The interoperability architecture allowed as well 
integrating a path planner for emergency “walk back” advising by relating the terrain to 
metabolic rate information, which is also discussed in this report. 
 
The Metabolic Rate Advisor was tested in the JSC Partial Gravity Simulator, nicknamed 
POGO (Figure 1).  In this apparatus, an astronaut wears an experimental space suit that is 
pressurized and constrains his mobility, and especially affects using his hands because of 
the pressurized gloves.  The suited astronaut is suspended by a counterweight is adjusted 
to simulate the gravity of the moon, Mars, or an asteroid. Motion is highly constricted to 
a small area, allowing testing of specific actions, such as picking up materials, operating 
tools, and walking up an inclined plane.  
 

 
 

Figure 1. Astronaut in pressurized suit suspended by Partial Gravity Simulator (POGO) 
at Johnson Space Center (2007) 

 
Note that POGO is a test apparatus primarily designed for experimenting with suit, glove, 
and tool design. As such it did not permit understanding or experimenting with the 
Metabolic Rate Advisor (MRA) in an authentic exploration environment as we had 
demonstrated throughout the development of Mobile Agents (Clancey et al. 2011). 
POGO enabled testing that the speech recognition system worked in the noisy 
environment of the pressurized suit, but it did not enable evaluating or refining the 
monitoring and alerting functionality or natural language interaction in the context of 
time-extended EVA activities for which the MRA was intended. Further remarks about 
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the limitations of a component-based “test and package” approach to R&D appear at the 
end of this report. 

Technical	  Architecture	  and	  Process	  Flow	  
The Metabolic Rate Advisor (MRA) is implemented as reconfigurable system in which 
“agents” proactively integrate data and command flow among software and hardware 
components, including interfaces by which people interact with the Advisor.  Agents are 
dedicated software components that operate simultaneously and independently, often on 
different computers, communicating via messages; they may receive data from and 
control devices, displays, and other software. The MRA is implemented using the Mobile 
Agents Architecture (MAA); specifically, the MRA is an adaptation of the existing 
standalone system called the “individual Mobile Agents System” (iMAS).   
 
Mobile Agents (Clancey et al. 2007) is based on the Brahms (Clancey et al. 1998; 
Sierhuis 2001) work practice simulation system. In Brahms people, facilities, geography, 
tools, procedures, communications, etc. are modeled explicitly so circumstantial, 
sometimes unanticipated interactions can be understood in creating and evaluating work 
system designs. Brahms has been integrated with other simulation systems and can be 
used to drive a virtual environment interface (BrahmsVE; Clancey et al. 2005). In Mobile 
Agents, Brahms agents may run on different computer platforms and communicate 
wirelessly. These computer systems may be integrated with any variety of software and 
hardware systems (e.g., robots, cameras, biosensors); the agents are “mobile” because 
they move with their host computers.  
 
iMAS includes simulated versions of subsystems (e.g., the Biovest, GPS devices, camera) 
that may be used for developing and testing the agents.  The iMAS system is generally 
run on a laptop computer carried in a backpack and operates without having to be 
connected to a wireless network or the Internet. In this configuration all science data 
recorded by the user (e.g., photographs and voice notes) and other EVA logs (e.g., time-
stamped locations and biosensor data if any) are stored only in a local database called 
Compendium. In the networked Mobile Agents configuration, such data are transmitted 
to the web-interface ScienceOrganizer database and selectively communicated to 
specialists monitoring the EVA as alerts via e-mail. In a proper Mars EVA simulation 
such transmissions with Earth would be time-delayed. 
 
Figure 2 shows the MRA’s components and process flow. Refer to the key below the 
figure for explanations of the figure’s icons such as the meaning of CA.  The following is 
a summary of the process flow: 
 

1. The suit provides raw physiology telemetry to the LEGACI Communications 
Agent (CA). (It is possible to run the MRA in simulation mode such that these 
data are provided from a database.) 

2. The LEGACI CA stores the telemetry data in the LEGACI Excel spreadsheet and 
triggers the spreadsheet calculations. The results of the calculations are stored in 
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the LEGACI spreadsheet. The LEGACI CA reads the data results from the 
spreadsheet and sends them to the Medical Assistant Agent.1 

3. The LEGACI CA reads thresholds from a configuration file and sends them via a 
message to the Medical Assistant Agent. 

4. The Medical Assistant Agent processes the data received from the LEGACI CA, 
determines whether any thresholds are exceeded, and if so generates alerts. These 
alerts are sent to the Dialog Agent CA as well as the Science Data Collector CA. 
The SDC CA sends the data to the Science Data Manager CA, which distributes 
them to the Compendium CA, Console CA, and E-mail CA for storage and 
distribution. 

5. Astronauts can query the advisor for metabolic rate information. These queries are 
sent to the Dialog System via its CA, which in turn sends corresponding request 
messages to the LEGACI CA. The LEGACI CA will retrieve the results from the 
LEGACI spreadsheet and return them to the Dialog System. The Dialog System 
uses those results to generate the appropriate verbal response. 

6. Other functions in iMAS are also available; for example, plans can be loaded 
from the Compendium CA, sent to the Plan Assistant Agent (via a Plan Manager - 
not shown here). The Plan Assistant is used to start activities.  The Navigation 
Assistant provides current location information of the person or mobile 
system/robot using GPS (not shown in the diagram). The Science Data Assistant 
Agent is used to support the logging of “sample bags,” voice notes, and 
photographs, including their association in the database with the astronaut who 
created them, the activity in the plan, and time-stamped locations (Clancey et al. 
2007). 

 

                                                
1 The term “assistant agent” is somewhat redundant; the term “agent” is appended here to 
emphasize that the Medical Assistant is implemented as an agent in the Brahms language. 
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Figure 2: iMAS Metabolic Rate Advisor Architecture and Process Flow (circa 2007) 

 
Green Boxes = External systems (includes the RIALIST Dialog System, the suit 
telemetry system, Microsoft Excel, the planning program called Compendium, Console, 
and Email server. In non-POGO configurations, includes a camera, GPS, and ERA robot 
(Hirsh et al. 2006). 
 
CA = Communication Agent (Comm Agent) = JAVA component that communicates 
commands and data between an external system (using its API) and other Brahms 
Agents. Serves as a wrapper that makes the external system function as a Brahms agent, 
hence the “dual-API” architecture. Translates between the data–control language of the 
external system and the structured language of the task used by the agents (corresponding 
to the voice commands of the people). Communication between Brahms agents is via 
TELL and ASK actions that comprise queries, responses, and alerts, plus other state 
information. 
 
Green Circles = Standard Brahms Agents that perform functions that coordinate with the 
Personal Agent of the crew member.  In a particular configuration of Mobile Agents each 
person (crew member, mission support officer) has a personal agent that customizes their 
interaction with external systems and other people (e.g., it “knows” their plan and current 
location). 
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Speech	  Interface	  
The Dialog System used in the MRA is RIALIST, a research variant of speech 
recognition software commercialized by Nuance (Dowding, et al. 2006). RIALIST both 
recognizes and generates speech.  Unlike products such as Dragon Naturally Speaking, 
RIALIST uses a “semantic unification grammar” that pre-enumerates the (potentially 
thousands) of utterances that can be recognized. Thus it is not prone to the 
misunderstandings common in systems like Apple’s Siri (iOS 7, circa 2013) that 
recognize on the basis of individual words or short phrases.  
 
RIALIST is integrated with the Mobile Agents system through the Dialog Agent CA 
(Figure 2), which transforms structured queries from the astronaut into ASK/TELL 
actions that are directed to other agents for processing, and then back to the Dialog Agent 
CA to generate a response.    
 
Most of the utterances recognized by the MRA that are relevant to the metabolic rate, 
including alternative phrasings, are summarized in Table 1. Alternative phrasings are 
advantageous for several reasons: 
 

v Individual pronunciation variation will result in some phrases being more 
reliably recognized than others for some speakers. 

v A system may be too brittle if there is only one way to speak each command, 
and the user doesn’t remember it. 

v Users decide which phrasings are preferred. As we collect speech data of the 
system in use, the phrases that get used more frequently are given higher 
probability and thus become more reliably recognized improving the system’s 
performance. Thus, the system learns from the population of users how they 
prefer to state requests. 
 

Testing with POGO indicated that the queries in Table 1 were sufficient. In general, 
somewhat longer phrases are more reliably recognized than shorter phrases. A voice 
command of a single syllable would be especially difficult to recognize, but very few of 
the preferred phrasings were that short (despite an initial bias by some of the engineers to 
use single-word commands rather than sentences). 
 
Table 1: Metabolic Rate Advisor alerts and voice commands with responses  
 

Query 
Parameter Units Verbal 

Command 
Verbal 

Response 
Alert 

Threshold 
Alert 

Response 
Average 
Metabolic 
Rate* 

btu/hr met rate 
metabolic rate 
query met rate 
what is my met rate 

“x btu/hr” 3000 btu/hr “3000 Met” 

Scheduled 
time to 
repress 

minute
s 

time left 
how much time is left 
how much time is 
remaining 
query time left 

“x minutes”      30 “30 minutes” 

Limiting 
consumable, 

minute
s 

lim con 
limiting consumables 

“x 
Consumable

AR=30 “LimCon30” 
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Query 
Parameter Units Verbal 

Command 
Verbal 

Response 
Alert 

Threshold 
Alert 

Response 
time left* query consumable 

what are my limiting 
consumables? 

,         
  x minutes” 

Heart Rate Beat/ 
min 

heart rate 
query heart rate 
what is my heart rate 

“x bpm” 175 bpm “175 bpm” 

Consumables 
Utilization 
Efficiency 
(Planned vs. 
Actual)* 

percen
t 

red line 
consumable usage 
query red line 
what is my consumable 
usage 

“% 
consumable 
used, 
planned, x 
lbs vs actual, 
y lbs” 

  

Power 
Remaining* 

watt-
hrs 

power 
power remaing 
query power 
query power remaining 
how much power is 
remaining 

“x minutes 
power” 

 AR=30 “Power 30” 

LiOH 
Remaining* 

minute
s 

Scrubber 
Query scrubber 

“x minutes 
scrubber” 

AQ=30 “Scrubber 
30” 

O2 
Remaining* 

minute
s 

oh two 
query oh two 
oxygen 
query oxygen 
how much oh two is left 
what is my oh two 

“x minutes 
O2” 

AJ=30 “O2 30” 

Feedwater 
Remaining* 

minute
s 

feed water 
query feed water 
how much feed water is 
left 
what is my feed water 

“x minutes 
feedwater” 

AH=30 “Feedwater 
30” 

O2 Pressure psi oh two press 
oh two pressure 
oxygen press 
oxygen pressure 
query oh two pressure 
query oxygen pressure 
query oh two press 
query oxygen press 
what is my oh two 
pressure 

“x psi” 85 psi (10%) “O2press” 

Walkback 
Range* 

km hab  
how far is the hab 
where is the hab 
habitat 
how far is the habitat 
where is the habitat 

“x 
kilometers” 

10 km “Ten K” 

Environmental 
heat load 

btu/hr heat leak 
query heat leak 
what is my heat leak 

“x btu/hr” 300 “Heat leak” 

Suit Leak 
Rate* 

lb/min suit leak 
query suit leak 
what is the suit leak 

“x lb/min” 0.01 
(10*spec) 

“Suit leak” 

Heat Storage* btu storage 
query storage 
heat storage 
query heat storage 

“x btu” BT=300 btu “Overheat” 



	   11	  

Query 
Parameter Units Verbal 

Command 
Verbal 

Response 
Alert 

Threshold 
Alert 

Response 
what is my heat storage 

LCVG T inlet 
advisory 

deg F t in 
query t in  
what is my temperature 
in 

“ x deg F 
actual 
“ y deg F 
advised 

ABS(G-BZ) 
.GT 2*** 

“Colder or 
Warmer” 

Dehydration 
advisory 

lbs sweat 
query sweat 
what is my sweat 

“x lbs” 0.5, 1, 1.5, 2 “Drink” 

Nutrition 
advisory 

kcal kay kal 
nutituion 
what is my k cal 

“x kcals” 500, 1000, 
2000 

“Eat” 

Exertion alert pC02, 
HR 

  C=175, 
E=15 

overexert 

Acute 
overheat alert 

btu/hr   P=4000 slow down 

 
Table 2. Selected additional voice commands available in MRA from previous versions 
of Mobile Agents 
 

Query/Command Verbal 
Command 

Stop talking Stop talking please 
Shut up 
Stop talking 

Change volume Increase volume 
Decrease volume 

Repeat Say that again 
Repeat that 

Current Time What time is it? 
Acknowledge Acknowledge 

Hello 
Start Activity Start first activity 

Start next activity 
Query activity What is my current activity? 

What is my next activity? 
Record voice note Record a voice note 

Create a voice note 
Take a voice note 

Create sample Create sample bag 
Play voice note Play that voice note 

Play voice note <N> 
Entertainment Tell me a joke 

Play a song by <N> 
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Integration	  with	  EVA	  Path	  Planner	  	  
The MRA was extended subsequently by an MIT masters student, Aaron Johnson, in a 
dissertation program called SEXTANT (Johnson 2010; Johnson et al. 2010).  As shown 
in Figure 3, an additional external system was included, a program that plans the EVA 
route using terrain data. An additional CA enables communication between the route 
planner (using its API) and other agents. This provided access to suit data, the LEGACI 
model, the Dialog System, etc. such that paths could be planned with respect to the 
original activity plan, terrain, and the astronaut’s physiological status (Johnson et al. 
2009). 
 
The SEXTANT project illustrates how the Mobile Agents Architecture enables 
interoperability of new subsystems that can incorporate and augment capabilities 
provided by existing agents. For example, SEXTANT received access to the astronaut’s 
location, plan, and metabolic rate information directly, and was able to used the Dialog 
System to communicate with the astronaut. In such integration, design decisions need to 
made of course about the flow of information among the agents, especially which 
agent(s) are  responsible for proactively monitoring and generating alerts. Other agents 
passively transform and log data, and communicate when requested. 
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Figure 3. Metabolic Rate Advisor combined with Sextant (EVA Path Planner and its 
Communication agent). Diagram shows configuration as of 2009, with integration to 
Mobile Agents Plan Assistant Agent but not yet to the LEGACI data. 
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Discussion	  of	  R&D	  Perspectives	  and	  Methodology	  
On striking lesson we learned during the Mobile Agents project is that conceiving, 
designing, developing, and experimenting with interoperating networked subsystems (e.g. 
a robot, space suit, camera, science database) is fundamentally different from the 
“breadboard demonstrator” approach formalized by NASA engineers in the 1970s. By 
that methodology, R&D went through many phases of component development and 
laboratory testing, called Technology Readiness Levels (2014), whereby deploying a 
system in the field—a space flight—was the final step.  Table 3 shows one version of the 
transitions from TRL 3, studies and focused designs/experiments, to TRL 7, the 
operational space environment.  
 
Table 3. Traditional Technology Readiness Levels—from start of R&D through first 
prototype in a operational environment (from Wikipedia, 2014; emphasis added). 
 
3. Analytical and 
experimental critical 
function and/or 
characteristic proof of 
concept 

At this step in the maturation process, active research and 
development (R&D) is initiated. This must include both 
analytical studies to set the technology into an appropriate 
context and laboratory-based studies to physically validate 
that the analytical predictions are correct.  

4. Component and/or 
breadboard validation in 
laboratory environment 

Following successful "proof-of-concept" work, basic 
technological elements must be integrated to establish that the 
"pieces" will work together to achieve concept-enabling levels 
of performance for a component and/or breadboard. This 
validation must be devised to support the concept that was 
formulated earlier, and should also be consistent with the 
requirements of potential system applications. The validation 
is "low-fidelity" compared to the eventual system: it could be 
composed of ad hoc discrete components in a laboratory. 

5. Component and/or 
breadboard validation in 
relevant environment 

At this level, the fidelity of the component and/or breadboard 
being tested has to increase significantly. The basic 
technological elements must be integrated with reasonably 
realistic supporting elements so that the total applications 
(component-level, sub-system level, or system-level) can be 
tested in a 'simulated' or somewhat realistic environment. 

6. System/subsystem 
model or prototype 
demonstration in a relevant 
environment (ground or 
space) 

At TRL 6, a representative model or prototype system or 
system - which would go well beyond ad hoc, 'patch-cord' or 
discrete component level breadboarding - would be tested in a 
relevant environment. At this level, if the only 'relevant 
environment' is the environment of space, then the 
model/prototype must be demonstrated in space. 

7. System prototype 
demonstration in a space 
environment 

TRL 7 is a significant step beyond TRL 6, requiring an actual 
system prototype demonstration in a space environment. The 
prototype should be near or at the scale of the planned 
operational system and the demonstration must take place in 
space. 

 
Notice the emphasis on laboratory testing for levels 3 to 5. In the Mobile Agents project 
(Clancey et al. 2011), these steps were repeated each year and required about six months.  
TRL 6, “testing in a relevant environment” occurred in the field tests at MDRS and 
DRATS; and emphatically, these were experiments as part of requirements analysis, not 
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tests.  Arguably, insofar as using systems like iMAS to survey lava flows in Hawaii, 
Idaho, and New Mexico constituted the actual work of the geologists, these were also 
TRL 7, demonstrations of practical use in operational environments.  Indeed, TRL 7 is 
only possible in Earth analog environments for many complex interactive technologies 
today. As exemplified by the “sky crane” of the Mars Science Laboratory, the first 
demonstrations in true operational environments can only occur when the spacecraft 
operates during the space mission itself. 
 
Today the combination and availability of the Internet, wireless communication, object-
oriented message-passing distributed architectures (e.g., agent systems), and a variety of 
digital peripherals (sensors, cameras, robotic devices etc.)— all available in portable 
“supercomputer” packages—has fundamentally changed the complexity of systems that 
can be built and how they are developed.  Integrated systems can be prototyped from the 
ground up (i.e., TRL 4) as portable, end-to-end systems (Clancey et al. 2007; 2011) and 
thus can be used experimentally in authentic work contexts. Also, system development 
can be iterative, cycling many times through the phases of requirements specification, 
design, development, testing, and experimentation/evaluation. In particular, Earth 
locations that are analogs of the moon or Mars, such as Devon Island in the Canadian 
Arctic, have enabled field scientists and computer scientists to carry out “analog 
missions” using prototype systems experimentally over multiple field seasons.   
	  
The NASA life support systems engineers who worked on the Metabolic Rate Advisor 
project and were not part of the Mobile Agents team focused on the POGO test 
environment (Figure 1) as if it embodied the requirements for a metabolic advisor.  The 
objective became packaging a “flight ready” system, rather than better understanding the 
requirements for the MRA and discovering how new mission operations capabilities 
might be enabled by new kinds of technology. In effect, the Ames Mobile Agents 
engineers were engaged in a requirements discovery and technology invention project, 
while the JSC life support systems engineers, strongly focusing on the space suit as a 
product, were engaged in a packaging project that presupposed the MRA vocabulary 
circa 2009 (Table 1) was final. 
 
Consequently, the MRA vocabulary was treated as if it were the only voice interaction 
that would occur between astronaut and subsystems, without considering how the MRA 
capabilities might need to interact with other components. This specific “life support 
system” focus was in stark contrast to our experience in developing the Mobile Agents 
systems (Clancey et al. 2007). The original requirements for the Mobile Agents voice 
commanding were derived by analyzing interactions between CapCom and the Apollo 
astronauts (Clancey 2004). Through iterative experimentation from 2002–2008 with nine 
fielded system configuration prototypes, we identified eleven categories of voice 
commands supporting an EVA (e.g., navigation, plan management, science data logging) 
including 134 voice-commanded “workflow capabilities” (Clancey et al. 2011; Clancey 
& Lowry 2012; Clancey et al. 2012b)—and none of the recognizable commands were 
fewer than three words (compare to Table 1).  
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Confining the astronaut in the JSC POGO test harness restricted his activity. Exploring 
was impossible and there was nothing to explore. The MRA test harness had a “work 
station,” but tests focused on the mobility in the suit, ability to grasp and manipulate 
tools, and associated metabolic rate for different positions of bending, grabbing materials, 
etc. It was not possible to walk to other sites, so there was no site planning or navigation 
functionality required, no logging of observations at different sites using a variety of 
cameras and other instruments, and no robotic assistant to be commanded. For example, 
during Apollo EVAs astronauts had difficulty relating craters to their maps and finding a 
route (Clancey 2004).  
 
From the start, the MRA was conceived by the life support system engineers as the 
“audio component of LEGACI” or “the speech system.” But this would be like calling a 
laptop computer “an LCD display system.”  By focusing on a single integration—ARC 
shall integrate their iMAS speech recognition system into the EVA Advisory Algorithm 
Demonstrator—the agent system was invisible (as it should be), and thus the open 
architecture and interoperability it provided were not appreciated.   
 
In part, the JSC test and package perspective reflects the 1960s mental model that the 
product of research was a packaged flight-ready system. It was inconceivable in the 
1960s that the software might not be written or tested prior to launch (as is common on 
planetary missions today). Software of the day was more coupled to hardware “registers” 
and “commands,” and if updating were possible it would be risky: The TRLs required 
that the entire system must be built and operational before flight.  
 
Integration of early hardware was more likely to occur through soldered connections than  
programs. The flexibility of today’s systems—both for reconfiguration and adaption 
during operation—has mostly enabled through the modularity afforded by object-oriented 
programming and the adaptive capability of model-based programming (also known in 
AI research as “symbolic programming” or “rule-based systems”). 
 
The MRA was conceived by the JSC engineers who developed spacesuits as being a self-
contained subsystem (i.e., suit/sensors + LEGACI interpreting software + voice interface) 
that would be packaged with the life support system. That is, MRA would be the entire 
voice commanding system that would be used for EVAs, a system that focused 
exclusively on metabolic rate advising and no other EVA concerns. They called the 
system they packaged Violet, following perhaps from the phrase “Voice Interface for 
Operations….” (Kuznetz 2008; Mackin  et al. 2010).2 
 
Because metabolic rate inquires could be reduced to one word or short phrases (e.g., 
“query storage”) rather than actual sentences used in field tests with geologists who were 
actually exploring and documenting a site of interest and new to them (Clancey et al. 
2007), the engineers viewed most of the MRA architecture and Dialog System as 

                                                
2 Mackin (2010) builds on the Metabolic Rate Advisor, referring to “the user interface 
implemented by Kuznetz,” with no reference to the original Ames project. 
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superfluous. They determined that a off-the-shelf voice recognizer developed for 
automobiles would be sufficient for Violet, abandoning the RIALIST subsystem that 
allowed full  sentences, grammar-based recognition, and alternative phrasings. Whereas 
RIALIST in the Mobile Agents EVA configuration incorporated a grammar with over 
one hundred rules enabling thousands of questions or statements averaging X words (with 
response time usually less than two seconds), Violet reduced the MRA to seventeen one 
or two word commands. Whereas RIALIST at MRA built on and incorporated all of the 
EVA grammar— enabling the same system to be taken directly to the field with a robot, 
habitat, cameras, etc.—Violet would only be able to provide data for 17 metabolic 
parameters.  Without these other subsystems, there was no need for the flexibility of the 
agent  “plug and play” architecture, so it was discarded. Consequently, future extensions 
rather  than being reconfigurable modules would need to be hardwired in code. 
 
Perhaps because of its legacy and traditional engineering methods, systems developed by 
JSC for field tests are packaged resemble flight-ready hardware. For example, see the 
Space Exploration Vehicle (2014) and the gold-plated Robonaut (2014). Packaging for 
public appearance is viewed as part of the R&D process; it is part of the JSC culture. For 
some systems like the SEV, which appeared in the US President’s inauguration parade in 
January 2009, there are clear benefits for stimulating public interest.  For R&D involving 
EVA support systems such as the MRA, the packaging process leads to far too early 
concerns about weight, power, and miniaturization that require reducing system 
capabilities—when the entire effort should focus on what might be possible in ten or 
twenty years. Imagine designing communications for Mars in the 1980s using early PCs 
with floppy disks and less than 1 MB RAM, before the advent of GPS, cell phones, 
wireless networks, web browsers, etc. The emphasis of mission support systems R&D 
should instead be on requirements analysis and inventing new technologies, particularly 
in analog environments. 
 
The irony of  “packaging for flight” is that in 2007 we were decades from having boots 
on the ground of Mars or an asteroid where the MRA might be used.  During that time 
much will change in computing technology, particularly in voice commanding; a great 
deal of reconfiguration and experimentation will be possible and desirable.  Thus, the 
reduction of the MRA to Violet reduced capabilities of the system as well as its ability to 
be reconfigured and extended in ongoing research, which had been inherent in the 
original Mobile Agents architecture.  
 
In fact, putting Mobile Agents into NASA mission operations does not require such 
stripping down, as is proven by the OCAMS system (Clancey et al. 2008). Implemented 
in the Mobile Agent Architecture (though with the Brahms agents “compiled” into Java 
modules), this system currently automates all routine file transfers between the 
International Space Station computers and ground support teams.  
 
In summary, our experience developing the MRA revealed that a component-based 
“develop, test, package” approach does not exploit the capabilities of today’s system 
architectures and affordable mobile systems; nor does it allow exploring what might be 
possible and useful in practice by an incremental, rapid prototyping methodology.  
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Premature concerns with packaging may affect R&D in other contexts, such as 
developing something like the MRA for a “smart watch” that monitors the physiology of 
diabetes patients.  The following pitfalls can inhibit the creative process in designing 
technology: 
 

1) Requirements: Designing for a testbed as opposed for an end-to-end system 
prototype in an authentic work context 

2) System Architecture: Viewing each subsystem (e.g., a robot) as a separately 
designed, developed, tested, and packaged component instead of developing 
integrated prototypes for early-in-design field experimentation. 

3) Development: Grounding design in automation functions (e.g., alerting using 
parameter thresholds) as opposed to human activities (e.g., helping the astronaut 
replan an EVA) 

4) Packaging:  Preparing the test system for public demonstrations and beginning 
the process of “hardening” it for flight instead of retaining system architectures 
that allow substitution or integration with more advanced technologies. 

 
In contrast with the component-based R&D approach, “human-centered computing” 
begins with authentic work settings (e.g., Mars analog sites) to understand how people 
work, including their chronological activities, behaviors, perceptions, conception of 
situations, communications, movements, etc.  From this understanding one develops tools 
and protocols incrementally that fit the physical, conceptual, and social work context. 
The work system is collaboratively designed as whole through experience in operational 
settings. 
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