
NASA/WP—2013-Unpublished

The Metabolic Rate Advisor:
Using Agents to Integrate Sensors and Legacy
Software

William J. Clancey
Ames Research Center, California
and Florida Institute for Human and Machine Cognition, Pensacola

Ron van Hoof
Ames Research Center

January 2013

	 2	

Acknowledgments

This study was supported in part by the Human Research Project in FY 2007 by JSC-
Ames Internal Task Agreement #7948, “EVA Biomedical Advisory Algorithm” and by
associated funding from ETDP 12B Human-System Interaction for the Mobile Agents
Project (2002-08). ARC Project participants in addition to the authors of this report
included Maarten Sierhuis and John Dowding. JSC Project participants included Mike
Gernhardt, Larry Kuznetz, Jeff Jones, Andrew Abercromby, Jennifer Jadwick, and Kathy
Johnson. This unpublished working report was updated in October 2014 to explain the
architecture in more detail in accord with other published NASA reports and to include
additional references. The views expressed herein are those of the authors and do not
represent the views of other past participants on the project or of NASA or the U.S.
Government.

	 3	

Table	 of	 Contents	

Introduction	 4	

Technical	 Architecture	 and	 Process	 Flow	 6	

Speech	 Interface	 9	

Integration	 with	 EVA	 Path	 Planner	 12	

Discussion	 of	 R&D	 Perspectives	 and	 Methodology	 14	

References	 18	

	 	

	 4	

Introduction	
This document describes the technical design of a hardware-software system that could
enable crewmembers during surface Extra-Vehicular Activities (EVAs), such as while
exploring Mars, to interactively track, understand, and control their physiological
performance based on real-time biosensor data. The objective is to increase astronaut self
sufficiency given the time-delayed communications that prevent real-time monitoring and
advising from Earth to manage workload within resource and safety requirements.

At the start of the project, NASA Johnson Space Center provided the following task
description to the Ames Research Center (ARC):

The EVA Physiology, Systems and Performance Project (EPSP) is funding the Intelligent
Systems Group at ARC to develop a Laptop Demonstration System of an EVA Biomedical
Advisory Algorithm with Speech Recognition Capability. Specific tasks associated with
this effort include the following:

1. ARC shall develop/code a data input module that allows manual data entry of
EPSP-specified parameters via keyboard. The module shall also be capable of
using EPSP-provided data to create simulated data for each variable and
generate a simulated, real-time data stream varying with respect to time.

2. ARC shall develop/code a metabolic algorithm module built from the
equations embedded in the EPSP Excel metabolic algorithm (LEGACI).
Outputs from the equations in this module shall exactly reflect those in the
EPSP Excel algorithm.

3. ARC shall integrate their iMAS [individual Mobile Agents System] speech
recognition system into the EVA Advisory Algorithm Demonstrator. The
demonstrator shall allow the EVA crewmember (subject) to query the
database for specific data to be defined by the EPSP. The system shall
recognize the request, query the database/met algorithm module and provide
the information to the crewmember (subject) both audibly and visually on the
laptop screen.

iMAS, described subsequently, is an EVA support system that allows individual
explorers who are not connected to a wireless network to log science data and receive
navigation and plan advice, as well as biosensor interpretation and alerting—where
throughout the explorer and speech system communicate with each other in natural
language. iMAS is constructed using an interoperability framework called the Mobile
Agents Architecture.

The requirements stated by JSC highlight the use of a speech recognition system, but this
is actually just one module that is part of the Metabolic Rate Advisor. Other modules
include email, biosensors, GPS, and a camera.

More specifically, the technology of importance here is not the speech system but the
multi-agent architecture and “dual-API” method that enables interoperability among
legacy software and hardware components. This architecture made it possible to directly

	 5	

integrate the previously developed iMAS system with the Excel implementation of the
metabolic algorithm. This approach was faster, more reliable, and more general than
developing a new module (item #2). The interoperability architecture allowed as well
integrating a path planner for emergency “walk back” advising by relating the terrain to
metabolic rate information, which is also discussed in this report.

The Metabolic Rate Advisor was tested in the JSC Partial Gravity Simulator, nicknamed
POGO (Figure 1). In this apparatus, an astronaut wears an experimental space suit that is
pressurized and constrains his mobility, and especially affects using his hands because of
the pressurized gloves. The suited astronaut is suspended by a counterweight is adjusted
to simulate the gravity of the moon, Mars, or an asteroid. Motion is highly constricted to
a small area, allowing testing of specific actions, such as picking up materials, operating
tools, and walking up an inclined plane.

Figure 1. Astronaut in pressurized suit suspended by Partial Gravity Simulator (POGO)
at Johnson Space Center (2007)

Note that POGO is a test apparatus primarily designed for experimenting with suit, glove,
and tool design. As such it did not permit understanding or experimenting with the
Metabolic Rate Advisor (MRA) in an authentic exploration environment as we had
demonstrated throughout the development of Mobile Agents (Clancey et al. 2011).
POGO enabled testing that the speech recognition system worked in the noisy
environment of the pressurized suit, but it did not enable evaluating or refining the
monitoring and alerting functionality or natural language interaction in the context of
time-extended EVA activities for which the MRA was intended. Further remarks about

	 6	

the limitations of a component-based “test and package” approach to R&D appear at the
end of this report.

Technical	 Architecture	 and	 Process	 Flow	
The Metabolic Rate Advisor (MRA) is implemented as reconfigurable system in which
“agents” proactively integrate data and command flow among software and hardware
components, including interfaces by which people interact with the Advisor. Agents are
dedicated software components that operate simultaneously and independently, often on
different computers, communicating via messages; they may receive data from and
control devices, displays, and other software. The MRA is implemented using the Mobile
Agents Architecture (MAA); specifically, the MRA is an adaptation of the existing
standalone system called the “individual Mobile Agents System” (iMAS).

Mobile Agents (Clancey et al. 2007) is based on the Brahms (Clancey et al. 1998;
Sierhuis 2001) work practice simulation system. In Brahms people, facilities, geography,
tools, procedures, communications, etc. are modeled explicitly so circumstantial,
sometimes unanticipated interactions can be understood in creating and evaluating work
system designs. Brahms has been integrated with other simulation systems and can be
used to drive a virtual environment interface (BrahmsVE; Clancey et al. 2005). In Mobile
Agents, Brahms agents may run on different computer platforms and communicate
wirelessly. These computer systems may be integrated with any variety of software and
hardware systems (e.g., robots, cameras, biosensors); the agents are “mobile” because
they move with their host computers.

iMAS includes simulated versions of subsystems (e.g., the Biovest, GPS devices, camera)
that may be used for developing and testing the agents. The iMAS system is generally
run on a laptop computer carried in a backpack and operates without having to be
connected to a wireless network or the Internet. In this configuration all science data
recorded by the user (e.g., photographs and voice notes) and other EVA logs (e.g., time-
stamped locations and biosensor data if any) are stored only in a local database called
Compendium. In the networked Mobile Agents configuration, such data are transmitted
to the web-interface ScienceOrganizer database and selectively communicated to
specialists monitoring the EVA as alerts via e-mail. In a proper Mars EVA simulation
such transmissions with Earth would be time-delayed.

Figure 2 shows the MRA’s components and process flow. Refer to the key below the
figure for explanations of the figure’s icons such as the meaning of CA. The following is
a summary of the process flow:

1. The suit provides raw physiology telemetry to the LEGACI Communications
Agent (CA). (It is possible to run the MRA in simulation mode such that these
data are provided from a database.)

2. The LEGACI CA stores the telemetry data in the LEGACI Excel spreadsheet and
triggers the spreadsheet calculations. The results of the calculations are stored in

	 7	

the LEGACI spreadsheet. The LEGACI CA reads the data results from the
spreadsheet and sends them to the Medical Assistant Agent.1

3. The LEGACI CA reads thresholds from a configuration file and sends them via a
message to the Medical Assistant Agent.

4. The Medical Assistant Agent processes the data received from the LEGACI CA,
determines whether any thresholds are exceeded, and if so generates alerts. These
alerts are sent to the Dialog Agent CA as well as the Science Data Collector CA.
The SDC CA sends the data to the Science Data Manager CA, which distributes
them to the Compendium CA, Console CA, and E-mail CA for storage and
distribution.

5. Astronauts can query the advisor for metabolic rate information. These queries are
sent to the Dialog System via its CA, which in turn sends corresponding request
messages to the LEGACI CA. The LEGACI CA will retrieve the results from the
LEGACI spreadsheet and return them to the Dialog System. The Dialog System
uses those results to generate the appropriate verbal response.

6. Other functions in iMAS are also available; for example, plans can be loaded
from the Compendium CA, sent to the Plan Assistant Agent (via a Plan Manager -
not shown here). The Plan Assistant is used to start activities. The Navigation
Assistant provides current location information of the person or mobile
system/robot using GPS (not shown in the diagram). The Science Data Assistant
Agent is used to support the logging of “sample bags,” voice notes, and
photographs, including their association in the database with the astronaut who
created them, the activity in the plan, and time-stamped locations (Clancey et al.
2007).

1 The term “assistant agent” is somewhat redundant; the term “agent” is appended here to
emphasize that the Medical Assistant is implemented as an agent in the Brahms language.

	 8	

Figure 2: iMAS Metabolic Rate Advisor Architecture and Process Flow (circa 2007)

Green Boxes = External systems (includes the RIALIST Dialog System, the suit
telemetry system, Microsoft Excel, the planning program called Compendium, Console,
and Email server. In non-POGO configurations, includes a camera, GPS, and ERA robot
(Hirsh et al. 2006).

CA = Communication Agent (Comm Agent) = JAVA component that communicates
commands and data between an external system (using its API) and other Brahms
Agents. Serves as a wrapper that makes the external system function as a Brahms agent,
hence the “dual-API” architecture. Translates between the data–control language of the
external system and the structured language of the task used by the agents (corresponding
to the voice commands of the people). Communication between Brahms agents is via
TELL and ASK actions that comprise queries, responses, and alerts, plus other state
information.

Green Circles = Standard Brahms Agents that perform functions that coordinate with the
Personal Agent of the crew member. In a particular configuration of Mobile Agents each
person (crew member, mission support officer) has a personal agent that customizes their
interaction with external systems and other people (e.g., it “knows” their plan and current
location).

	 9	

Speech	 Interface	
The Dialog System used in the MRA is RIALIST, a research variant of speech
recognition software commercialized by Nuance (Dowding, et al. 2006). RIALIST both
recognizes and generates speech. Unlike products such as Dragon Naturally Speaking,
RIALIST uses a “semantic unification grammar” that pre-enumerates the (potentially
thousands) of utterances that can be recognized. Thus it is not prone to the
misunderstandings common in systems like Apple’s Siri (iOS 7, circa 2013) that
recognize on the basis of individual words or short phrases.

RIALIST is integrated with the Mobile Agents system through the Dialog Agent CA
(Figure 2), which transforms structured queries from the astronaut into ASK/TELL
actions that are directed to other agents for processing, and then back to the Dialog Agent
CA to generate a response.

Most of the utterances recognized by the MRA that are relevant to the metabolic rate,
including alternative phrasings, are summarized in Table 1. Alternative phrasings are
advantageous for several reasons:

v Individual pronunciation variation will result in some phrases being more
reliably recognized than others for some speakers.

v A system may be too brittle if there is only one way to speak each command,
and the user doesn’t remember it.

v Users decide which phrasings are preferred. As we collect speech data of the
system in use, the phrases that get used more frequently are given higher
probability and thus become more reliably recognized improving the system’s
performance. Thus, the system learns from the population of users how they
prefer to state requests.

Testing with POGO indicated that the queries in Table 1 were sufficient. In general,
somewhat longer phrases are more reliably recognized than shorter phrases. A voice
command of a single syllable would be especially difficult to recognize, but very few of
the preferred phrasings were that short (despite an initial bias by some of the engineers to
use single-word commands rather than sentences).

Table 1: Metabolic Rate Advisor alerts and voice commands with responses

Query
Parameter Units Verbal

Command
Verbal

Response
Alert

Threshold
Alert

Response
Average
Metabolic
Rate*

btu/hr met rate
metabolic rate
query met rate
what is my met rate

“x btu/hr” 3000 btu/hr “3000 Met”

Scheduled
time to
repress

minute
s

time left
how much time is left
how much time is
remaining
query time left

“x minutes” 30 “30 minutes”

Limiting
consumable,

minute
s

lim con
limiting consumables

“x
Consumable

AR=30 “LimCon30”

	 10	

Query
Parameter Units Verbal

Command
Verbal

Response
Alert

Threshold
Alert

Response
time left* query consumable

what are my limiting
consumables?

,
 x minutes”

Heart Rate Beat/
min

heart rate
query heart rate
what is my heart rate

“x bpm” 175 bpm “175 bpm”

Consumables
Utilization
Efficiency
(Planned vs.
Actual)*

percen
t

red line
consumable usage
query red line
what is my consumable
usage

“%
consumable
used,
planned, x
lbs vs actual,
y lbs”

Power
Remaining*

watt-
hrs

power
power remaing
query power
query power remaining
how much power is
remaining

“x minutes
power”

 AR=30 “Power 30”

LiOH
Remaining*

minute
s

Scrubber
Query scrubber

“x minutes
scrubber”

AQ=30 “Scrubber
30”

O2
Remaining*

minute
s

oh two
query oh two
oxygen
query oxygen
how much oh two is left
what is my oh two

“x minutes
O2”

AJ=30 “O2 30”

Feedwater
Remaining*

minute
s

feed water
query feed water
how much feed water is
left
what is my feed water

“x minutes
feedwater”

AH=30 “Feedwater
30”

O2 Pressure psi oh two press
oh two pressure
oxygen press
oxygen pressure
query oh two pressure
query oxygen pressure
query oh two press
query oxygen press
what is my oh two
pressure

“x psi” 85 psi (10%) “O2press”

Walkback
Range*

km hab
how far is the hab
where is the hab
habitat
how far is the habitat
where is the habitat

“x
kilometers”

10 km “Ten K”

Environmental
heat load

btu/hr heat leak
query heat leak
what is my heat leak

“x btu/hr” 300 “Heat leak”

Suit Leak
Rate*

lb/min suit leak
query suit leak
what is the suit leak

“x lb/min” 0.01
(10*spec)

“Suit leak”

Heat Storage* btu storage
query storage
heat storage
query heat storage

“x btu” BT=300 btu “Overheat”

	 11	

Query
Parameter Units Verbal

Command
Verbal

Response
Alert

Threshold
Alert

Response
what is my heat storage

LCVG T inlet
advisory

deg F t in
query t in
what is my temperature
in

“ x deg F
actual
“ y deg F
advised

ABS(G-BZ)
.GT 2***

“Colder or
Warmer”

Dehydration
advisory

lbs sweat
query sweat
what is my sweat

“x lbs” 0.5, 1, 1.5, 2 “Drink”

Nutrition
advisory

kcal kay kal
nutituion
what is my k cal

“x kcals” 500, 1000,
2000

“Eat”

Exertion alert pC02,
HR

 C=175,
E=15

overexert

Acute
overheat alert

btu/hr P=4000 slow down

Table 2. Selected additional voice commands available in MRA from previous versions
of Mobile Agents

Query/Command Verbal
Command

Stop talking Stop talking please
Shut up
Stop talking

Change volume Increase volume
Decrease volume

Repeat Say that again
Repeat that

Current Time What time is it?
Acknowledge Acknowledge

Hello
Start Activity Start first activity

Start next activity
Query activity What is my current activity?

What is my next activity?
Record voice note Record a voice note

Create a voice note
Take a voice note

Create sample Create sample bag
Play voice note Play that voice note

Play voice note <N>
Entertainment Tell me a joke

Play a song by <N>

 	

	 12	

Integration	 with	 EVA	 Path	 Planner	 	
The MRA was extended subsequently by an MIT masters student, Aaron Johnson, in a
dissertation program called SEXTANT (Johnson 2010; Johnson et al. 2010). As shown
in Figure 3, an additional external system was included, a program that plans the EVA
route using terrain data. An additional CA enables communication between the route
planner (using its API) and other agents. This provided access to suit data, the LEGACI
model, the Dialog System, etc. such that paths could be planned with respect to the
original activity plan, terrain, and the astronaut’s physiological status (Johnson et al.
2009).

The SEXTANT project illustrates how the Mobile Agents Architecture enables
interoperability of new subsystems that can incorporate and augment capabilities
provided by existing agents. For example, SEXTANT received access to the astronaut’s
location, plan, and metabolic rate information directly, and was able to used the Dialog
System to communicate with the astronaut. In such integration, design decisions need to
made of course about the flow of information among the agents, especially which
agent(s) are responsible for proactively monitoring and generating alerts. Other agents
passively transform and log data, and communicate when requested.

	 13	

Figure 3. Metabolic Rate Advisor combined with Sextant (EVA Path Planner and its
Communication agent). Diagram shows configuration as of 2009, with integration to
Mobile Agents Plan Assistant Agent but not yet to the LEGACI data.

	 14	

Discussion	 of	 R&D	 Perspectives	 and	 Methodology	
On striking lesson we learned during the Mobile Agents project is that conceiving,
designing, developing, and experimenting with interoperating networked subsystems (e.g.
a robot, space suit, camera, science database) is fundamentally different from the
“breadboard demonstrator” approach formalized by NASA engineers in the 1970s. By
that methodology, R&D went through many phases of component development and
laboratory testing, called Technology Readiness Levels (2014), whereby deploying a
system in the field—a space flight—was the final step. Table 3 shows one version of the
transitions from TRL 3, studies and focused designs/experiments, to TRL 7, the
operational space environment.

Table 3. Traditional Technology Readiness Levels—from start of R&D through first
prototype in a operational environment (from Wikipedia, 2014; emphasis added).

3. Analytical and
experimental critical
function and/or
characteristic proof of
concept

At this step in the maturation process, active research and
development (R&D) is initiated. This must include both
analytical studies to set the technology into an appropriate
context and laboratory-based studies to physically validate
that the analytical predictions are correct.

4. Component and/or
breadboard validation in
laboratory environment

Following successful "proof-of-concept" work, basic
technological elements must be integrated to establish that the
"pieces" will work together to achieve concept-enabling levels
of performance for a component and/or breadboard. This
validation must be devised to support the concept that was
formulated earlier, and should also be consistent with the
requirements of potential system applications. The validation
is "low-fidelity" compared to the eventual system: it could be
composed of ad hoc discrete components in a laboratory.

5. Component and/or
breadboard validation in
relevant environment

At this level, the fidelity of the component and/or breadboard
being tested has to increase significantly. The basic
technological elements must be integrated with reasonably
realistic supporting elements so that the total applications
(component-level, sub-system level, or system-level) can be
tested in a 'simulated' or somewhat realistic environment.

6. System/subsystem
model or prototype
demonstration in a relevant
environment (ground or
space)

At TRL 6, a representative model or prototype system or
system - which would go well beyond ad hoc, 'patch-cord' or
discrete component level breadboarding - would be tested in a
relevant environment. At this level, if the only 'relevant
environment' is the environment of space, then the
model/prototype must be demonstrated in space.

7. System prototype
demonstration in a space
environment

TRL 7 is a significant step beyond TRL 6, requiring an actual
system prototype demonstration in a space environment. The
prototype should be near or at the scale of the planned
operational system and the demonstration must take place in
space.

Notice the emphasis on laboratory testing for levels 3 to 5. In the Mobile Agents project
(Clancey et al. 2011), these steps were repeated each year and required about six months.
TRL 6, “testing in a relevant environment” occurred in the field tests at MDRS and
DRATS; and emphatically, these were experiments as part of requirements analysis, not

	 15	

tests. Arguably, insofar as using systems like iMAS to survey lava flows in Hawaii,
Idaho, and New Mexico constituted the actual work of the geologists, these were also
TRL 7, demonstrations of practical use in operational environments. Indeed, TRL 7 is
only possible in Earth analog environments for many complex interactive technologies
today. As exemplified by the “sky crane” of the Mars Science Laboratory, the first
demonstrations in true operational environments can only occur when the spacecraft
operates during the space mission itself.

Today the combination and availability of the Internet, wireless communication, object-
oriented message-passing distributed architectures (e.g., agent systems), and a variety of
digital peripherals (sensors, cameras, robotic devices etc.)— all available in portable
“supercomputer” packages—has fundamentally changed the complexity of systems that
can be built and how they are developed. Integrated systems can be prototyped from the
ground up (i.e., TRL 4) as portable, end-to-end systems (Clancey et al. 2007; 2011) and
thus can be used experimentally in authentic work contexts. Also, system development
can be iterative, cycling many times through the phases of requirements specification,
design, development, testing, and experimentation/evaluation. In particular, Earth
locations that are analogs of the moon or Mars, such as Devon Island in the Canadian
Arctic, have enabled field scientists and computer scientists to carry out “analog
missions” using prototype systems experimentally over multiple field seasons.
	
The NASA life support systems engineers who worked on the Metabolic Rate Advisor
project and were not part of the Mobile Agents team focused on the POGO test
environment (Figure 1) as if it embodied the requirements for a metabolic advisor. The
objective became packaging a “flight ready” system, rather than better understanding the
requirements for the MRA and discovering how new mission operations capabilities
might be enabled by new kinds of technology. In effect, the Ames Mobile Agents
engineers were engaged in a requirements discovery and technology invention project,
while the JSC life support systems engineers, strongly focusing on the space suit as a
product, were engaged in a packaging project that presupposed the MRA vocabulary
circa 2009 (Table 1) was final.

Consequently, the MRA vocabulary was treated as if it were the only voice interaction
that would occur between astronaut and subsystems, without considering how the MRA
capabilities might need to interact with other components. This specific “life support
system” focus was in stark contrast to our experience in developing the Mobile Agents
systems (Clancey et al. 2007). The original requirements for the Mobile Agents voice
commanding were derived by analyzing interactions between CapCom and the Apollo
astronauts (Clancey 2004). Through iterative experimentation from 2002–2008 with nine
fielded system configuration prototypes, we identified eleven categories of voice
commands supporting an EVA (e.g., navigation, plan management, science data logging)
including 134 voice-commanded “workflow capabilities” (Clancey et al. 2011; Clancey
& Lowry 2012; Clancey et al. 2012b)—and none of the recognizable commands were
fewer than three words (compare to Table 1).

	 16	

Confining the astronaut in the JSC POGO test harness restricted his activity. Exploring
was impossible and there was nothing to explore. The MRA test harness had a “work
station,” but tests focused on the mobility in the suit, ability to grasp and manipulate
tools, and associated metabolic rate for different positions of bending, grabbing materials,
etc. It was not possible to walk to other sites, so there was no site planning or navigation
functionality required, no logging of observations at different sites using a variety of
cameras and other instruments, and no robotic assistant to be commanded. For example,
during Apollo EVAs astronauts had difficulty relating craters to their maps and finding a
route (Clancey 2004).

From the start, the MRA was conceived by the life support system engineers as the
“audio component of LEGACI” or “the speech system.” But this would be like calling a
laptop computer “an LCD display system.” By focusing on a single integration—ARC
shall integrate their iMAS speech recognition system into the EVA Advisory Algorithm
Demonstrator—the agent system was invisible (as it should be), and thus the open
architecture and interoperability it provided were not appreciated.

In part, the JSC test and package perspective reflects the 1960s mental model that the
product of research was a packaged flight-ready system. It was inconceivable in the
1960s that the software might not be written or tested prior to launch (as is common on
planetary missions today). Software of the day was more coupled to hardware “registers”
and “commands,” and if updating were possible it would be risky: The TRLs required
that the entire system must be built and operational before flight.

Integration of early hardware was more likely to occur through soldered connections than
programs. The flexibility of today’s systems—both for reconfiguration and adaption
during operation—has mostly enabled through the modularity afforded by object-oriented
programming and the adaptive capability of model-based programming (also known in
AI research as “symbolic programming” or “rule-based systems”).

The MRA was conceived by the JSC engineers who developed spacesuits as being a self-
contained subsystem (i.e., suit/sensors + LEGACI interpreting software + voice interface)
that would be packaged with the life support system. That is, MRA would be the entire
voice commanding system that would be used for EVAs, a system that focused
exclusively on metabolic rate advising and no other EVA concerns. They called the
system they packaged Violet, following perhaps from the phrase “Voice Interface for
Operations….” (Kuznetz 2008; Mackin et al. 2010).2

Because metabolic rate inquires could be reduced to one word or short phrases (e.g.,
“query storage”) rather than actual sentences used in field tests with geologists who were
actually exploring and documenting a site of interest and new to them (Clancey et al.
2007), the engineers viewed most of the MRA architecture and Dialog System as

2 Mackin (2010) builds on the Metabolic Rate Advisor, referring to “the user interface
implemented by Kuznetz,” with no reference to the original Ames project.

	 17	

superfluous. They determined that a off-the-shelf voice recognizer developed for
automobiles would be sufficient for Violet, abandoning the RIALIST subsystem that
allowed full sentences, grammar-based recognition, and alternative phrasings. Whereas
RIALIST in the Mobile Agents EVA configuration incorporated a grammar with over
one hundred rules enabling thousands of questions or statements averaging X words (with
response time usually less than two seconds), Violet reduced the MRA to seventeen one
or two word commands. Whereas RIALIST at MRA built on and incorporated all of the
EVA grammar— enabling the same system to be taken directly to the field with a robot,
habitat, cameras, etc.—Violet would only be able to provide data for 17 metabolic
parameters. Without these other subsystems, there was no need for the flexibility of the
agent “plug and play” architecture, so it was discarded. Consequently, future extensions
rather than being reconfigurable modules would need to be hardwired in code.

Perhaps because of its legacy and traditional engineering methods, systems developed by
JSC for field tests are packaged resemble flight-ready hardware. For example, see the
Space Exploration Vehicle (2014) and the gold-plated Robonaut (2014). Packaging for
public appearance is viewed as part of the R&D process; it is part of the JSC culture. For
some systems like the SEV, which appeared in the US President’s inauguration parade in
January 2009, there are clear benefits for stimulating public interest. For R&D involving
EVA support systems such as the MRA, the packaging process leads to far too early
concerns about weight, power, and miniaturization that require reducing system
capabilities—when the entire effort should focus on what might be possible in ten or
twenty years. Imagine designing communications for Mars in the 1980s using early PCs
with floppy disks and less than 1 MB RAM, before the advent of GPS, cell phones,
wireless networks, web browsers, etc. The emphasis of mission support systems R&D
should instead be on requirements analysis and inventing new technologies, particularly
in analog environments.

The irony of “packaging for flight” is that in 2007 we were decades from having boots
on the ground of Mars or an asteroid where the MRA might be used. During that time
much will change in computing technology, particularly in voice commanding; a great
deal of reconfiguration and experimentation will be possible and desirable. Thus, the
reduction of the MRA to Violet reduced capabilities of the system as well as its ability to
be reconfigured and extended in ongoing research, which had been inherent in the
original Mobile Agents architecture.

In fact, putting Mobile Agents into NASA mission operations does not require such
stripping down, as is proven by the OCAMS system (Clancey et al. 2008). Implemented
in the Mobile Agent Architecture (though with the Brahms agents “compiled” into Java
modules), this system currently automates all routine file transfers between the
International Space Station computers and ground support teams.

In summary, our experience developing the MRA revealed that a component-based
“develop, test, package” approach does not exploit the capabilities of today’s system
architectures and affordable mobile systems; nor does it allow exploring what might be
possible and useful in practice by an incremental, rapid prototyping methodology.

	 18	

Premature concerns with packaging may affect R&D in other contexts, such as
developing something like the MRA for a “smart watch” that monitors the physiology of
diabetes patients. The following pitfalls can inhibit the creative process in designing
technology:

1) Requirements: Designing for a testbed as opposed for an end-to-end system
prototype in an authentic work context

2) System Architecture: Viewing each subsystem (e.g., a robot) as a separately
designed, developed, tested, and packaged component instead of developing
integrated prototypes for early-in-design field experimentation.

3) Development: Grounding design in automation functions (e.g., alerting using
parameter thresholds) as opposed to human activities (e.g., helping the astronaut
replan an EVA)

4) Packaging: Preparing the test system for public demonstrations and beginning
the process of “hardening” it for flight instead of retaining system architectures
that allow substitution or integration with more advanced technologies.

In contrast with the component-based R&D approach, “human-centered computing”
begins with authentic work settings (e.g., Mars analog sites) to understand how people
work, including their chronological activities, behaviors, perceptions, conception of
situations, communications, movements, etc. From this understanding one develops tools
and protocols incrementally that fit the physical, conceptual, and social work context.
The work system is collaboratively designed as whole through experience in operational
settings.

References	
Clancey, W. J., Sachs, P., Sierhuis, M., and van Hoof, R. 1998. Brahms: Simulating

practice for work systems design. International Journal of Human-Computer
Studies, 49: 831-865.

Clancey, W. J. 2004. Roles for agent assistants in field science: Understanding personal
projects and collaboration, IEEE Transactions on Systems, Man and Cybernetics,
Part C: Applications and Reviews, 34 (2) 125-137. Special Issue on Human-Robot
Interaction, May.

Clancey, W. J., Sierhuis, M., Damer, B., Brodsky, B. 2005. Cognitive modeling of social
behaviors. In R. Sun (Ed.), Cognition and Multi-Agent Interaction: From Cognitive
Modeling to Social Simulation, pp. 151-184. New York: Cambridge University
Press.

Clancey, W.J., Sierhuis, M., Alena, R., Berrios, D., Dowding, J., Graham, J.S., Tyree,
K.S., Hirsh, R.L., Garry, W.B., Semple, A., Buckingham Shum, S. J., Shadbolt, N.
and Rupert, S. 2007. Automating CapCom using Mobile Agents and Robotic
Assistants. NASA Technical Publication 2007-214554. Washington, D.C.

Clancey, W.J., Sierhuis, M., Seah, C., Buckley, C., Reynolds, F., Hall, T., Scott, M.
2008. Multi-agent simulation to implementation: A practical engineering
methodology for designing space flight operations. In A. Artikis, G. O'Hare, K.

	 19	

Stathis, & G. Vouros (Eds.), Engineering Societies in the Agents' World
VIII. Athens, Greece, October 2007. Lecture Notes in Computer Science Series,
Volume 4870. Heidelberg Germany: Springer, pp. 108-123.

Clancey, W. J., Lowry, M., Nado, R., Sierhuis, M. 2011. Software productivity of field
experiments using the Mobile Agents open architecture with workflow
interoperability, IEEE Space Mission Challenges for Information Technology,
August 2011, Palo Alto, pp. 85-92.

Clancey, W. J. and Lowry, M. 2012. Lunar Surface Systems Software Architecture
Study: Interoperability. NASA/TP—2012–216040. Available:
http://ti.arc.nasa.gov/publications/

Clancey, W. J., Nado, R., van Hoof, R., Sierhuis, M., Jones, G., Dvorak, D. 2012. Lunar
Surface Systems Software Architecture Study: Open Architecture. NASA/TP—
2012–216041. Available: http://ti.arc.nasa.gov/publications/

Dowding, J., Alena, R., Clancey, W. J., Graham, J., and Sierhuis, M. 2006. Are you
talking to Me? Dialogue Systems Supporting Mixed Teams of Humans and Robots.
AAAI Fall Symposium 2006: Aurally Informed Performance: Integrating Machine
Listening and Auditory Presentation in Robotic Systems, October, Washington, DC.

Hirsh, R., Graham, J., Tyree, K., Sierhuis, M., and Clancey, W. J. 2006. Intelligence for
human-assistant planetary surface robots. In A. M. Howard and E. W. Tunstel (Eds.),
Intelligence for Space Robotics. Albuquerque: TSI Press, 2006, pp. 261-279.

Johnson, A. W., Newman, D. J., Waldie, J. M., Hoffman, J. A. 2009. An EVA mission
planning tool based on metabolic cost optimization, SAE 2009-01-2562, 39th
International Conference on Environmental Systems, Savannah, GA, 12-16 July
2009.

Johnson, A. W., Hoffman, J. M., Newman, D. J., Mazarico, E., and Zuber, M. 2010. An
Integrated Traverse Planner and Analysis Tool for Planetary Exploration. AIAA
SPACE 2010 Conference & Exposition, Anaheim, California, AAAI 2010–8829.

Johnson, A.W. 2010. An Integrated EVA Mission Planner for Future Planetary
Exploration, M.S. thesis, Massachusetts Institute of Technology

Kuznetz, L.H. 2008. "Designing a smart suit for the moon and mars." 38th International
Conference on Environmental Systems: SAE 2008-01-1952.

Robonaut. (2014, August 19). In Wikipedia, The Free Encyclopedia. Retrieved 00:02,
October 9, 2014, from
http://en.wikipedia.org/w/index.php?title=Robonaut&oldid=621949466

Sierhuis, M. 2001. Modeling and Simulating Work Practice. Ph.D. thesis, Social Science
and Informatics (SWI), University of Amsterdam, SIKS Dissertation Series No.
2001-10, Amsterdam, The Netherlands, ISBN 90-6464-849-2.

Space Exploration Vehicle. (2014, July 3). In Wikipedia, The Free Encyclopedia.
Retrieved 00:03, October 9, 2014, from
http://en.wikipedia.org/w/index.php?title=Space_Exploration_Vehicle&oldid=61546
1460

	 20	

Technology readiness level. (2014, September 26). In Wikipedia, The Free Encyclopedia.
Retrieved 00:00, October 9, 2014, from
http://en.wikipedia.org/w/index.php?title=Technology_readiness_level&oldid=6271
80805

