
1

TOPO: IMPLICATIONS OF THE SYSTEM-MODEL-
OPERATOR METAPHOR FOR KNOWLEDGE
ACQUISITION

William J. Clancey and Monique Barbanson

In Second Generation Expert Systems, J. M. David, J. P. Krivine and R.
Simmons, Eds. New York: Springer Verlag. 467-476, 1993. Also appeared
in IEEE Expert, 6(5) 61-65, 1991

This is the original technical report. Please refer to printed copy before
quoting for publication.

The systems-model-operator perspective provides a good basis for guiding
the knowledge acquisition process. An experiment is presented in which we
use this metaphor to develop TOPO, an expert system for configuration of
computer networks. Generalizing TOPO, we show that its modeling language
and operators can be adapted to other tasks which require relating a physical-
organizational structure to a service-supply network. The experiment
demonstrates how expert systems can be generalized and more easily related
to each other if we express control knowledge in terms of operators for
constructing system models.

1. Task-specific architectures

The technique for building expert systems has advanced from tools that provide an

“empty knowledge base” (e.g., EMYCIN [vanMelle, 1980]) to tools that presuppose

a particular task such as diagnosis or design (Chandrasekaran, 1984; Clancey; 1985;

Hayes-Roth, et al., 1988; Marcus, 1988; Musen, 1989). Task-specific tools

incorporate a way of organizing knowledge and an inference procedure for applying

this knowledge. As researchers collect these tools and attempt to integrate them, we

need to understand the relation between specific problems and general ways in which

knowledge can be organized and applied. In essence, how should we formalize the

part of the knowledge base that gets reused so its capabilities and limits can be related

to new problems?

Generalizing from our experience and analysis of related task-specific tools, I

believe that task-specific architectures should address the following distinctions

(Clancey, in press):

❏ What system in the world is being modeled?

❏ For what purpose is the system being modeled (a task)?

❏ What subsystems and subprocesses are represented in the general model (the
knowledge base)?

William J. Clancey

2

❏ What subsystems and subprocesses are represented in a situation-specific
model (a problem solution)?

❏ What relational networks are used to represent processes (kinds of hierarchies
and transitional graphs)?

❏ What are the operators (inference procedures) for constructing situation-
specific models?

❏ How are the relational networks and inference procedure implemented in a
programming language (e.g., frame and rule-based languages)?

The idea of describing knowledge bases in terms of tasks, systems, and models was

presented in the heuristic classification analysis (Clancey, 1985). The ideas are

extended here to describe inference as a process of constructing and comparing

situation-specific models of processes for some purpose. Usually, situation-specific

models are chained, so a model of one system (e.g, a diagnostic model of

physiological processes) feeds into decisions for constructing another system or

process (e.g., a therapy process). A key idea is that we can view a situation-specific

model as a graph and inference subprocedures as operators for manipulating the

nodes and relations in this graph (Clancey, in press).

In HERACLES-DX, a diagnostic shell developed from NEOMYCIN, the

inference procedure is represented by subtasks and metarules. Subtasks are

procedures that order and control the application of conditional statements, called

metarules. Metarules are stated in a language of relations for representing structures

and processes in the system being modeled (e.g., causal and subtype relations). The

general model (domain knowledge) is expressed as a set of propositions over these

relations. Metarules themselves use variables rather than domain terms (so we say

that they are domain-general). A given set of propositions about a particular situation

in the world constitutes a situation-specific model. The relations and operators—

constituting a language for representing general and situation-specific models, plus an

inference procedure—is the reusable knowledge contained in the HERACLES-DX

shell. To summarize, according to the system-model-operator view, subtasks are

operators for manipulating situation-specific graphs that represent structures and

processes in the system being modeled.

The systems-model-operator perspective provides a good basis for developing

expert systems. We can view HERACLES as the more general architecture that

allows defining subtasks, metarules, or relations, but does not contain any specific

operators or relations. Can we use the HERACLES architecture to efficiently write

3

new subtasks and metarules for a different, non-diagnostic task? To illustrate this, I

will present an experiment in which we develop TOPO, an expert system for

configuration using the HERACLES shell. This experiment demonstrates how expert

systems can be generalized and more easily related to each other if we express control

or strategic knowledge in terms of operators for constructing system models.

2. TOPO: BLACKBOARDS AND OPERATORS FOR COMPUTER
NETWORK LAYOUT

TOPO is an experiment in the use of HERACLES which explores the problem of

writing new subtasks and metarules for logical topology design of computer

networks. The problem is relevant towards the development of a front end for the

programs developed by Digital Equipment Corporation for computer system

configuration. An expert system like TOPO could potentially provide a sales person

with a language for modeling a potential client’s business and information-processing

requirements. TOPO is intended to propose a layout of generic components and

connections, suitable for input to sizing and configuration programs, such as XCON

[63]. The program described here is a prototype that runs on one example case. Our

interest here is not in definitively solving the logical topology problem, but in

determining how the model-operator perspective and the availability of the

subtask/metarule language helps or hinders the knowledge acquisition process.

The development of TOPO illustrates the process of using the HERACLES

subtask/metarule language to define operators for a configuration task. Recall that

HERACLES was originally designed with subtasks and metarules for diagnosis in

NEOMYCIN. Here we show how the level of abstraction results in domain models,

blackboards, and operators that might be reused in a wide variety of related

applications. We also discover that the idea of a “physical-organizational model” is a

common starting point for many expert systems.

2.1 Designing TOPO in terms of process models
TOPO’s reasoning can be described as follows:

1. Construct a model of the physical and organizational structure of the
client’s business. Describe floor locations of workgroups at each site.

2. Determine the information-processing requirements, leading to a
preliminary sizing (e.g., the number of printers required).

3. Design the network topology:
a. derive the backbone from the physical layout.
b. represent the components and connections.

4

Following the lessons learned in our heuristic classification analysis, we first

conjectured that TOPO would contain three kinds of models corresponding to these

three steps. However, in the final design, we found that it was more convenient to

view information-processing requirements as properties of workgroups, rather than

as separate objects. In effect, there are relations between elements of the physical and

organizational structure (e.g., sites and buildings). Also, there are relationships

between elements of the network topology (e.g., segments and backbones). But we

chose not to represent relations between information-processing requirements, and

therefore do not require a separate model for them.

Conceptually, we view the reasoning of the program in terms of constructing

a situation-specific model (SSM) for each connected system or process (e.g.,

Business-Site-1, Network-at-Site-2), illustrated by Figure 1. In effect, the program

first constructs a model of the client’s business and then produces a corresponding

network design.

Client's Business Network Design

BLDG1

FLR1

B2 B3
SITE1

SITE2

at SITE1

at SITE2

Segment

Backbone

etc. etc.

FLR2

Figure 1. Two blackboards in TOPO (client business and network design) with a
panel for each site; levels of each panel correspond to hierarchical connections (e.g.,

segments on a backbone).

5

2.2 Defining operators for constructing models

The following is a generalization of how to define inference operators, based on our

experience in developing TOPO:

1. Draw separate pictures for each system in the world being modeled (e.g.,
business and computer service networks).

2. Specify class structure of nodes in each SSM (e.g., buildings, segments)
and draw separate SSMs for unconnected systems (e.g., different sites).

3. Draw links showing information mapping between SSMs of different types
(e.g., from workgroup to equipment layout).

4. Describe operators for placing nodes in each SSM, linking them, and
specifying their spatial and process attributes.

In practice, our descriptions of TOPO’s operators (Figure 2) are abstracted from the

subtasks/metarules that carry out the necessary computations. A given operator

typically corresponds to a single HERACLES subtask (and hence several metarules).

Higher-level subtasks control when the operators are performed (just as PROCESS-

HYPOTHESIS in NEOMYCIN determines that the operator TEST-HYPOTHESIS is

done before REFINE-HYPOTHESIS).

6

OOOOPPPP3333 ppppllllaaaacccceeeessss EEEEqqqquuuuiiiippppmmmmeeeennnntttt aaaatttt

mmmmoooosssstttt----ssssppppeeeecccciiiiffffiiiicccc ssssppppaaaattttiiiiaaaallll lllleeeevvvveeeellll
OOOOPPPP1111 ppppllllaaaacccceeeessss PPPPOOOOSSSS

Client's Business Network Design

BLDG1

FLR1

B2 B3
SITE1

SITE2

at SITE1

at SITE2

Segment

Backbone

etc. etc.

FLR2

OOOOPPPP4444 hhhhiiiieeeerrrraaaarrrrcccchhhhiiiiccccaaaallllllllyyyy

lllliiiinnnnkkkkssss EEEEqqqquuuuiiiippppmmmmeeeennnntttt

OOOOPPPP2222 ffffiiiillllllllssss iiiinnnn SSSSeeeerrrrvvvviiiicccceeee

RRRReeeeqqqquuuuiiiirrrreeeemmmmeeeennnnttttssss

OOOOPPPP5555 ddddeeeetttteeeerrrrmmmmiiiinnnneeeessss

ssssppppaaaattttiiiiaaaallll rrrreeeellllaaaattttiiiioooonnnnssss

aaaatttt aaaallllllll lllleeeevvvveeeellllssss

OOOOPPPP6666 vvvveeeerrrriiiiffffiiiieeeessss

ssssppppaaaattttiiiiaaaallll ccccoooonnnnssssttttrrrraaaaiiiinnnnttttssss

Figure 2. The six operators of TOPO’s inference procedure place different nodes
and links in the situation-specific models. The sizing table (quantifying the “amount

of equipment”) used by OP3 is computed by another program.

We can describe TOPO’s operators in more detail in terms of the nodes and relations

they manipulate on the blackboards (Table 1). In effect, the relations of the SSM are

specializations of the general domain model. For example, the general domain model

indicates that there can be a USES/CONSUMES relation between types of

organizational-structures and types of services. A client-business SSM indicates that a

particular organizational structure uses or consumes a particular service (e.g.,

“WORKGROUP-3 USES/CONSUMES information-storage”).

Operators are implemented as HERACLES subtasks; therefore the relations

of Table 1 appear in metarule premises. The SSM “nodes” or terms of the relations

appear as variables in the metarules.

OPERATOR (RELATION Node1 Node2)

7

1) “Determine
 Position”

(LOCATED-IN/AT POS <place>)

2) “Determine Service
 Requirements”

(USES/CONSUMES
Organizational-Structure Service)

3) “Process Sizing
 Data”

(USED-BY
Organizational-Structure Equipment)

(PROVIDES Equipment Service)

(AMOUNT-SUPPLY Service
Sizing-data-table)

(SIZING.DATA.TABLE Equipment #)

4) “Derive Logical Topology from
 POS and Equipment “

(PROVIDE-SERVICE-FOR
Physical-Structure
Logical-Service-Components)

5) “Transfer properties from
 POS to Service”

(PROVIDE-SERVICE-FOR
Physical-Structure
Logical-Service-Components)

(LINEAR-SPAN Physical-Structure #)

6) “Verify Skeletal
 Design”

<Various relations represented in
constraint rules>

Table 1. Domain relations used by TOPO’s operators.
(# = a number; POS = Physical-Organizational-Structure such as buildings or workgroups; Sizing =

capacity of a service or supply)

2.3 Generalizing TOPO’s models and operators

To recapitulate, building TOPO in HERACLES was an incremental process in which

w e s h i f t e d we shifted attention back and forth between the details of writing metarules and the

high-level definition of blackboards and operators. Just as we were able to build

CASTER very quickly using NEOMYCIN’s relations and operators, we now

conjecture that expert systems similar to TOPO can be constructed more quickly that

TOPO itself. Towards this end, we want to describe TOPO more generally, so we

can talk about its reasoning and representations at a level more general than computer

network layout.

Generalizing, we can describe TOPO’s blackboards and operators as being

suitable for “social services network configuration.” This characterizes a wide

variety of potential expert systems that map between a model of social structures

(e.g., a university) to a network of services or suppliers (Figure 3). In each of these

programs, we will follow similar steps: determine the Physical-Organizational-

Structure; determine service and local resource sizing requirements, and finally place

8

and connect servers and suppliers. Our claim is that the relations and operators of

Table 1 provide a useful level of abstraction for building such expert systems. Put

another way, we don’t simply give the knowledge engineer the subtasks and

metarules used in TOPO; we give the design of the blackboards in terms of the

domain relations of Table 1 and a description of what the operators do.

Notice also that we are building up a language for describing kinds of

systems. We distinguish between a POS and a service network. We observe that the

service network involves a distribution of resources, not a single roving supplier. For

example, TOPO’s blackboards and operators are probably inadequate for solving the

traveling salesman problem. We observe that other expert systems that provide

“service protection” also start by constructing a POS model. For example, an expert

system to configure an earthquake insurance policy for a univeristy would develop a

model of the university’s physical and organizational structure (e.g., a description of

buildings and distribution of workgroups). Notice that such a POS model will contain

new distinctions (relations) that are useful for configuring service protection, but not

useful for configuring a service network. This suggests that an ultimate library of

system models and operators will be roughly hierarchical, with sharing and

specialization of descriptions for different tasks.

9

PHYSICAL-
ORGANIZATIONAL
STRUCTURE

SERVICE
NETWORK

CLUBS

BUSINESSES

UNIVERSITIES UTILITY
TELE
COMMUN-
ICATION

COMPUTER

TRANSPORT

BUS RAIL

INSURANCE

EARTHQUAKE HEALTH

SERVICE

PROTECTION

GUARDS

Expert can handle?

Weeks?

Months?

Figure 3. Generalization of TOPO’s inference structure: a physical-organizational-
structure (POS, e.g., a business description) is related to a service network (e.g.,

telecommunication network). Existing POS models could be reused in expert systems
that design a different kind of system or process (e.g., insurance policy

configuration).

Figure 3 shows how a classification of system types can be used to describe how

specific expert systems are related, and hence the knowledge engineering effort

required (in boldface) to generalize and specialize existing knowledge bases. As

always, we use the term “system” very generally here; an earthquake insurance policy

is a kind of system. We conjecture that it takes much more time to shift between

systems that are of different abstract types (e.g., shifting from service networks to

service protection). But it should be much easier to reuse blackboards and operators

for systems that are of a similar type (e.g., converting operators developed for bus

route configuration to rail configuration). The point of this diagram is to illustrate the

10

research task of developing future knowledge acquisition tools. It shows just a small

part of the space of potential expert systems that we might develop, but illustrates the

kinds of conversions and adaptations that we expect to find throughout our

enterprise. The blackboard/operator metaphor suggests that classifying our tools in

terms of models of systems (e.g., telecommunication) will facilitate sharing and reuse

of representations and inference procedures.

Other researchers have advocated the analysis and decomposition of

knowledge bases in terms of general or “generic” components. How do these

analyses compare? We can summarize the relation between the inference operators

described here, Chandrasekaran’s generic tasks, and McDermott’s role-limiting

methods as follows:

❏ A (role-limiting) problem-solving method is a procedure composed of

several inference operators that--through their controlled interaction—form a

situation-specific model that satisfies task constraints. For example,

NEOMYCIN’s subtasks together implement a variant of MOLE’s COVER-

AND-DIFFERENTIATE method.

❏ Furthermore, a subtree in NEOMYCIN’s subtask hierarchy (e.g.,

EXPLORE-AND-REFINE), which appears in multiple problem-solving

methods, is packaged and distributed separately in what Chandrasekaran calls

a Generic Task.

In conclusion, the model-construction operator perspective reveals that different

researchers have pursued different levels of generality in formalizing control

knowledge: single SSM operators correspond to a HERACLES-DX subtask;

subprocedures of one or more operators correspond to a Generic Task; a complete

inference procedure corresponds to a role-limiting method.

3. CONCLUSIONS

A central claim of this paper is that it is productive to view knowledge engineering as

a modeling methodology. Systems are modeled qualitatively in terms of causal,

temporal, and spatial relations. From this perspective, control knowledge consists of

the procedures for constructing situation-specific models. Different representations,

problem-solving architectures, knowledge acquisition tools, and specific expert

systems can then be systematically related by this model-construction perspective, in

11

terms of types of relational networks, process models, inference operators, system-

domains, and modeling purposes (tasks).

The HERACLES representation reveals that each time we write a new

procedure for interpreting a representation, we define new relations that classify its

constructs. For example, we find that classifications and procedures are defined in

terms of each other. The representation that results from stating control knowledge

abstractly, using variables in place of primitive terms, is not domain-independent, but

domain-general, in the sense that the language or relations can be made more general

than any one system being modeled by using spatial, temporal, causal, and subtype

distinctions (a perspective by which all systems can be described).

The system-model-operator view of knowledge engineering is very general. It

helps us develop new programs, like TOPO, but its strength is especially in helping

us to relate different research terminology. We can relate blackboards to metarules,

NEOMYCIN to MOLE, heuristic classification to qualitative process simulation, and

Generic Tasks to Role-limiting methods. Put another way, we can now relate

representational constructs, expert systems in a given domain, inference methods,

knowledge acquisition programs, and reasoning strategies, all from a system-model-

operator perspective.

Given any expert system, we can ask, “What are the systems being modeled?

What are the structure and process characteristics of this system? What kind of

relational network is used to represent these structures and processes? What is the

inference procedure for constructing a situation-specific model? How is this model

employed by later reasoning phases, evaluated, or conveyed to the user?” Rather

than simply asking about a new problem domain, “Is there real-world knowledge that

allows classification?” we might ask, “Must the system be modeled as open in its

interactions with its environment? Is there a known etiological hierarchy? Are there

stages or developmental descriptions involving trends and frequency of behaviors?

What experience have people had with this system in rebuilding, modifying,

assembling it in different situations?” Thus, knowledge engineering is a form of

systems analysis that emphasizes qualitative modeling of processes.

ACKNOWLEDGEMENTS
TOPO was designed and implemented with Monique Barbanson at the Institute for
Research on Learning and David Marques at Digital Equipment Corporation,
Marlborough, Massachusetts. Partial support for this research was provided by gifts
from the Digital Equipment Corporation and the Xerox Corporation.

12

REFERENCES
Chandrasekaran, B. Expert systems: Matching techniques to tasks, AI Applications

for Business, Reitman ed., Ablex Publishing Corp, Norwood, 1984.

Clancey, W. J. Heuristic classification, Artificial Intelligence 27: 289-350 (1985).

Clancey, W. J. Model Construction Operators, to appear in Artificial Intelligence, in
press.

Hayes-Roth, B., Hewett, M., Vaughan Johnson, M., and Garvey, A., ACCORD: A
framework for a class of design tasks, KSL Technical Report, Stanford
University, 1988.

Marcus, S., Automating Knowledge Acquisition for Expert Systems, Kluwer
Academic Publishers, Boston, 1988.

McDermott, J., Preliminary steps toward a taxonomy of problem-solving methods,
In Automating Knowledge Acquisition for Expert Systems, S. Marcus ed.,
Kluwer Academic Publishers, Boston, 1988.

Musen, M., Automated support for building and extending expert models, Machine
Learning, 4:(3/4) 347-377 (1989).

van Melle, W., A domain-independent system that aids in constructing knowledge-
based consultation programs, Ph.D Dissertation, Computer Science
Department, Stanford University, 1980.

