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The system-model-operator framework provides a unifying perspective 
for the ways that expert systems represent, organize, and apply 

knowledge. This lets us reuse domain-general knowledge and chart the 
knowledge-acquisition effort needed to extend task-specific shells to 

other domains. 

The techniques for building expert systems have advanced from tools that provided an “empty knowledge 
base” with a backward-chaining inference engine, such as Emycin,1 to tools that allow for an explicit 
representation of the domain-general control knowledge necessary for a specific task, such as diagnosis or 
design.2 6 Task-specific tools incorporate a way of organizing knowledge and an inference procedure for 
applying this knowledge. As researchers analyze these tools to generalize and integrate different 
methodologies, we need to understand the relation between specific problems and general ways in which 
knowledge can be organized and applied. In essence, how should we formalize the reusable part of the 
knowledge base so its capabilities and limits can be related to new problems? Task-specific architectures 
need to address the following distinct issues:7  

• What system is being modeled?  
• For what purpose, or task, is the system being modeled?  
• What subsystems and subprocesses are represented in the general model (that is, in the knowledge 

base)?  
• What subsystems and subprocesses are represented in a situation-specific model (that is, in a 

problem solution)?  
• What relational networks (what kinds of hierarchies and transitional graphs) are used to represent 

processes?  
• What are the operators, or inference procedures, for constructing situation specific models?  
• How are the relational networks and inference procedures implemented in a programming 

language (for example, in frame and rule-based languages)? 
 
The system-model-operator metaphor. To introduce the idea of this metaphor, we begin with the idea of 
describing knowledge bases in terms of tasks, systems in the world, and situation-specific models, pre 
sented several years ago as heuristic classification.3 We extend that idea to describe inference as the process 
of constructing and comparing situation-specific models of processes for some purpose. Situation specific 
models are usually chained: One system’s model (for instance, a diagnostic model of physiological 
processes) feeds into decisions for constructing another system or process (for example, therapy). We can 
view each situation-specific model as a graph, and inference subprocedures as operators for manipulating 
the nodes and relations within this graph and across graphs representing other situation-specific models. 
Clancey explores this idea in detail and relates it to other control paradigms such as blackboards.7  
 
We can illustrate this idea in the medical-diagnosis context of Heracles-DX, the diagnosis shell developed 
from Neomycin. Heracles uses subtasks and metarules to represent the inference procedure. Sub tasks are 
procedures that order and control the application of conditional statements. called metarules. Metarules are 
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stated in a language of relations representing the mod eled system’s structures and processes (for example, 
causal and subtype relations). The general model of the domain is expressed as a set of propositions over 
these relations. Metarules use variables ratherthan domain terms (so we say they are domain general). A 
given set of propositions about a particular situation in the world constitutes a situation-specific model. The 
relations and operators are the reusable knowledge in Heracles-DX, constituting a language for 
representing general and situation-specific models, plus an inference procedure. According to the 
system-model-operator view, subtasks are operators for manipulating situation-specific graphs that 
represent the structures and processes in the system being modeled.  
 
This perspective provides a unifying basis for analyzing expert systems by reducing the dimensions of 
domain, problem type, and problem-solving method to a graph representation. As a general architecture, 
Heracles lets us define subtasks. metarules, and relations, but does not contain any specific operators or 
relations. But can we use the Heracles architecture to efficiently write new subtasks and meta rules for a 
different, nondiagnostic task? We designed an experiment to find out: We developed Topo, an expert 
system for configuration, using the Heracles shell. 
 
Blackboards and operators for computer network layout 
 
Topo explores the problem of writing new subtasks and metarules for the logical topology design of 
computer networks. This problem is relevant to efforts to develop a front end for Digital Equipment 
Corporation’s programs for computer system configuration. For example, an expert system like Topo might 
provide a sales person with a language for modeling a potential client’s business and 
information-processing requirements. Topo is designed to propose a layout of generic components and 
connections, suitable as input to sizing and configuration programs such as Xcon.9 The program we 
describe in this article is a prototype that runs on one example case. Our interest here is not in solving the 
logical-topology problem, but in determining how the system-model operator perspective and the 
availability of the subtask/metarule language help or hinder knowledge acquisition.  
 
Designing Topo in terms of process models. Topo first constructs a model of the client’s business and 
then produces a corresponding network design. The program reasons as follows:  
 

(1) Construct a model of the physical and organizational structure of the client’s business. Describe 
the business sites and floor locations of work groups at each site.  
(2) Determine the information processing requirements, leading to a preliminary sizing (for instance, 
the number of printers required).  
(3) Design the network topology:  

• Derive the backbone from the physical layout.  
• Represent the components and connections. 

 
Following the lessons learned from heuristic classification, we first conjectured that Topo would contain 
three kinds of situation-specific models corresponding to these three steps. However, we found that a 
separate case-based reasoning system could estimate the type and number of devices more conveniently. 
Therefore, we did not require a separate model for information-processing requirements. In the final design, 
Topo’s information-processing requirements were directly represented as properties of workgroups within 
the physical and organizational model rather than as two separate models chained together. In effect, 
elements of the physical and organizational structure (such as sites and buildings) are related, as are 
elements of the network topology (for instance, segments and backbones). Conceptually, the inference 
procedure for Topo defines subtasks that construct a situation-specific model for each connected system. 
Each subtask defines metarules, each of which characterizes a set of domain rules that can be applied to 
construct a piece of the situation-specific model, such as Business-at-site-1 or Network-at-site-2, shown in 
Figure 1. The two blackboards (business and network) contain a panel for each site (corresponding to a 
situation specific model), and the levels in each panel correspond to hierarchical connections (for instance, 
segments on a backbone). 
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Figure 1. Two blackboards in TOPO:  a client’s business (left); network design (right). 

 
Defining operators for constructing configuration models. Generalizing from the representations used in 
Topo, we can define configuration-specific inference operators as follows:  

(1) Draw separate pictures for each real world system being modeled.  
(2) Specify the class structure of nodes in each situation-specific model, and draw separate 

situation-specific models for unconnected systems (for example, different sites).  
(3) Draw links showing the information mapping between models of different types (for example, 

from work group to equipment layout).  
(4) Describe operators for placing nodes in each model, linking them, and specifying their spatial and 

process attributes.  
 
In practice, we abstract descriptions of Topo’s operators (see Figure 2) from the subtasks and metarules that 
carry out the necessary computations. A given operator typically corresponds to a single Heracles subtask 
(and hence several metarules). Higher-level subtasks control when the operators are performed (just as 
Process-hypothesis in Neomycin determines that the operator Test-hypothesis is executed before 
Refine-hypothesis). As shown in Figure 2, the six operators of Topo’s inference procedure place different 
nodes and links in the situation-specific models. Another program computes the sizing table used by Op3 
(quantifying the amount of equipment).  
 
Based on the perspective of Clancey’s analysis of blackboard systems,7 in which he showed the 
correspondence between the blackboard paradigm and the system model-operator view, we can describe 
Topo’s operators in more detail in terms of the nodes and relations they manipulate on the blackboards (see 
Table 1). The relations of the situation-specific model are specializations of the general domain model. For 
example, the general domain model can indicate a Uses/consumes relation between types of organizational 
structures and types of services. A client business situation-specific model indicates that a particular 
organizational structure uses or consumes a particular service (for example, “Work-group-3 Uses/consumes 
Information-storage”). Topo implements operators as Heracles subtasks; therefore the relations of Table 1 
appear in metarule premises. The situation-specific model’s nodes (terms of the relations) appear as 
variables in the metarules. 
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Figure 2. The six operators of TOPO’s inference procedure. 

 
Table 1. Domain relations used by TOPO’s operators. POS is the physical/organizational structure, 
and sizing is the capacity of a service or supply. 
 
Operator (Relation Node1 Node2) 
“Determine Position” 
 

(Located-in/at  POS <place>) 
 

“Determine Service Requirements” 
 

(Uses/consumes Organizational-Structure Service)  
 

“Process Sizing Data” (Used-by Organizational-Structure Equipment) 
(Provides Equipment Service) 
(Amount-Supply Service Sizing-data-table) 
(Sizing.Data.Table  Equipment #) 
 

“Derive Logical Topology from POS       
     and Equipment “ 
 

(Provide-Service-for Physical-Structure  
   Logical-Service-Components ) 
 

“Transfer properties from 
       POS to Service” 
 

(Provide-Service-for Physical-Structure  
   Logical-Service-Components ) 
(Linear-span Physical-Structure #) 
 

“Verify Skeletal Design” (<Various relations represented in constraint rules>) 
 
 
Generalizing Topo’s models and operators. Building Topo in Heracles was an incremental process in 
which we shifted attention back and forth between the details of writing metarules and the high-level 
definition of blackboards and opera tors. Just as we were able to build another program quickly using 
Neomycin’s relations and operators,8 we conjecture that expert systems similar to Topo can be constructed 
more quickly than Topo itself. Toward this end, we need to describe Topo’s reasoning and representations at 
a more general level than computer network layout. Topo’s blackboards and operators are suitable, for 
instance, for “social services network configuration.” This characterizes a wide variety of potential expert 
systems that map from a model of a social structure, such as a university or business description, to a 
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network of services or  suppliers, such as a telecommunication network (see Figure 3). We can reuse 
existing physical-organizational-structure models in expert systems that design different kinds of systems 
or processes (for example, an insurance policy configuration). In each of these expert systems, we follow 
similar steps: determine the physical-organizational structure: determine service and local-resource sizing 
require ments, and finally, place and connect servers and suppliers. The relations and operators shown in 
Table I provide a useful level of abstraction for building such systems. Put another way, we don’t simply 
give the knowledge engineer the subtasks and metarules used in Topo; we provide the design of the 
blackboards in terms of the domain relations of Table 1 and a description of what the operators do.  
 

 
Figure 3. Generalizing TOPO’s inference structure. The terms in upper case designate the 
knowledge-engineering effort required to generalize and specialize existing knowledge bases.  
 
 
We are also building up a language for describing kinds of systems. Physical and organizational structures 
differ from service networks, in that the latter involves a distribution of resources rather than a single, 
roving supplier. For example, Topo’s blackboards and operators are probably inadequate for solving the 
traveling salesman problem. Other expert systems that provide “service protection” also start by 
constructing models of physical/ organizational structures. For example, an expert system to configure an 
earthquake insurance policy for a university would develop a model of the university’s physical and 
organizational structure, including a description of buildings and the distribution of work groups. This 
model will contain new distinctions (relations) that are useful for configuring service protection but not for 
configuring a service network. This suggests that an ultimate library of system models and operators will be 
roughly hierarchical, with sharing and specialization of descriptions for different tasks.  
 
Figure 3 shows how we use a classification of system types to describe the relationships among specific 
expert systems. and what knowledge-engineering effort (upper-case terms) is required to generalize and 
specialize existing knowledge bases. As always, we use the term “system” very generally; an earthquake 
insurance policy is a kind of system. We conjecture that it takes much more time to shift between systems 
of different abstract types (for instance, shifting from service networks to service protection). It should be 
much easier to reuse blackboards and operators for systems that are of a similar type, such as converting 
operators developed for bus route configuration to rail configuration.  
 
 Figure 3 also illustrates the research task of developing future knowledge acquisition tools. While showing 
just a small part of the space of potential expert systems, the diagram illustrates the kinds of conversions 
and adaptations that we expect to find. The system-model-operator metaphor suggests that classifying 
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ourtools in terms of system models—for example, telecommunication—will facilitate sharing and reuse of 
representations and inference procedures. 
 
Other task-specific frameworks 
 
Other researchers have advocated the analysis and decomposition of knowledge bases in terms of general, 
or generic, components. How do these analyses compare? McDermott’s role-limiting methods,10 
Chandrasekaran’s generic tasks,2 and the inference operators described here are related as follows: 
 

• A role-limiting problem-solving method is a procedure composed of several inference operators 
that, through controlled interaction, form a situation-specific model that satisfies task constraints. 
For example. Neomycin’s subtasks together implement a variant of the Mole system’s 
cover-and-differentiate method.  

• A subtree in Neomycin’s subtask hierarchy (such as explore-and-refine) is packaged and 
distributed separately in what Chandrasekaran calls a generic task. Subtrees appear in several 
problem-solving methods. 

 
Thus, from the perspective of the model-construction operator, researchers have pursued different levels of 
generality in formalizing control knowledge: Single operators in situation-specific models correspond to 
Heracles-DX subtasks; subprocedures of one or more operators correspond to generic tasks: and a complete 
inference procedure corresponds to a role-limiting method. 
 
IT IS PRODUCTIVE TO VIEW knowledge engineering as a modeling methodology in which systems are 
modeled qualitatively in terms of causal, temporal, and spatial relations. From this perspective, control 
knowledge consists of procedures for constructing situation specific models. Different representations. 
problem-solving architectures, knowledge acquisition tools, and specific expert systems can then be 
systematically related in terms of types of relational networks, process models, inference operators, 
domains, and tasks. 
 
Each time we write a new procedure for interpreting a Heracles representation, we define new relations that 
classify its constructs. For example, we find that classifications and procedures are defined in terms of each 
other. When we state control knowledge abstractly, using variables in place of primitive terms, the resulting 
representation is not domain independent, but domain general; that is, by using spatial, temporal, causal, 
and subtype distinctions, we can make the language and relations more general than any one system being 
modeled—a perspective by which all systems can be described.  
 
The system-model-operator paradigm can be used as the basis for analyzing the models and inference 
procedures in any expert system. It helps us develop new programs, like Topo. but its strength lies 
especially in helping us relate different research terminology. We can relate blackboards to metarules, 
Neomycin to Mole, heuristic classification to qualitative process simulation, and generic tasks to 
role-limiting methods. Put another way, we can now relate representational constructs, expert systems in a 
given domain, inference methods, knowledge acquisition programs, and reasoning strategies, all from a 
system-model-operator perspective.  
 
Given any expert system, we can ask, “What are the systems being modeled? What are the structure and 
process characteristics of this system? What kind of relational network is used to represent these structures 
and processes? What is the inference procedure for constructing a situation-specific model? How is this 
model employed by later reasoning phases, evaluated, or conveyed to the user?” Rather than simply asking 
about a new problem domain, “Is there real-world knowledge that allows classification?” we might ask, 
“Must the system be modeled as open in its interactions with its environment? Is there a known etiological 
hierarchy? Are there stages or developmental descriptions in volving trends and frequency of behaviors? 
What experience have people had with this system in rebuilding, modifying, and assembling it in different 
situations?” Thus, knowledge engineering is a form of systems analysis that emphasizes the qualitative 
modeling of processes.   
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