J. Expr. THEOR. ARTIF. INTELL. 1(1989)249-253.

Response 1

Commentary on Jon Sticklen’s ‘Problem-solving
architecture at the knowledge level’

WILLIAM J. CLANCEY

Institute for Research on Learning, 2550 Hanover Street, Palo Alto,
CA 94304, USA

Sticklen’s ambitious paper seeks to relate Newell’s ‘knowledge level’ (KL)
description of cognitive systems to engineering principles for constructing expert
systems. Unfortunately, the analysis suffers throughout by confounding psychologi-
cal studies of human problem-solving with engineering principles for designing
computer programs. The author appears to want to make a contribution to both
areas, but is never clear on whether scientific (study of intelligence) or engineering
(expert systems) standards are to be applied to his ‘architecture hypothesis’. Most
importantly, Sticklen appears to have missed the whole point of what kind of
theory the KL hypothesis is and in what respect it is a hypothesis.

From the start, in Sticklen’s discussion of the ‘test of theories stated at the
knowledge level’, it is never clear what phenomena are being studied. For a
theory to be tested scientifically, it must clearly address some natural phenomenon.
Human behavior is apparently the domain Sticklen wishes to address, but without
any explanation at all, the text jumps abruptly to engineering: ‘our sense of
“prescription” is that the theory should offer guidance in the construction of
problem-solving systems. . . .’. Later he says, ‘Schools of thought such as the GT
approach to problem-solving propose that the roots of cognition. . ., revealing
again the implicit mixing of an engineering enterprise (designing computer
representations of processes) with psychology (explaining the roots of cognition
in people). The generic task research of Chandrasekaran is surely valuable for
designing tools for expert systems. Possibly a better engineering methodology will
yield useful psychological models. However, attempting to do both of these at
once without clearly adhering to corresponding scientific and engineering methods
of evaluation might doom the effort on all accounts. This danger is most clear in
Sticklen’s emphasis on predictive power, which always gets translated in his
analysis to ‘show me how to build a program’, and not psychological experiments
that make predictions about human behavior.

At the heart of Sticklen’s dissatisfaction with the KL hypothesis is his belief
that a scientific theory must have predictive power. In early stages many natural
sciences produced only taxonomies of phenomena to be explained, medicine and
biology being prominent examples. The KL hypothesis is a claim that cognitive
systems can be described at an implementation-free level, that is, without making
any claims for explaining how they work. Similarly, early biologists classified
bacteria according to the environments they grow in, stimuli they respond to, etc.
— without making commitments about the as yet unobserved mechanisms. From
this perspective, the KL hypothesis is that we can model cognitive systems by
comparing knowledge capacity, characterizing potential changes in knowledge
capacity due to learning and environmental effects, and so on.
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A quite similar perspective is used in linguistics, as Newell explicitly notes in
his paper when he calls the KL hypothesis a ‘competence theory’. Natural language
grammars needn’t correspond to mental structures; rather they are just our
descriptions of regularities in sentences that we perceive as observers. Saying
what is in the head that produces sentences — the mechanism — is a different
matter. Thus, it is not so much that the KL hypothesis of Newell is incomplete;
rather that it is a claim that useful theories of behavior can be descriptive, not
explanatory in the mechanistic sense of specifying structure and function of the
organism/machine that produces such behavior.

Indeed, the very hypothesis to be tested is that knowledge can be characterized
independently of a structural level at all! Sticklen appears not to understand this
point in saying that if the KL exists, it must have an architecture. The KL is
inherently a behavioral characterization. By contrast, the memory-cpu level of a
computer does exist physically, and it is at a level higher than transistors and
resistors, etc. The KL is a certain kind of specification that by definition (by
hypothesis) says nothing about structural/functional decomposition or agents or
messages, etc.

In fact, there is evidence that the knowledge-level description, albeit idealized
like natural language grammars, does offer predictive value. To see this, observe
that as a certain fype of analysis, KL analysis must be applied to a particular
cognitive system before it can offer predictive value. For example, consider
Dietterich’s KL analyses of particular learning programs (Dietterich, 1986). He
shows that a KL description of a learing program enables us to predict the space
of concepts a particular program will be capable of learning — independent of the
program’s specific architecture. Another example is provided by Alexander’s ‘KL
analysis’ (Alexander et al. 1986), which demonstrates how a KL description can
be used to specify the space of concepts and operations an expert system will be
capable of performing. This specification can then be instantiated in any number
of possible computer architectures. The power of the KL hypothesis is that it
shifts our attention from worrying about how to build a system, to characterizing
what behaviors must be possible. Contrast this with Sticklen’s constant frustration
that the KL hypothesis ‘gives us no clue about how to start building. . . The
whole idea is that it tells us to start by not talking in terms of architecture!

As a special case the KL hypothesis is proven for computers by theorems that
show that every computer that is Turing equivalent is a universal computer, that
is, it is capable of computing the same functions. Empirically, we have demonstrated
over the past few decades that there are many computer architectures that are
Turing equivalent. The theory of computation, backed up by engincering
realization of alternative architectures, provides at least theoretical support to
Newell’s belief that the capacities of cognitive systems found in nature, such as
the human mind, can be described usefully at a non-structural level. Newell’s
hypothesis suggests that we seek the equivalent of ‘“Turing equivalence’ comput-
ability theorems for characterizing intelligence. While Turing’s work predated the
development of modern computers, it provided a theoretical basis that obviated
fruitless searches for alternative, more powerful computing machines.

We can argue about a few other points Sticklen raises, some of which are quite
important,

First, in my original analysis of MYCIN, I claimed that the inference structure
(e.g., as shown in figure 3 of Sticklen’s paper) is independent of the order of
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which inferences are made (the inference process). My intent was to show
graphically that we could characterize what inferences a cognitive system is capable
of making, independently of how the knowledge is encoded and how it is applied
to the problem at hand. In adding inferences between figures 2 and 3, Sticklen
claims that the analysis ‘gives no guidance on which inference we should expect
in a given problem solving situation’. But this is like saying that natural language
grammars are useless because they don’t enable us to predict what someone is
going to say! The whole idea is that we can find regularities in the utterances
after they are made: as psychologists we can grammatically model a problem-
solver’s capabilities, analyzing a protocol at this level; as designers we can specify
a program’s capabilities in terms of the types of utterances it must be capable of
making. KL descriptions can also be used, like natural language grammars, to
predict whether members of a specialist community will find a given problem
solution to be sensible. By factoring out the inference process as well as what
underlying representations (if any) are used, we can use the inference structure
to compare solutions to a problem, thus identifying common and alternative lines
of reasoning. We could show, for example, that one person used classification to
solve a diagnosis problem, while another used causal reasoning at the level of
internal states.

Sticklen’s discussion of simulation is bizarre and revealing. He says, ‘A
simulation of a problem-solving agent would itself be a problem-solving agent.’
What does this imply? Suppose it is 1889 and I have just constructed a hot air
balloon that can soar into the air like a bird. I tell you, “This is a simulation of
flight.” What would be accomplished by saying, “The hot air balloon is a kind of
bird because it can fly?” We must avoid supposing that a phenomena can be
reduced to the examples that illustrate it. Just as flight is much more than getting
something into the air, intelligence is much more than what any of our programs
have accomplished. Indeed, just as for the early flight engineers, we have almost
certainly not even identified all of the phenomena we need to replicate. For
example, until we identify a characteristic like ‘lift’, we don’t even realize what
characteristics of flight might be important for controlling flight. In saying that
any given simulation of problem-solving is a problem-solving agent, we do gross
injustice to the exceedingly complex and wide-ranging phenomena we seek to
describe and replicate. We make it sound like one example, one program, captures
the full range of capabilities that makes a human being a problem-solving agent.
Thus, in one fell swoop Sticklen reduces human beings to ‘problem-solving agents’
and then to ‘today’s programs’.

Strikingly, from this perspective the well-known effect in AI of saying that what
has been accomplished is not intelligence, is perfectly understandable — we are
still trying to identify examples of intelligence and its essential characteristics. Hot
air balloons were an important technological advance, but they are too slow and
unreliable for crossing the Atlantic and totally useless for getting to the moon. It
is important to point out that a hot air balloon is still not a bird, to remind
ourselves that flight is much more than rising into the air and drifting with the
currents. A chess-playing program is still not a human-like problem-solving agent,
because intelligence is much more than optimizing moves in an axiomatic game.
Each accomplishment defines some capability, but also allows better discrimination
of the behavior we seek to replicate.

Sticklen’s discussion of Marr’s analysis hits on important points about mechanism
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versus behavioral descriptions. However, the distinction made in the statement
‘not in the sense that it is a mechanism, but rather that it embodies a way to
perform an important task’ could be stated more crisply. Doesn’t ‘embodies’
suggest a structure-function specification, and hence a mechanism? Again, the
idea of different types of theories is not developed here. We must be clearer
about the distinction between grammatical simulations (an apt description of most
cognitive models developed to date) and theories whose structures and functions
are intended to be mapped to physical processes in a human brain. In particular,
we must be very careful when considering Marr’s protein folding example. Marr’s
Type II theoretical analysis is meaningfully applied to protein folding because
there are physical constraints that can be manipulated to determine the ultimate
configuration of the molecule. Any process that produces a configuration design
will have to adhere to these constraints. Thus, what every protein-folding
mechanism must accomplish can be mathematically characterized, independently
of how the configuration is computed. In what way is human problem-solving
similar? The obvious analogy that human problem-solving is like solving protein
puzzles glosses the complexities of human interaction, of how perception and
representations arise dialectically in our conversations, and of how problems and
theories are defined by articulating new concepts that objectify a social sense of
reality (Berger & Luckmann 1967). It is in this respect that the KL hypothesis
should be called into question — not that it fails to explain how intelligence is
possible — but in its suggestion that knowledge is a property of individual people,
rather than a capacity of a group of people forming a community, who mutually
define what each individual perceives and seeks to accomplish.

At this deeper level, despite his repetition of Newell’s points in section 4,
Sticklen’s discussion continues the Al/cognitive science view that knowledge is a
substance that is stored in the problem-solving agent. This is evident in figure 4,
which shows agents transmitting messages in some langauge, ‘the vocabulary of
knowledge organization and control’. It is precisely this kind of assumption that
Newell aims to avoid in stating the KL hypothesis, viewing knowledge as a
capacity to behave and not a collection of representations. Any discussion of
knowledge organization and control misses the point. Newell’s recent work,
continued in his Harvard Lectures on ‘Unified theories of cognition’, (1987) is
his first major attempt to break away from the idea that knowledge is stored in
memory as representational structures. Sticklen’s view of agents conversing inside
the head continues the confusion about language, representation, and symbols
that Newell calls into question.

In conclusion, I believe that we should view the generic task approach as a
knowledge engineering methodology and not confuse it with discussions of
intelligence. This will enable us to best communicate AI's qualitative modelling
methodologies to scientists and engineers and develop useful tools for modeling
complex processes. Those interested in the study of intelligent systems in the
large, particularly human psychology, should realize that talking about a ‘problem-
solving architecture at the knowledge level’ is like talking about pistons and fuel
injection when somebody wants to know whether you can drive to New York.

I have been sharply critical of Sticklen’s paper because I believe that clear,
strong statements are important. In large part I believe Al has suffered from lack
of commitment by researchers, including vague hopes about the relationships
between computer programs and human beings, as well as unclear goals in
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producing useful computer tools vs. studying intelligence. 1 believe Sticklen’s
paper is useful precisely because it invites such a strong response. The connection
between heuristic classification and Marr’s analysis is quite apt (and was originally
missed by me). The attempts to understand in what sense the KL hypothesis is
a hypothesis and to reconsider architectural theories strike me as central concerns
that need to be discussed. Everyone is struggling to understand these issues; the
emerging consensus is that intelligence is both simpler and more subtle than our
programs suggest. In effect, the above is an argument with myself, against my
own ways of thinking, and a struggle to make clear to myself what I believe. So
I would like to end on a positive note by thanking Sticklen for tackling a difficult
problem head on and inviting discussion of his ideas.
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