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1. ORIGINS AND GOALS

Instructional programs were among the earliest applications of computer
programming. The original vision remains strong today: Instruction by com-
puter offers the potential of better attention to individual student needs and
interests than can be met in the typical classroom. Individualized instruction,
modeled after the idea of a private tutor, allows a student to proceed at his
own pace, to explore his interests, and to receive personal, detailed evaluation
and direction (Crowder 1962, Suppes 1979). Realized as an interactive
computer program, such instruction might be more effective, faster, and
possibly less costly than traditional teaching. In addition, computer technolo-
gy provides opportunities for new forms of instruction based on interactive
graphics and programming itself, which foster intuition for abstract and
creative thinking (Papert 1980, Brown 1983, diSessa 1984).

The goal of this review is to provide a comprehensive, but critical review of
qualitative student models. A student model is the set of records in an
instructional program that describe a student’s knowledge about what is being
taught and allow the program to adapt its presentations to his needs. A
qualitative student model describes a student’s knowledge structurally, in
terms of relations among concepts and a problem solving procedure. I use the
concept of a qualitative model as the focus of this review in order to compare
alternative computational methods and to contrast domain requirements.

1.1. Adaptive Instruction

Individualized instruction has also been called adaptive instruction because it
emphasizes selective presentation of subject material and exercises, based on
an evaluation of the student’s understanding. It is important to design pro-
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grums that do this in a general way, rather than hand-crafting specific
programs for each exercise or sequence of excrcises. Generality makes it
possible to reduce program preparation time; to make graphics and interactive
methads accessible to teachers who do not program; to construct programs
that respond to u variety of student behaviors without having to tediously
anticipate every specific situation that will arise; and to collect, share, and
improve the good lesson plans that teachers develop.

At first, the problem of adaptive instruction was conceived in terms of
"selective generation of text.” Simple instructional programs are little more
than “progrummed texts,” printing prepared material and branching on the
bunix of student response (Atkinson & Wilson 1969). With the development
ol artificial intelligence (Al) programming methods, a new kind of instruc-
tional program became possible (Carbonell 1970). By representing knowl-
edge in networks of concepts and relations, it is possible to generate text and
exercises from a representation of subject material that is separate from the
teuching logic. This affords generality (so the teaching program can be used
for multiple problems and even multiple problem domains) and provides a
new way to formalize and study instructional practice. Many researchers
believe that the computational methods under development, and the subse-
yuent accretion of subject matter and teaching expertise, will lead to better
models of problem solving and hence a better formulation of what should be
taught (Brown & Goldstein 1977).

Perhaps most important, combining a knowledge network with a procedure
for solving problems enables the instructional program to solve the same
problems it presents to a student. The reasoning of this program can then be
used to cvaluate student performance and provide assistance. How this is
accomplished is perhaps the most innovative and exciting aspect of the
research: On the basis of the interaction with the student, a second representa-
tion of knowledge and problem-solving procedure is constructed—that is, a
student model (Self 1974). Unlike a simple numeric measure of achievement,
a qualitative student model is a simulation model: It can be applied to specific
problem situations to predict and explain student behavior. I use the term
qualitative to draw a contrast with primarily quantitative stochastic or pro-
babilistic transition student models (Atkinson 1972, Barr & Atkinson 1975,
Fletcher 1975, Kimball 1973). A qualitative student model characterizes
reasoning in terms of inferential steps (individual assertions about an evolving
solution) and a control or inference procedure for focusing on different parts
of the problem, gathering additional information, contrasting alternative solu-
tions, and so on (Laubsch 1975).

1.2. Qualitative Models of Processes

An Al-based instructional program may represent three kinds of processes
qualitatively: the reasoning process, as just described; processes in the real
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world, constituting the subject being taught; and communication processes by
which the program interacts with the student—that is, teaching knowledge.
For formal domains, such as algebra or geometry theorem proving, instruc-
tion focuses on the reasoning process itself—how to simplify equations or
how to construct proofs. For physical domains, such as electronics and
medicine, instruction is concerned also with understanding processes in the
real world, in addition to the reasoning process. Al-based instructional pro-
grams for physical domains typically incorporate, in the knowledge network,
a qualitative model of physical processes, constituting the primary subject
matter of the program. For domains such as electronics and medicine, the
qualitative model describes observable behavior of some system (an electric
circuit, a human body) in terms of causal relations among objects and
processes. A computer program itself is described, in a way similar to that
used for electronic circuits, as a network of input/output relations among data
objects and processes. An instructional program typically uses its inference
procedure to “read” the domain qualitative model to solve problems.
Finally, it is common for Al-based systems to play an active role in probing
the student’s understanding and assisting him. This model of teaching, or
communication processes, constitutes a third qualitative model within an

instructional program.

1.3. Components of an Al-Based Instructional Program

Figure 1 shows three kinds of models integrated into an idealized instructional
program: (a) the model of problem solving to be taught (commonly called the
subject material, now often called the target model, idealized model or expert
model); (b) the constructed model of the student’s problem solving (student
model); and (c) the model of communication for interacting with a student to
probe his understanding and to explain or teach the target model (teaching or
tutoring procedure) (Laubsch 1975).

A representation of subject matter alone could be used for instruction. For
example, a model of a complex system might be presented to a student for
him to inspect and experiment with. However, research has gone beyond this
to develop methods for constructing a model of the student’s knowledge and
reasoning process. This is the essential difference between computer-based
instruction, in which the computer is a passive device for presenting informa-
tion, and computer-assisted instruction, in which the computer communicates
with the student. Put ideally, we assume that both the student and program
have goals for exchanging information and learning from each other and that
they will negotiate and satisfy these goals through some linguistic process
(Brady & Berwick 1983).

A student model, particularly one that describes discrepant problem-
solving procedures and misconceptions, provides a new basis for adaptive
instruction. By modeling the communication process, researchers are attempt-
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Figure 1 Three kinds of models in an instructional program.

ing to create computer programs that can share initiative with a student, probe
his understanding, evaluate partial solutions, and tailor explanations to stu-
dent needs. In this review, I focus on the different problems and methods for
modeling a student’s knowledge and reasoning process, emphasizing sim-
ilarities and differences across problem domains.

Representing subject matter, the reasoning process, the student’s knowl-
edge of these, and the teaching procedure separately, in a general, reusable
way, is a difficult research problem. Much progress has been made, but few
programs have left the laboratory. By focusing on student modeling methods
and articulating differences across domains, my intent here is to provide a
framework by which researchers can relate their problems and methodologies,
and practitioners can begin to apply these ideas in the schools.

1.4. Contrast with Traditional CAI

In the literature, Al-based instructional programs are referred to as “intelligent
computer-assisted instruction” (ICAI) programs or “intelligent tutoring sys-
tems” (ITS). Unfortunately such names have a derogatory connotation, and
they do not articulate what is new about the Al methodology. However, any
attempt to define a clear boundary between traditional computer-assisted
instruction programs and this new variety is fraught with difficulties. CAI
programs have used simulation models of physical systems preciously (CERL
1977). They represent student knowledge to make predictions about behavior
[state-transition models of student knowledge (Taber et al 1965)]. Some
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provide a separate, primitive communication model that is reusable (Weber &
Hagamen 1972). Furthermore, Al-based programs do not always have a
model of student knowledge [e.g. Sophie-I (Brown et al 1976)], so we cannot
even use that criterion in a restrictive definition. Instead, it appears that the
most general, useful distinction is that Al-based instructional programs
represent at least one component in the form of a qualitative model: some
physical or computational process in the world, the reasoning process for
solving problems, or the communication process for instruction. When I refer
to instructional programs in this paper, I am referring to programs of this type.

1.5. Historical Progression

The earliest Al-based instructional programs evolved from natural language
research on question-answering (Minsky 1982). At a basic level, the goals of
the two areas of research are similar: to represent knowledge so that it can be
selectively presented to a user, according to what he wants to know. The
semantic network representation was developed for this purpose (Quillian
1968, Raphael 1982, Carbonell & Collins 1973). [Semantic networks encode
factual statements about the world in terms of objects and properties, such as
“Venezuela is a country” and “The language of Venezuela is Spanish.” The
name “semantic network” is a misnomer because, generally, what the terms in
the network stand for, their meaning, is not represented (e.g. what is a
language?).] In the work of Carbonell in the SCHOLAR program, the goal
explicitly turns from information retrieval to instruction (Carbonell 1970).
Later, especially in the work of Brown & Burton in the SOPHIE program, the
interactive dialog turns from a simple question and answer format to present-
ing a specific problem for the student to solve. Natural language issues shift
from simply interpreting student requests for information, viewed originally
as a syntactic problem of parsing, to evaluating his partial problem solutions
and modeling his understanding (Laubsch 1975, Burton 1976, Stevens &
Collins 1977).

More recently, the widespread availability of personal workstations with
bit-mapped displays has motivated researchers to reconsider the interactive
format and shift the communication from words to pictures. What kinds of
diagrams make it easier to understand the operation of complex machinery
(Hollan et al 1984)7 How can we reify the problem-solving process itself, to
reveal its structure and regularities, facilitating comparison of alternative
reasoning and planning procedures (Brown 1983, Richer & Clancey 1985)?

Meanwhile, the natural language discourse issues persist, in many ways
paralleling the shift in that field from parsing input text to modeling the goals
of the participants in some specific problem-solving situation (cf Grosz 1977).
However, instructional research has tended to put the problem of modeling
what the participants know and believe ahead of the problem of interpreting
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and generating text. That is, what underlying knowledge representation is
useful to understand what the student is doing, to represent and evaluate
inndequate models, and to explain why a particular model is believable and
worth using? Thus, instructional research is, at heart, research into the nature
of problem solving. Instructional research has also tended to emphasize the
problem of modeling a prolonged conversation, rather than single questions
and statements (Clancey 1979a, Collins 1980, Woolf & McDonald 1984).
Nuturally, rescarchers have viewed communication as a process of teaching.
‘They need to determine if the student can understand a teacher’s statement.
What s the student ready to learn next? Researchers have started with the
premine that students already have a model of problem solving. They ask,
How wan the student's model formed? How do people form theories about
the world? How do they relate new information to what they already know?
Put in terms of natural language discourse, this research asks, What
model of explanation and learning should order topic and problem selec-
tlon?

In summary, the desire to “put something intelligent (and intelligible) on
the screen” motivates very basic questions about how qualitative models
might be represented, learned, used to solve practical problems, and com-
municated.

Figure 2 shows the three forces that have inspired this new research:

o Communication media: Computers have provided a basis for modeling
processes computationally, as executable models that simulate physical and
cognitlve systems and that can communicate knowledge to people in-
dividually. Second-order effects include new forms of instruction and
soclal changes in schools (diSessa 1984).

® Modeling processes: New computer languages provide a basis for describ-
Ing knowledge and reasoning. Methods include the production-rule model
(Newell & Simon 1972), causal-associational networks (Weiss et al 1978),
procedural networks (Sacerdoti 1974), and structural device simulations
(de Kleer 1979, Bobrow 1984). A second-order effect is the development
of software tools for constructing qualitative models, often called
knowledge-engineering tools (Clancey 1985a, Feigenbaum 1977).

® Problem-solving models: Specific problem-solving models have been
developed using the computer and descriptive programming languages.
The predominant theoretical base is as follows:

0 Knowledge is richly structured into patterns, called schemas, for relating
situations in the world to problem-solving methods (Rumelhart & Nor-
man 1983). This is exemplified by studies of differences between
novices and experts (Chi et al 1981, Glaser 1985, Larkin et al 1980,
Feltovich et al 1984, Johnson et al 1981).
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Figure 2 Three forces shaping development of instructional programs.

O The mind actively constructs models of the world and methods for
solving problems. It is not just an information repository. This is ex-
emplified by the studies of problem-solving errors and their origins
discussed in this review.

A triangle of interrelated forces shapes this research. For example, new
graphics capabilities are currently leading to new ways of visualizing and
formalizing reasoning processes. This graphic capability leads in turn to new
models of problem solving that are incorporated in instructional programs
(e.g. see Hollan et al 1984, Anderson et al 1985, Clancey 1986a).

1.6. Range of Existing Programs

To provide some orientation to the reader unfamiliar with the range of
programs that have been developed, I outline the origin of some well-known
systems. Most of the student-modeling programs cited below are summarized
in Figure 6 for later reference.

First, program development is inherently empirical, driven by actual in-
structional needs.
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® An existing environment motivates the use of an instructional agent (often
called a coach) who watches a student in the normal course of some activity
und offers suggestions by periodically interrupting or resolving impasses.
Examples: WEST board-game coach (Burton & Brown 1979); MACSY-
MA ADVISOR computer program consultant (Genesereth 1982a);
SOPHIE electronic troubleshooting coach (Brown et al 1974, Brown et al
1976); WUSOR Wumpus game coach (Goldstein 1977).

® An application is selected because of the suitability of qualitative methods
for representing complex processes. Examples: METEOROLOGY ques-
tion-answer program (Brown et al 1973); MENO-II computer program-
ming (Soloway et al 1981); STEAMER propulsion steam plant operation
(Hollan et al 1984).

Second, new efforts critically test and improve upon existing Al tech-
niques.

® An existing computational model is adapted for use in an instructional
program.

© Knowledge representation: SCHOLAR semantic nets; GUIDON produc-
tion rules (Clancey 1979b, Clancey 1982a).

O Learning: ACT* production-rule learning model (Neves & Anderson
1981, Anderson et al 1985, Reiser et al 1985); ACM problem-space and
discrimination learning model (Langley et al 1984).

© Natural language: MENO-TUTOR discourse analysis (Woolf & Mc-
Donald 1984).

® An existing instructional program is improved (in explanation and model-
ing capability) by a second-generation knowledge representation
(reconfiguring and extending a problem-solving model). Examples:
SOPHIE-III (Brown et al 1982a); NEOMYCIN (Clancey & Letsinger
1984); WHY (Stevens & Collins 1977); PROUST (Johnson & Soloway
1984); REPAIR THEORY (VanLehn 1983a).

Other methodological characteristics of this field are discussed in Section
8.2,

2. SCOPE OF THE REVIEW

Our experience is now broad and varied. Knowledge representations in these
programs include semantic, classification, and procedural networks (Charniak
et al 1980). Subject areas vary from algebra to geography and from computer
programming to medical diagnosis. Teaching focuses on facts, logical reason-
ing, understanding processes, and methods of diagnosis and design. Methods
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of modeling student knowledge have proliferated, spawning a jargon that
includes “overlay,” “bug library,” and “mal-rules.”

There is much interest now in generalizing these programs. With an
increasing number of psychologists and educators outside of computer science
becoming involved, it is timely to step back and review what we have learned.
Can we derive some methodological lessons from the variety of programs we
have developed? Can we formalize these lessons in program “shells” that
could be used by non-Al experts to construct their own instructional pro-
grams?

2.1. Review Topics

Al-based instructional programs are very complex, involving problem-solv-
ing, modeling, and discourse components; they are typically constructed by a
team of researchers over many years. While this complexity makes a review
like this important, it indirectly helps us because there are just a dozen or so
programs to study and understand. As outlined above, these programs span a
variety of problem domains and provide some basis for generalization. This
review considers

® what aspects of student knowledge and reasoning, called assessments, are
described by student models;

® the computational methods developed for reconstructing a student’s knowl-
edge from his problem solutions, including detection of gaps and mis-
conceptions (commonly used to refer to both concepts and relations that a
teacher believes to be incorrect);

® the different nature of student misconceptions in formal domains
(mathematics, programming) and physical domains (physics, medicine),
and the extent to which modeling methods for formal domains carry over to
physical domains;

® the models of learning that have been developed for explaining the origin
and development of misconceptions.

As indicated in the introduction, I use the idea of a qualitative model as the
central concept for describing and comparing instructional programs. I pro-
ceed by describing the role such models play in instruction (Section 3); what
student models, in particular, describe (Section 4); how domains differ in the
nature of student errors and information available to the modeling program
(Section 5); how student models are represented (Section 6); and how in-
dividual student models are constructed (Section 7).

The arguments are complex, because the model of the problem solving
(cognitive) system is intricately related to the model of a physical system
(such as an electronic device) or a formal system (such as a computer
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program). There are important differences in problems of modeling physical
and formal systems, and we must tease out these distinctions to usefully
generalize the methods used by different programs.

2.2. Important Distinctions

Because of the disparity of domains and difficulty of describing only in-
directly observable reasoning processes, the possiblity for confusion is great.
In this review I draw the following distinctions:

® Behavioral vs functional description—I distinguish between student be-
havior (what the student is observed doing) and the inference procedure by
which he is interpreting his observations and general model of the world.
That is, I distinguish between a behavioral description of actions in the
world and a functional description of beliefs and goals (what he knows and
what he is trying to do). Behavioral models are domain-specific, failing to
relate problem-solving behavior to general operations for focusing and
achieving coherency and consistency in the constructed understanding.

® General model vs problem-solving procedure—I distinguish between
errors of facts about the world and errors in problem-solving procedure for
using these facts. In some meodeling programs, the general model and
problem-solving procedure are confounded, providing a questionable basis
for remedial instruction. For example, descriptions of student plans do not
always clearly distinguish between a planned process (e.g. a computer
program) and the process by which it is planned (e.g. a programming
method). '

® Formal vs physical domain—1I distinguish between the nature of facts in
formal and physical domains. In particular, if facts are axioms, how does
this simplify the modeling problem? What modeling methods will be
inadequate for domains in which facts are beliefs based on more detailed
models, as in physics? And what about the middle ground of designed
artifacts, such as electronic circuits, with axiomatic functionality at the
highest level but with nonformal bases in natural phenomena? Methods for
modeling behavior in formal domains have not been adequately related to
the requirements of physical domains.

® Classification vs simulation model—I distinguish types of models of
processes. In general, for all the emphasis on models, highlighted by the
very use of the term “student model,” research often fails to emphasize
explicitly that the subject matter of an instructional program constitutes a
model. Specifically, in Al the term knowledge base has been used without
explicit acknowledgment that knowlédge bases contain qualitative models
of processes (e.g. see Clancey 1984a). In adopting this new perspective,
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we shift our focus from superficial notational differences (“rules” vs
“frames”) and reclassify knowledge bases according to the different ways they
describe processes. That is, we can begin to identify and study types of
qualitative representations. Of particular interest, we can relate schema
classification models (describing patterns of process causes and man-
ifestations) to simulation models (replicating how the components of a system
functionally interact). This description of knowledge bases, in terms of a
qualitative modeling methodology, is especially valuable for communicating
the nature of Al programming to scientists, engineers, and teachers who are
familiar with numeric modeling techniques.

For each distinction summarized above, I place kinds of models on a
spectrum and discuss how they are related.

2.3. Relation to Cognitive Psychology

Sharing the evolving view of educational psychologists—Dewey, Bruner,
Piaget—the developers of today’s Al-based instructional programs believe
that a theory of teaching should rest on a model of the learner (Goldstein
1978, Norman 1979). Furthermore, they believe that the problem-solving
models of Al may provide the basis for describing how learning takes place.
Ohlsson (Ohlsson & Langley 1985) summarizes the shift in perspective:
describing mental processes, rather than quantifying performance with respect
to stimulus variables; describing individuals in detail, not just stating generali-
ties; and giving psychological interpretation to qualitative data, rather than
statistical treatment to numerical measurements.

An increasing number of cognitive psychologists have become involved in
this research (Greeno 1980). Studying electronic troubleshooting (Kieras
1984), computer programming (Adelson 1984), physics (Chi et al 1981,
Larkin et al 1980), medical diagnosis (Feltovich et al 1984, Lesgold 1983),
and other areas, they are using Al concepts to describe memory organization
and inference and how novices differ from experts (Glaser 1983, Chi et al
1986). However, my references to cognitive psychology in this review are
limited and idiosyncratic. In particular, I do not provide a general discussion
of the psychology of knowledge representation, now often called “mental
models” (Gentner & Stevens 1983a, Rouse & Morris 1985). This is a review
of student models in Al-based instructional programs—what they do and how
they work.

2.4. Relation to Other Areas of Artificial Intelligence

Almost every “core” area of Al plays a part in instructional programs:
knowledge representation, problem solving, natural language, and learning.
The essential difference is that instructional programs must integrate these to
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® understand what another problem solver is doing by watching him perform
a task (or looking at the results of his reasoning);

@ in particular, recognize or simulate human problem solving;

® actively and systematically articulate problem-solving methods, not just
passively respond to requests for information;

® in particular, explain reasoning so that it is learned and mimicked, not just
accepted as a justification;

Of these criteria, the problem of interpreting a trace of human reasoning is
what most directly distinguishes this research from other areas of Al. Student-
modeling programs must deal with noisy data, shifting focus of attention, and
goals or reasoning strategies that may be foreign to an ideal model of the
world. In this respect, instructional research is most similar to natural lan-
guage research concerned with conversations about tasks (e.g. Grosz 1977,
Perrault et al 1978, Appelt 1982). Such programs are often called “job aids”
or “intelligent assistants.” Contrasting the two areas, research on task-directed
conversations has emphasized relating the surface elements of text to goals
and beliefs, while instructional research has emphasized understanding errors
in problem-solving knowledge. In all other respects, instructional research is
generally indistinguishable from efforts to model human problem-solving,
learning, and explanation of expert reasoning (e.g. Swartout 1981).

Meriting special note, recent Al studies of “models of knowledge and
belief” (e.g. Konolige 1984, Moore 1982, Appelt 1982) directly address some
of the issues that arise in student modeling. The difference is that instruction
requires integrating problem solving, learning, and communication with be-
lief modeling. In essence, recent research on models of belief provides a
notational formalism in which the knowledge and inference models developed
for instruction might be recast. The framework that I present here, unifying all
work under the idea of a qualitative model, can be seen as the first step in this
process.

2.5. Special Emphases

In finding dimensions for describing instructional programs, this review has a
number of side purposes. First, I want to make clear that development of these
programs is not an “application” area of computer science, a mere matter of
putting well-known Al methods into practice. Quite the opposite is true. For
example, student modeling research has from the onset produced new models
of learning (Sleeman & Smith 1981, VanLehn 1983a) and new knowledge
representations (Brown et al 1973, Brown 1977a, Brown et al 1982a, Clancey
1983a, Clancey 1983b). Explaining how a process occurs or why it makes
sense, reconstructing another problem solver’s solution, and accounting for

QUALITATIVE STUDENT MODELS 393

learning require knowledge representation methods that go well beyond the
familiar “rules” and “schemas” of most Al programs. The problem of con-
structing instructional programs is broadening the meaning of Al research; it
is not derivative (Stefik 1985). Nevertheless, recent Al texts do not reference
research on instructional programs, even though they cite expert systems (e.g.
see Charniak & McDermott 1985).

In the same vein, the theory of models and modeling emerging from this
research has strong implications for how we think about “knowledge-based”
programs and the nature of intelligence in general. Constructing a computer
program that itself constructs a model of problem solving (the student model)
requires understanding what models are and going far beyond what is required
to produce an acceptable first-order problem-solving program. Indeed, the
very idea that “expert systems” have anything to do with “models” is rarely
mentioned in the literature (but see Soo et al 1985, Szolovits & Long 1982,
Kahn et al 1985). This work has the potential of changing how Al researchers
think about what they are doing.

Finally, I want to draw some sharp lines to make the methodology of our
work clear, to allow new research recruits to realize that “intelligent tutoring”
means more than using graphics, having a natural language front-end, or
programming in “rules” or “objects.”

Putting these three points together, my intent is to broaden our perspective
on what computational techniques have been developed, and to derive mea-
sures of quality for evaluating new research.

3. THE ROLE OF QUALITATIVE MODELS IN
INSTRUCTION

This section broadly describes the kinds of models in an instructional program
and introduces the following concepts: general model, situation-specific mod-
el, inference procedure, diagnosis, and bug. This framework is then applied
in the next section to classify student-modeling programs.

3.1. What are Qualitative Models?

It is easy to get bogged down in philosophical questions about the nature of
models and theories. Terms like “explain” and “cause” have been the subject
of much philosophical debate (e.g. Von Wright 1971, Achinstein 1983). In
this review, I adopt some informal definitions and show how they are useful
for describing what programs do.

A model is a representation, for some purpose, of some object or process
(Webster 1983, Goldstein & Goldstein 1980). Scientists and engineers are
familiar with the idea of numeric or quantitative models, such as Ohm’s laws
of electricity, economic models, mechanical engineering models of the stress



364 CLANCEY

LOCUS
PHYSICAL COMPUTER WRITTEN MENTAL
ANALOG PROGRAM CALCULUS
(BALSA WOOD (MEDICAL (ALGEBRA) CALCULATOR
PLANE) DIAGNOSIS) ( WATCH)

Figure 3 Where models can exist.

behavior of materials, predator-prey population correlations, and so on. Also,
everyone is familiar with physical models, such as scale models of buildings
used by an architect or plastic models of airplanes. Qualitative models,
broadly put, are not numeric and not physical analogs; rather, they describe
objects and processes in terms of spatial, temporal, and causal relations.
Qualitative models may be written down in some notation [a reasoning
calculus (De Kleer & Brown 1984, Sowa 1984)], believed by a person (a kind
of mental model), or realized as a computer program (a kind of computational
model).

Figure 3 classifies models according to locus, or where each exists. Student
models, such as a model of how a student diagnoses a patient, may exist as
computer programs. A student’s model of the patient and how to do diagnosis
is called a mental model; it exists in his mind. As a familiar example of a
mental model, consider your understanding of what the buttons on a calcula-
tor watch do and your understanding of the procedure for setting the alarm
(Young 1983). This model is not written down, it is “carried around in your
head.”

A computer program may be either quantitative, involving precise numeric
calculation, or qualitative, charactetizing trends and causal relationships, as
mentioned above. We are concerned here with methods for representing
qualitative models in computer programs. More specifically, we are interested
in modeling processes, not static objects. Kinds of processes that are studied
and formalized separately in order to construct instructional programs are
shown in Figure 4. These include processes in the world, reasoning, learning,
and communication. While learning may be construed as a form of reasoning,
it is usually treated separately.

3.2. Situation-Specific Models

A situation-specific model is a description of some situation in the world,
generally an explanation of how a situation came about or a plan for action.
For example, in medicine, a situation-specific model describes a patient’s
current state (e.g. fever, inflammation) and the disease processes that brought
this state about (e.g. a particular infection). In general, the process of solving
a specific problem can be described in terms of forming a situation-specific
model (Figure 5).
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Figure 4 Processes modeled separately in studying instruction.

In this view of problem solving, a general model is related to the current
situation by applying an inference procedure. The general model describes
what is known about the world—for example, knowledge about stereotypic
patients, diseases, and treatment plans. In some areas of Al, the term domain
model refers to the general model; sometimes it refers to the combined general
model and inference procedure.

The inference procedure is a program that focuses and orders gathering of
problem information and making assertions about the solution. For example,
in medicine, the inference procedure is generally called a “diagnostic strate-
gy”; it is a procedure for gathering information about a patient and focusing
on and testing disease hypotheses. Figure 6 gives common names for the
general model and inference procedure in different domains.! The situation-
specific model includes the specific problem information, transformed or
reorganized in some way, depending on the nature of the task. For example,
in diagnosis, the situation-specific model relates the symptoms to a descrip-
tion of processes that produced these symptoms. In medicine, this is called a
patient-specific model (Patil 1981) (Figure 10). In geometry, the situation-
specific model is the proof of the theorem, shown as a network (Anderson et
al 1985) (Figure 11). In programming, the situation-specific model is the
constructed program, as well as unwritten descriptions of the underlying
design, relating the code to the goals the program is supposed to satisfy. In
subtraction, the situation-specific model is commonly written on paper, with
borrowing between columns indicated by scratch marks and the solution
written below a horizontal line.

In a certain sense, the situation-specific model “copies over” part of the
general model, though the form varies across domains and tasks. For ex-
ample, programming-language constructs appear instantiated as particular
staternents in a program. In subtraction, the general fact that 5 minus 3 equals
2 appears in the situation-specific model for solving 452 minus 230. Sim-
ilarly, geometry axioms and theorems appear in the proof. A medical di-

INFERENCE

Pl EDI
GENERAL ROCEDURE SITUATION-SPECIFIC

MODEL MODEL

Figure 5 Problem solving: applying a general model to form a situation-specific model.
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GENERAL INFERENCE PROGRAM
MODEL PROCEDURE NAMES REFERENCE
subtraction BUGGY (Burton, 1962)
math table procedure ACM (Lang]elyg,ue)t al.,
rules of
geometry inference
axioms and GEOMETRY (Anderson, et al.,
proof procedure 1085)
algebra simplification
axioms procedure PIXIE (Steeman, 1984b)
MACSYMA programming MACSYMA
commands procedure ADVISOR (Genesereth, 1982a)
PASCAL ) (Soloway, et al.,
programming programming MENO 1981
language procedure PROUST (Johnsonlggg)Soloway,
_electronic circuit
circuit éheory diagnosis SOPHIE (Brown, et al
and procedure 1082 o
model of given a)
circuit
game rules playing est (Burton, o) o
and :
rules of probability strategy (GoTdstein, 1982)
physics of litati Br
pressure/temperature qu:aﬁgglve METEROLOGY ( Ow2§7g; ol
and reasoning WHY
meterological
patterns
phys{ology, medical
anatomy, diagnostic NEOMYCIN (Clancey and
disease strategy Letsinger,
processes 1984)

Figure 6 General model and inference procedure for different problem domains.

agnosis will mention general concepts and their relations, such as the link
between infection and meningitis (Figure 10).

A related but different idea is the derivation trace by which the problem was
solved (VanLehn & Brown 1979). This shows how the situation-specific
model is modified over time, as particular inferences are made. For example,
in algebra this is the familiar sequence of transformations of an equation in the
course of solving for a particular variable. Similiarly, a geometry proof,
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diagnostic explanation, or computer program can be written as a sequence of
transformations. This is discussed in more detail in Section 5.1.

Each of the models shown in Figure 1 has a general and situation-specific
form. For example, there is a general model of how to communicate (dis-
course processes) and a situation-specific model of the current dialog. The
general model describes what typically occurs during a teaching dialog, how
to detect these situations, what to do when they occur, what transitions are
likely or advisable, and so on. Examples of communication processes are
interrupting, assisting, orienting, explaining, evaluating, hypothesizing,
probing, summarizing, and so on. In an interaction between student and
teacher, both parties are using such a model to interpret and respond to each
other’s goals (Appelt 1982). For example, a teacher must recognize when the
student is confused about what to do (perhaps because he says so) and respond
appropriately.

An inference procedure, a program, “reads” the general communication
model to produce a state description of the current dialog: what has been
discussed with the student, what the teacher and student are currently doing,
what the student is trying to understand now, etc. Given this situation-specific
model, the program will further interpret the general model to decide among
alternative communication processes that achieve instructional goals.

Similarly, the general model to be taught is paired with a situation-specific
description of the problem now being worked on, such as a partial diagnosis
of an electronic circuit. The basic job of the inference procedure is to gain
additional information and make connections from the general model that
improve the situation-specific model, making it coherent, consistent, and
specific enough for its purpose. The student model has the same components:
a general model of the subject matter, an inference procedure, and a situation-
specific model describing the problem being solved. (While a recursion of
models can be imagined, including the participants’ models of each other’s
models, this level of complexity is not considered in today’s instructional

programs.)

3.3. Simulation or Executable Models

In summary, problem solving, described at a high level, involves both a
general model and some inference procedure. Together, they constitute a
simulation model of reasoning. When the agent is a person, a simulation
model of reasoning is often called a cognitive model. It is a simulation model
because it can be used to simulate the reasoning process, to solve actual
problems. That is, it doesn’t just describe intelligence in a static way by traits
or numeric measures of aptitude. It includes a program, the inference pro-
cedure, by which problems can be solved.

The inclusion of a simulation model of reasoning in an instructional
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program is of significant practical benefit. It means that the program can solve
the problems that it gives to the student, providing a basis for interpreting his
problem-solving behavior, evaluating his partial solutions, and assisting him.

The student model is also a simulation model, paralleling the program’s
domain model and inference procedure. It doesn’t just describe the probability
that a student will do something or not, but describes the process over time by
which he gathers problem information and makes assertions. If we think about
the student as some phenomenon in the world that the instructional program is
trying to understand, the student model bears the same relation to the student
as the general model to be taught bears to the world:

general model :: real world system (e.g. the patient)
student model :: cognitive system (the student)

The primary characteristic of a simulation model is that it can be used to
predict subsequent behavior of the system being modeled. For example, a
simulation of an electronic circuit can predict the internal states of its various
components as well as the behavior (e.g. voltage) of its output ports.

A simulation model of a student predicts what he will do next. More
importantly, it can be used to work backwards from student behavior to
explain the basis of his behavior—i.e. to infer his general model and inference
procedure. To highlight the contrast with a static description of the student’s
knowledge, interests, or preferences, a simulation student model is often
called an executable model. The term is also used to describe simulation
models of physical systems, such as an electronic circuit.

A classification model is an example of a qualitative model that is not a
simulation model. For example, a classification model of diseases might only
account for pain and other symptoms in a superficial way and might not
explain in much detail how the symptoms occur. We can also use classifica-
tion models to describe students and account for their reasoning. However, a
simulation model allows us to construct an explanatory accounting that is
complete on at least some level of detail and that relates behavior to the many
specific facts in the student’s domain model. Inferring errors from a con-
structed simulation of reasoning is also more efficient than preenumerating
them in a classification. The distinction between classification and simulation
qualitative models is elaborated upon in Section 6.6.

3.4. Representation Requirements

The clean separation between the general and the situation-specific model,
and subsequent identification of the inference procedure, is an ideal that is not
always explicit in computer programs. The advantages of separability and
further constraints imposed by instruction are considered here.
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3.4.1. THE ARTICULATE EXPERT From early on, researchers realized that
instructional programs cannot be constructed on top of arbitrary problem-
solving programs (Self 1974, Brown et al 1977, Brown 1977b). Expressing
knowledge in a simple, uniform language facilitates its multiple use for
generating questions, evaluating partially correct responses, and responding
to student questions. This is one advantage of the semantic network in
SCHOLAR and the rule base of MYCIN used in GUIDON (Clancey 1979b).
Moreover, if the network can be interpreted to solve problems, it can be used
both to evaluate a student’s problem solving and to provide assistance. Brown
characterized this kind of problem-solving program, which could provide the
basis for evaluation and explanation, as an articulate expert. Such a program
has also been called a glass-box expert because its reasoning can be inspected
by students or other programs (Goldstein & Papert 1977). With further
experience, we can be more precise today.

First, it must be clear from the encoding how problem information is being
used to make situation-specific assertions, what the program’s goals are, and
how they relate to subgoals. It is precisely these characteristics that can be
made evident in a production rule language and that were used to good effect
in GUIDON, WUSOR, and more recently in the LISP and GEOMETRY
tutors. Compared to an arbitrary computer program, the data, conclusions,
and goals of these programs are well indexed. Put in a simple way, variables
have a consistent meaning, corresponding to entities in the world, and there
are no implicit side-effects. '

Second, it is advantageous for the domain-specific qualitative model (the
general model) to be separated from the inference procedure. This enables an
explanation program to articulate the problem-solving strategy and domain
model separately, and provides the basis for reconstructing a student’s domain
model (Section 7).

Third, after separating the domain model and inference procedure, for
further explanation and student modeling capabilities, it is useful to represent
(a) why the domain model is believed; and (b) what efficiency considerations,
assumptions about data-gathering, memory, and problem situations, lie be-
hind the design of the inference procedure. Both questions focus on the origin
of knowledge and reasoning and ask about support for beliefs and constraints
that are satisfied by the inference procedure.

The discussion in Section 6 explains in more detail the importance of
making these distinctions and gives an example of such an analysis.

3.4.2. BEYOND TODAY’S EXPERT SYSTEMS Many readers of this re-
view are familiar with the idea of an expert system, a computer program for
reasoning about complex tasks such as system design, assembly, diagnosis,
and control (Hayes-Roth et al 1983). These programs use qualitative models
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for representing world knowledge and the inference procedure, with varying
degrees of separation and generality of these ¢components. What requirements
does teaching place on a model of problem solving, beyond that it must
adequately solve problems? These requirements are reconsidered in the con-
cluding section.

® Problem solving: Solve problems in multiple ways that allow syntactic
variations in situation-specific models. Cope with, and to some degree
explain, discrepant behavior. The program cannot be an arbitrary model of
intelligence; it must reflect human ways of thinking. Unlike other areas of
Al, instructional research is unabashedly psychological.

® Explanation: Go beyond “audit trail” statements of how the problem is
solved. Articulate the general and specific model, why both are believed,
and relate them to the student’s models and underlying beliefs. Address the
listener’s expectations, persuade him to modify his model, and help him
debug it. In particular, evaluate the student’s explanations of how he solves
a problem. Again, the research emphasizes that explanation is an act of
teaching. Explanation is not just saying what you did when you solved a
problem but also relating it to what the listener expected you to do and what
he would have done himself.

® Learning: Explain a student’s beliefs in terms of how he learned from
experience [“developmental epistemology” (Piaget 1971, Goldstein 1982)]
and predict what he is ready to learn next. Again, this is not arbitrary
“machine learning”; it must be psychological, a model of how people learn.

Summarizing broadly, instruction requires being able to use models in
multiple ways—in solving problems, in explaining, and in learning from
experience. Early research indicated that using knowledge in multiple ways is
benefited by meta-knowledge: knowledge of the extent of what the program
knows, its inference methods, representation, and reasons for failure (Davis et
al 1982, Barr 1979, Barr et al 1979, Schank 1981, Kolodner 1982, Kolodner
& Simpson 1984). This again motivates the separation of the general model
and inference procedure. The instructional program must be able not only to
say what it did but also to reflect on the regularities in its behavior, articulate
them, reason about their validity, and determine what alternatives are possi-
+ ble.

A complicating factor is that human learning involves not just incorporating
new facts but also becoming more efficient and faster through practice
(Anderson et al 1981, Laird et al 1984). Some researchers believe that experts
lose meta-knowledge as they gain the ability to solve problems automatically,
without conscious thought. In this respect, expert systems often reflect the
expert’s automatic way of thinking, without the articulation and abstraction
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(separation of model and inference procedure and attendant generality) useful
for teaching. This makes it more difficult to construct instructional programs
with the capabilities listed above.

Models of problem solving useful for teaching are thus inherently empirical
(they must relate to what students do) and open (they must account for
original, unexpected student behavior). Recognizing and evaluating alterna-
tive models requires that knowledge be expressed at a high level of abstrac-
tion, as general theories, in sharp contrast with specially engineered pro-
grams.

We start with the premise that students will have some means, perhaps
incomplete, of solving problems. Forming a model of the student means
learning about his general model and inference procedure. The variance of
student behavior from the ideal and the extent to which a program can learn a
model different from its own ideal model crucially determine the extent to
which the program can understand the student’s behavior and adapt its
instruction to his approach. Al representations such as semantic networks and
production rules generally offer the kind of indexing that enables a program to
adapt to a student’s order of inferences for solving a problem. For example,
each relation between a symptom and diagnosis might be represented as a
single production rule in the general model. Thus, regardless of the order in
which the student gains information about the problem, the program can
predict what he knows by applying the production rules.

However, to recognize a different inference procedure (the strategy that
determines the order in which inferences are made) requires that the procedure
be represented separately in what is called a functional model (Section 6).
While expert systems generally encode knowledge to fit the “indexing”
criteria, very few separate out the inference procedure or encode it so that it
can be reasoned about by a modeling program. That is, most of today’s expert
systems could not be used as a representation of subject matter to provide the
modeling assessments discussed in Section 4.

Of course, we might take an even broader view of the modeling problem.
Insofar as we expect our students to perform and learn in ways that we cannot
mimic on a computer today, the instructional program must have some way of
articulating its limits and the assumptions upon which it is based, thus
enabling students to relate its embedded theory to the larger world (Winograd
& Flores 1986, Suchman 1985).

3.4.3. QUALITATIVE REASONING The representation of qualitative models
is a burgeoning topic in artificial intelligence today (Bobrow 1984); this
review can only provide a very high-level introduction. The term qualitative
reasoning is usually associated with simulation models. However, in this
review, I adopt the view that most of Al is concerned with the representation
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of qualitative models. In stating this pattern, I draw distinctions different from
those that appear in the literature of the 1970s:

® In the literature, a distinction is not generally drawn between the pro-
gramming language, the inference process, and the general model. A
paradigmatic example is describing MYCIN in terms of goals and chaining
through rules (Davis et al 1977). This abstract description was very valu-
able for defining a new method of computer programming for implement-
ing expert systems. However, in describing MYCIN as a model, we move
up to the “knowledge level” (Newell 1982) and describe its diagnostic
inference procedure and the classification of diseases embedded in the
rules.

® The term “qualitative model” has been restrictively applied to simulation
models of processes based on a description of functional components
(Bobrow 1984). Other models of processes are given domain-specific
names (such as “nosology” in medicine) or are described only in terms of
general constructs used to represent many different kinds of concepts [such
as “script” (Schank 1975) or “state-transition network” (Brown et al 1973,
Stevens et al 1982)]. Classification and behavioral models of processes are
not an inferior version of functional descriptions. They properly represent a
certain form of knowledge that is common in domains such as medicine
and everyday reasoning (Norman et al 1976). While this knowledge may
not provide the same level of explanatory detail as a simulation model, it
still functions as a model by enabling useful predictions and explanatory
accounting. It is now generally believed that this is the form of expertise
associated with quick, routine problem solving (e.g. see Feltovich et al
1984). Indeed, this is the kind of model described by Minsky in his frame
theory (Minsky 1975).

Separately identifying the model and the inference procedure in a knowl-
edge base makes it clear that there are several kinds of qualitative models
(Section 6). It is convenient to call them all qualitative models because, first,
they are all non-numeric, and, second, they are models describing situations
in the world, so they can be recognized and acted upon. The specific
computational formalisms used to represent qualitative models of processes
are described in Section 6.6 (see also Clancey 1986b).

3.5. Use of Models: the Central Role of Diagnosis

Diagnosis plays a special role in instructional programs. First, it is a common
problem-solving task that we attempt to teach—e.g. debugging computer
programs and diagnosing patients or circuits or equipment. More significant-
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ly, diagnosis plays a central role in teaching itself. An analogy can be drawn
with the process of monitoring the behavior of a physical system (s1.1c.h as an
automobile engine), looking for discrepancies from an ideal spemflcatlo.n,
tracking discrepancies back to structural faults or misadjustments, apd repait-
ing by changing the device. In instruction, we monitor the behavior qf the
student (a cognitive system), look for discrepancies from the ideal specllﬁca-
tion (target problem-solving model), track discrepancies back to faults. in the
student’s presumed world model or inference procedure, and “repair” the
student by instruction. This process of causally tracking backwar.ds from
discrepant reasoning behavior to hidden faults in a cognitive system is called
diagnostic modeling. .

Note that there are several levels of causal description: the discrepant
behavior, the system fault or malfunction (called a bug), and the explanation
of how this bug came about. For example, in a computer program, we
distinguish between the incorrect output (what the program did wrong), the
bug in the code (what statements are missing or incorrect), and the explana-
tion for this bug (why the programmer did not use the correct code). In
medicine, we distinguish between a behavioral symptom such as a headache,
the disease (or bug) in the body, and how this person happened to have this

- disease (e.g. why the immuno-response system failed to function to prevent

the disease). In computer system diagnosis, we distinguish between a system
crash and the underlying cause of the problem (e.g. a queue that exceeded its
resources because an I/O controller stuck) and the environmental problem
(e.g. heat) or design flaw that brought about this situation. A.t each point we
proceed from system behavior, to a mechanistic explanation of how jthe
system produced the behavior (bugs), to causes outside the system affecting
system input or internal structure.

3.5.1. BUGs Figure 7 summarizes the different levels of analysis involved
in cognitive modeling, with an example from computer programming to m.ak.e
it concrete. The number of sources of error is somewhat surprising when it is
laid out this way. ‘ .

In general, a bug is some structural flaw (faulty part) manifested in faulty
behavior (a process). Thus, the term bug is used to refer to the incorrect part
of a constructed procedure (e.g. incorrect statement in a computer program).
It also refers to an incorrect inference procedure (e.g. error in student’s
subtraction procedure) and, by extension, an error in the student’s genergl
model (e.g. believing that 9 — 4 = 6). An incorrect general model is
commonly called a “misconception” (such as a misconception about the cause
of a disease). Errors can be combined, because an incorrect computer pro-
gram may involve a combination of a misconception about the operators of
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the computer language and an error in the inference procedure by which the
student has picced together these operators to accomplish some goal (i.¢. how
he writes a program).

Note that Figure 7 expands the definition of an inference procedure given
carlier, It shows that inference procedure controls interaction with the outside
world (e.g. to make observations or write things down). The inference
procedure also applies general knowledge to the problem at hand. Parts of the
goneral model applied to the current problem might be inferred rather than
explicitly stored. For example, a programmer might infer that an “integer
statement” should be placed at the start of a program because that is where

“declurations” are placed. Thus, specific facts are inferred from properties of

clanses. The figure also indicates that part of the general model may have been
leurned through processes such as analogy with other models (Matz 1981,
Clentner & Stevens 1983b). For example, knowledge about programming
languages in general might be applied to form a model of a particular
language (Johnson & Soloway 1984). Whether this occurs during problem
solving or as part of the initial learning, and to what extent this background
knowledge consists of unformalized “raw experiences” (Winograd & Flores
1986), may be relevant considerations, but they have not played a part in
student modeling research in Al.

3.5.2. THE ORIGINS OF BUGS The instructional programs we are studying
ure particularly fascinating because of the researchers’ attempts to understand
the origins of bugs. This interest stems from several goals. First, if a program
In conatructed with a preenumerated set of bugs, not all students may fit the
program's fixed models. A more capable program would attempt to generate a
description of bugs from patterns in a particular student’s behavior and a
model of how bugs come about, called a generative theory of bugs. Second,
there may be too many possible bugs to preenumerate practically. For ex-
ample, the possible misconceptions in medical reasoning are countless. A
generative theory makes it possible to engineer an adaptive program more
efficiently. Third, as part of the science of instruction, researchers want to
understand the origin of bugs so they can more appropriately design in-
structional sequences, to prevent bugs from forming or to catch them before
they become ingrained.

The prevalent model, holding strong sway in the community, is that
reusoning is not random; there is a causal explanation for every error. These
explanations fall into three categories:

I. Mis-learning: The student’s model of the world, his believed situation-
specific information, or inference procedure is incorrect because of a
learning error: a faulty textbook, an over-generalization, a false analo-
Ly, etc (Matz 1981, Sleeman 1984a).
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PASCAL PROGRAMMING

STUDENT BEHAVIOR EXAMPLE
INFORMATION GATHERING Stu dent'é written
PARTIAL SOLUTION code: "READ(X)"

WRITTEN NOTATION

INFERENCE
PROCEDURE
INFERENCE
RE
PROCEDU "READ statement
here will cause X
SITUATION-SPECIFIC to be read when it
MODEL is encountered later.”
INFERENCE
PROCEDURE
INFERENCE
PROCEDURE Misconception:
"The READ statement is
GENERAL a kind of declaration."

MODEL

Rationalization:
analogy, generalization,
spegcialization, and
other learning methods.

Knowledge about INTEGER,
REAL, and other
BACKGROUND declarations.
(OTHER MODELS)

Figure 7 Levels of analysis in cognitive modeling (example from Soloway et al 1982).

2. Construction: The student’s model and inference procedure did not
allow ‘complete solution of a problem. According to repair theory, weak
problem-solving methods allow resolution of an impasse; the core
deficiency is manifested by different constructed bugs, according to the
context. Bugs may “migrate” and not be explainable by the student
(Brown & VanLehn 1980).

3. Slip: The student knows better, he just didn’t perform properly. Slips
are caused by fatigue, emotional problems, conflict in memory, “cogni-
tive overload,” reverting to a previous error, or even unarticulated
wishes (Freud 1965, Norman 1979, Norman 1980, Norman 1982, Matz

1981).

Understanding the origin of bugs can be equated to articulating a “deep
structure” that accounts for implicit regularities in reasoning (Brown et al
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1977). Notice that models of physical systems have a deep structure, too. So
this idea of detecting regularities and giving a causal accounting plays a role
in both first-order modeling (e.g. medical diagnosis) and the second-order
modeling of cognitive diagnosis, modeling problem-solving itself. This com-
monality is fortunate, for it provides us with even more examples to study: A
better understanding of cognitive diagnosis models in instructional programs
helps us to understand diagnostic models in expert systems and vice versa.

A cognitive diagnosis drives the instructional program’s explanations and
selection of new examples and problems. However, we do not understand the
“repair process” (Brown & VanLehn 1980) that is going on in the student’s
mind (a mechanistic account of how a misconception or gap leads the student
to revise his model). Consequently, it is unclear just how good a cognitive
model must be for instruction to be effective. To some extent, the research of
the past decade constitutes a scientific foundation that we will adopt in the
future to construct pragmatic instructional programs, perhaps with less com-
plex cognitive modeling capabilities than our theories allow (Rouse & Morris
1985, Wenger 1986).

The reader may want to refer back to Figure 7 at this point to review the
relationship between observed student behavior, bugs in the sitnation-specific
model, and bugs in the general model.

4. STUDENT MODEL ASSESSMENTS

The simplest kind of assessments classify the student in terms of behavior,
preferences, or background. Such a stereotype user-model (Rich 1979) is
useful for “priming” the modeling process when there is no prior experience
on which to base expectations (Carr & Goldstein 1977, Clancey 1982a).
Beyond this, what do existing programs learn about students as a result of
watching them solve problems and evaluating their performance? What can
these programs infer about a student? Recalling the distinction between a
general (domain) model and a situation-specific model (Section 3.2) and the
relation among the ideal model, bugs, and underlying misconceptions (Sec-
tion 3.5.1), a logical spectrum of interpretations can be laid out and illustrated
by existing programs (summarized in Figure 8):

1. Determine whether statements about the problem to be solved and
the general model are correct.
a. Determine whether a student’s statements about the problem are
correct.

* Example: In GUIDON, a student supports a medical diagnosis by
listing facts about the current patient. The program indicates if the
facts are correct before evaluating the hypothesis or its Justifica-
tion.
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ASSESSMENT ASSOCIATED TERMS EXAMPLE PROGRAMS
t quiz SCHOLAR
stateg;ir:;’abou question-answer CHO
model
consistent hypothesis SOPHIE
situati?nno-dsgecific evaluation
general model and
problem information oveorlray GVVESC_)FN
used to ’ f del
form partial solution differential mode
errors called whY
- MA ADVISOR
general model misconceptions MACS}\D{ROUST
inference errors called DESSS(!Y
procedure mal-rules or bugs PIXIE
ACM
origin of model of SIERRA
inference learning
procedure

Figure 8 Assessments and associated terms for well-known modeling programs (numbers
correspond to the discussion in Section 4).

b. Determine whether a student’s statements about the general model
are correct.
¢ Example: In SCHOLAR, a student is quizzed about geographic
and demographic facts. The program indicates if his answers are
correct by examining a semantic net.

+ Example: In WHY, a student is quizzed about the necessary and
sufficient causes of heavy rainfall (e.g. “Do you believe that every
place with mountains has heavy rainfall?”’). The program indicates
if his model is correct.

» Example: In GUIDON, when a student justifies a hypothesis by
saying that a particular symptom is evidence for a particular disease,
the program indicates whether this is part of the general model.
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2. Determine whether a student’s solution (situation-specific model) is
consistent with the general model and the situation-specific in-
formation he has received.

* Example: In SOPHIE, a student’s hypothesis about a possible cit-
cuit fault is evaluated with respect to the measurements (voltage,
etc) he has taken. His hypothesis may not be the actual fault known
to be present, but it may be consistent with the available information
and the general model of how the circuit components interact. An
error here could be caused by a faulty inference procedure (not
taking available information into account) or by a faulty general
model (interpreting information inappropriately).

* Example: In GUIDON, a student’s hypothesis about the possible
presence of a disease is evaluated with respect to the symptoms he
knows about. Treating the symptoms independently, the program
determines if they are consistent with his disease hypothesis, even if
this is not the diagnosis that could be deduced from further informa-
tion.

3. Determine what knowledge (domain model and inference pro-
cedure) the student has used to form a partial solution (make
a hypothesis). Generally reformulated as, What aspects of the pro-
gram’s general model are consistent with the student’s partial solu-
tion?

* Example: In WHY, a student’s prediction about heavy rainfall
occurring in a particular location (e.g. “Southern California has
heavy rainfall”) is related to the general model. One can then
determine whether the student has considered a necessary factor
(presence of mountains) but believes that it is sufficient, or whether
he has omitted another necessary factor (e.g. presence of moisture-
bearing air mass).

Example: In GUIDON, a student’s diagnosis is related to the gener-
al model, producing a list of symptoms (or combinations of symp-
toms) that are consistent with the diagnosis.

* Example: In WEST, the program interprets a sequence of student
moves in terms of the available operators, and determines which
aspects of the general model (spinner combination operators) are
consistent with the student’s play. For example, the student may be
avoiding certain operators (e.g. use of parentheses) whose use is
consistent with the general model of winning the game, while his
use of other operators (e.g. division) is consistent with the model of
how the game should be played.

QUALITATIVE STUDENT MODELS 409

4, Determine which incorrect general model is consistent with the
student’s behavior. This is often called a student bug model.

» Example: In WHY, if the student incorrectly believes that heavy
rainfall occurs in a particular place (making a false prediction), the
program extracts a general rule of the form “Known factor is a
sufficient cause” (e.g. mountains are a sufficient cause of heavy
rainfall). This general rule is then stated for the student, to see if he
believes it.

Example: In the MACSYMA ADVISOR, a student’s sequence of
Macsyma operators is related back to his goal to determine his
beliefs about the prerequisites of these operators and what they
produce as output. A consistent interpretation may involve positing
a statement about an operator that is incorrect, a bug in the student’s
general model about Macsyma.

5. Determine what nonoptimal or incorrect inference procedure is
consistent with the program’s general model and the student’s

behavior.

» Example: In DEBUGGY, a student’s subtraction solution is related
to incorrect subprocedures (operators), such as an incorrect pro-
cedure for borrowing.

Example: In ODYSSEUS (Wilkins et al 1986), a student-modeling
program based on HERACLES (Clancey 1985b), the sequence of
student requests for data is related to tasks for making a diagnosis;
this allows detection of reordered and deleted conditional tasks in
the ideal inference procedure.

Example: In WEST, a student uses mathematical operators to com-
bine numbers on a spinner, thus determining how many spaces his
player will advance on a game board. Assuming that the goal is to
reach the final place on the board first, the program determines if the
student’s choice of operators is optimal—that is, consistent with the
inference procedure dictated by the goal.

6. Determine what underlying misconceptions explain the student’s
incorrect general model or buggy inference procedure.

» Example: In REPAIR THEORY, impasses are generated from a
subtraction procedure that is missing certain subprocedures. In-
ference procedure bugs are gencrated by weak problem-solving
methods that repair the impasse, based on some assumptions about
the correct form of a solution, such as putting a number in every
column. Thus, improper behavior is explained in terms of a missing



410 CLANCEY

part of the general model and a procedure for working around the
gap.

* Example: In PROUST, programming errors (incorrect lines of code)
are explained in terms of bugs in the general model (incorrect beliefs
aboqt what an operator, such as a READ statement, will do); these
are in turn explained in terms of a mechanism, such as a false
analogy [relating READ to an INTEGER declaration, and thus
concluding that READ(x) is a general declaration about the variable
x]. Thus, improper behavior is explained in terms of an incorrect
general model and (informally, not by a simulation program) by a
process for how this incorrect model may have been learned.

In subsequent sections I consider how representation requirements and
methods for making these assessments vary across domains.

5. CONTRAST BETWEEN FORMAL
DOMAINS AND PHYSICAL

The po?nt of this section is to compare problem solving in different domains to
determine to what extent methods developed in one problem area can be
successfully applied to other kinds of problems. First I consider how problems
across domains can be classified. Then I show how modeling problems that
arise in one domain are minimized or do not occur in others. This analysis is
us.eful for someone who wants to apply the modeling methods described in
this paper to a new problem area or to define a problem so that it fits a given
method, with an understanding of what aspects of student reasoning may be
consequently incompletely modeled.
. To compare problems in different domains, I describe inference procedures
in terr'ns of model-manipulation operators. That is, the solution, the situation
spe‘mflc-model, is viewed as an object that is modified during problem solving
Ll'l'ltll a certain form is attained. For example, the form of a correctly simplified
linear algebraic equation is “<variable> = ...”; the form of an executable
coqlputer program consists of validly composed expressions in a language
Whl(.lh p<?rf0rm the desired computation; the form of a diagnosis is z;
parsimonious network that causally relates the manifestations that need to be
explal'n.ed.. An inference procedure, abstractly stated, consists of operations
for critiquing and improving a partial situation-specific model on the basis of
1t§ form, thus calling into play selected aspects of the general model. This
view of problem solving, elaborated upon below, provides a basis for compar-
ing modeling methods and difficulties in mathematics, programming, and
diagnosis. ’
Briefly, modeling is made much easier if the inference procedure consists
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of well-defined operators, if the operators are applied in a “written notation”
(i.e. using pencil and paper, other physical objects, or equivalent computer
graphics) and if the domain is axiomatized. For example, all of these are
satisfied by subtraction, but none are satisfied by medical diagnosis. In
subtraction, misconceptions are apparently irrelevant; in medical diagnosis
they are unbounded. The subtraction inference procedure is well known, to
say the least, and is precisely what we attempt to teach; in programming and
diagnosis we don’t even understand what experts can do. We mainly attempt
to teach facts about the programming language or the physical system to be
diagnosed (the general model) and patterns for using these facts in common
problems. Viewed more generally, instruction focuses on functionality of the
domain, and we find it difficult to talk about the inference procedure.

Figure 9 places domains of instructional programs in a two-dimensional
space. Along the top, I contrast an algorithmic, formally derivable inference
procedure with one that is heuristic and provides no guarantee of constructing
the correct answer. For example, the procedure for subtraction is algorithmic;
the procedure for writing programs is heuristic. The distinction exists because
of uncertainty in the problem information (incomplete or uncertain measure-
ments), uncertainty in the general model (as in medicine), or because the
space of possible solutions is combinatorially too large to search systematical-
ly (Buchanan et al 1969). Note that the matrix describes the ideal subject
matter, not its form in a particular person or how it may have been modeled.
A given person might do algebra heuristically or a computer program might
have an algorithm for diagnosis. In general, the matrix describes the “real
world,” as opposed to particular models of it. However, I mention scientific
laws parenthetically to show where they would appear.

By “system functionality,” the second axis, I mean “how the domain
works.” We can draw an analogy among mathematics operators, program-
ming language operators, circuit operations, physiological functions, etc.
These operators define how the domain works, what can be computed, and
what processes can occur.

The question is, what enables this functionality to occur? Is the system
formally defined—that is, something someone designed (such as an electronic
circuit) or something that someone asserted (such as geometry axioms)? Or is
the functionality of the system part of the world, with an indeterminate basis
(such as the operation of the human body) or unbounded and subject to change
(such as the environmental loads that might be placed on a computer system)?
The boundary between formal and indeterminate functionality is not sharp.
For example, electronic circuits have defined functionality (unlike com-
ponents of the human body), but they rest upon a natural system of physical
interactions that is not formal or conswructed by some person.

To put this another way, referring to general and background levels shown
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Figure 9 Functionality of domain operators related to model manipulation.

in Figure 7, if the functionality is formal, the general model consists of
axioms, with well-defined terms. The model is complete, constituting a
closed world (Carbonell & Collins 1973, Collins et al 1975, Reiter 1978). For
physical or natural systems, there are no formalized axioms, defined terms, or
syntactic inference operators. There is no bottom; we can always inquire
about more detailed causal interactions. We may describe functionality in
terms of physical laws, but these are hypotheses, not axioms; they may have a
basis in deeper theory and are subject to error. ‘

For completeness, I include “real world planning and programming” as an
example of an indeterminate domain. In particular, I contrast the problem of
writing a program to do abstract operations (such as list manipulation) with
programming that involves interacting with the world (such as an airline
reservation system). We may rigorously specify how a real world program
must work, but we cannot practically anticipate (formally define) all of the
problem situations that may occur. The system is not closed. There is of
course a spectrum here, with highly repetitious and isolated problems at one
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end (such as accounting) and one-of-a-kind, noisy problems at the other end
(such as battlefield management).

5.1. Written Notation and Operators

Modeling reasoning involves formalizing an inference procedure. For sub-
traction, this is trivial because the inference procedure is a well-known
algorithm and there is a written notation for describing the situation-specific
model. However, parallels can be drawn that make it possible to model
heuristic procedures and systems of indeterminate functionality.

Recall that an inference procedure constructs a situation-specific model
(Section 3.2). When the model is represented in a written notation, as in
mathematics, the primitive operators of the inference procedure are notation-
al—that is, in terms of syntactic manipulations of the representation. In
subtraction, these primitive operators correspond to decrementing a column,
adding ten to a column, shifting left, finding a difference, etc (Ohlsson &
Langley 1985). The subtraction inference procedure is guaranteed to produce
a correct answer.

What are the corresponding primitive operators in medical diagnosis?
There are no notational operators because there is no written notation for
solving diagnostic problems. The inference procedure used by people for
generating, relating, and testing hypotheses is heuristic and could not even be
stated as a simulation model until the last decade (e.g. see Pauker et al 1976,
Elstein et al 1978).

Although physicians do not speak of or teach a formal set of “diagnostic
operators,” we can now model the inference procedure in a way that parallels
the subtraction algorithm—that is, as a program for manipulating a represen-
tation, the situation-specific model.

Figure 10 shows a simplified representation for diagnosis, as used by
NEOMYCIN. According to this view of medical diagnosis, the object is to
construct a well-formed graph that represents a situation-specific model. All
of the symptoms that need to be explained (e.g. seizures) are linked to internal
states that are causing them (e.g. increased intracranial pressure) and the
disease processes that caused these states (e.g. an infection). Proceeding
upwards in the diagram, the “explanation” becomes more specific in terms of
causes and subtypes of processes. Thus, the graph takes the form of a “proof.”
Causal links correspond to theorems, so that each link has a corresponding
graph that “proves” its validity in this case. Of course, the sense of “proof™
here is in terms of the logical form of the diagnostic explanation, as an
argument, rather than a sound derivation.

For comparison, a partial situation-specific model, as expressed in a written
calculus, is shown for geometry theorem proving in Figure 11. In contrast
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Figure 10 Written notation for partial situation-specific model in medical diagnosis (from
Clancey 1986b).

with geometry theorems, causal associations are uncertain, They are heuristic
associations, relying on mechanisms that might not hold in the given case. In
general, they are more like axioms or laws, because they tend to be empirical-
ly supported hypotheses rather than theorems derived from a general model.?
Also, there may be separate, disconnected parts of the situation-specific
model; the problem is to explain all of the abnormal findings. This is almost
backwards from theorem proving, in which only some of the givens need be
used and the root of the proof, the thing to be proven, is known. Finally,
geometry theorem proving does not deal with “instances” in the world, in the
sense that each human body is an instance of a general system. Thus, all
inferences in geometry are general, and what is proved can be directly applied
to new problems.

Using this proof-like notation, the reasoning steps of diagnosis can be
expressed as graph construction operators. For example, “test hypothesis”
corresponds to growing support links down from a process or state descrip-
tion. “Group” corresponds to linking states or processes by a containing
category (subsumption) or a common cause (Pople 1982). Algebraic operators
for transforming equations are similar: “collect like terms,” “multiply through
by denominators to remove fractions” (Sleeman & Smith 1981). Operators for
geometry are much simpler, involving just forward and backward inference.
Moreover, algebra and geometry, unlike subtraction, involve searching mem-
ory for operators to apply. The algorithm allows for some discretion in the
order in which operations are done.

In summary, an inference procedure can be described as operators for
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Figure 11 Written notation for partial situation-specific model in geometry theorem proving
(from Anderson et al 1985).

manipulating a situation-specific model. This is a constructive process th?t
involves posting intermediate results, searching .for relevant assomatl.ons in
memory, and perhaps backtracking to try altematlvg approaches. The impor-
tant, unifying idea is that the solution at any point, the 51tuat10n-.spec1flc
model, must have a certain form. This form can be stated as constraints that
relate problem information to the solution (a diagnosis., a the(?rem, a computer
program, a value for an algebraic variable). In diagnosis and geometry
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theorem proving, these are the constraints of completeness and consistency in
a proof. In programming, the constraints are computational, relating to the
goals of the program. In algebra, the value for the variable must satisfy the
original equation.?

5.2. Subtraction Compared to Medical Diagnosis

On this basis, I summarize the differences between subtraction and diagnosis,
contrast the nature of bugs, and articulate modeling difficulties:

® There is no established written calculus for diagnosis. The inference pro-
cedure used by people constructs a model that is almost exclusively mental
and is not expressed in a written notation (Rouse & Morris 1985). Never-
theless, people sometimes speak in terms of operators [e.g. “split the
hypothesis space” (Brown et al 1982a), “go down the tree of diagnoses”
(Clancey 1984b)], and some programs have modeled human reasoning in
terms of formal operators (Newell & Simon 1972, Larkin et al 1980,
Clancey 1984b).

® The inference procedure of diagnosis is heuristic, not algorithmic:

O It is inherently based on activation of associations in memory, in contrast
with subtraction, in which the organization of memory plays no apparent
role (Rouse & Morris 1985);

© more than one operator may apply, with a problem of eestablishing focus
and reasoning efficiently;

O reasoning may involve working backwards from a hypothesized part of
the solution; and

© multiple, situation-specific models may be constructed and compared
(Pople 1982, Patil 1981).

® The number of domain facts in medical diagnosis is tremendous, so that
most errors for students are in the domain model (Feltovich et al 1984). By
comparison, most errors in subtraction involve incorrect manipulation of
the notation—that is, errors in the inference procedure, not mathematics
facts (Young & O’Shea 1981).

® Impasses occur when domain facts are insufficient to construct an adequate
situation-specific model. However, adults stop and ask questions or seek
help; they are less likely to make the unsupportable inferences posited by
repair theory in the problem solving of children. Rationalizations (to argue
away data or revise the general model) may be necessary to achieve a
consistent model (Clancey 1984a), but they are deliberate causal argu-
ments.

® Heuristic operations to ensure completeness, such as asking general ques-
tions early and gathering circumstantial evidence before requesting labora-
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tory results in order to ensure completeness, are explicitly taught z'md
sometimes forgotten. Thus, procedure errors corresponding to subtr‘actlon
bugs can occur. However, if a student does not form a hyppthems, we
cannot necessarily say that it is because he didn’t try; automatic processes
of memory are involved.

® The domain facts of diagnosis are not based on known axioms. Incorrect
domain beliefs may derive from other incorrect facts, ultimately cagsed by
mislearning, constructions, or slips. Identifying a misconception is just the
first step; the teacher must always reason about its cause and correct that as
well. It is assumed that errors in the math table or notational procedure of
subtraction are not based on misconceptions. Furthermore, because domain
facts are not axiomatized, they are always contextual, based on assump-
tions about the world. “Causal theorems” do not always apply and may
interact, so they cannot be applied independently.

From this discussion, it should be clear that “bugs in subtraction” and “bugs
in diagnosis™ are quite different beasts. The idea of a bug has been cons.idered
perhaps too generally in the literature, particularly when different dorpams are
compared, resulting in failure to properly distinguish between don}am model
and inference procedure errors. Formal domains, in contrast with natural

domains, have

® an axiomatized general model;
® algorithmic, syntactic inference procedure;
@ written representation of the situation-specific model; and

® minimal concern with focusing attention.

A mathematics modeling program has a written notation to interpret, an.d
bugs are errors in its manipulation. In contrast, in medica‘l diagnosi.s there is
traditionally no written notation and “bugs” are predominantly misconcep-
tions about processes in the system being diagnosed. Programming and
electronic diagnosis fall in between, and are considered next. I return to the
confusion about bugs in Section 6.9, after explicating in more detail hgw
qualitative models of processes can differ, even within a particular domain.

5.3. Artifactual vs Nétuml Functionality

In general, misconceptions may lie in the functionality of the subject system
or in how this functionality is realized by underlying mechanism. For formal
domains, there is no underlying mechanism. The functionality of operators in
formal systems is given by axioms. Operators in computer programs (such as
a “read statement”) are well-defined in a similar way.

In physical systems, we have two cases. For artifactual (man-made) sys-
tems, such as electronic circuits, functions are well-defined but they rest on
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natural, physical models. For example, the desired behavior of a transistor
(excepting timing conditions) is well-defined, but how the materials in a
transistor bring about this behavior is open-ended and involves knowledge of
quantum mechanics. This is important because the student may have miscon-
ceptions about the faulty behavior of a transistor based on misconceptions
about how a correctly functioning transistor works, though there is a practical
level below which normal problem solving does not go. Electronic circuit
design is similar.

In other domains, such as medical, cognitive, and computer system di-
agnosis* and most real-world planning tasks (Hayes-Roth and Hayes-Roth
1979), the functionality of the system to be interpreted or constructed is not
fully known or predictable. For example, a therapy may not work; a store may
not have the desired goods. Variations from the desired behavior are not
enumerable, and external influences are unlimited (though there may be
patterns). Student misconceptions derive from misunderstanding system func-
tion or how the behavior is derived. It is relatively easy to determine that the
student is applying an incorrect fact (e.g. “if gargling improves a sore throat,
then the patient had a viral infection™) by asking the student or by contextual
inference. However, it would go beyond human capability to construct a
program capable of always explaining such bugs in the general model in terms
of underlying misconceptions. The same observation holds for domains of
physics, chemistry, meteorology (Stevens et al 1982), etc. There is a practical
level below which routine problem solving need not go, but, unlike artifactual
systems, this level is not formal and is not based on deliberate design.

Thus, proceeding from formal to natural domains (Figure 9), there is an
increase in the number of possible interpretations and amount of world
knowledge that might be involved.

Consequently, while both formal and physical systems admit to construc-
tion of simulation models of ideal (correct) behavior, the approach for ex-
plaining bugs must be fundamentally different. When errors are not just
incorrect or forgotten axioms but involve complex causal models, it is in-
sufficient simply to point out the errors, as in the MACSYMA ADVISOR.
Instead, the program must have some way to understand a student’s explana-
tion and ferret out the underlying misconceptions. No cognitive modeling
program today can do this, except by the use of a bug library (Soloway et al
1981). It is tempting to criticize this approach for being ad hoc, but domain
differences prevent simply applying the generative approach used for model-
ing mathematics errors.

Moreover, experiments with naive subjects indicate a proclivity for mis-
conceptions based on “causal reasoning,” where no underlying processes are
involved, or the attribution of complex mechanism, where all functionality is
formal (Bott 1979). These results suggest that the “closed world” approach of
mathematics modeling programs may be missing the strong, nonformal
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metaphors people use in understanding new problems, even in formal -do-
mains. Analysis of strategies for playing the WEST game supports this view
(Burton & Brown 1979).

5.4. Algorithmic vs Heuristic Inference

Returning to Figure 9, I briefly consider the difficulties a heuristic inference
procedure imposes on modeling.

Problems in subtraction, algebra, programming, and diagnosis, in contrast
to geometry theorem proving, do not start with a conclusion that must be
shown to be correct (Greeno & Simon 1984). However, all domains have
constraints on the form of the model (e.g. in medical diagnosis, to explain all
serious findings). Once a partial solution is hypothesized, it may be supported
by a theorem-proving, top-down approach (Murray 1985, Genesereth 1984).
This form imposes constraints on the inference procedure:

® Procedural errors include: making unuseful or inadequately supported in-
ferences, refining a line of reasoning before contrasting alternatives, and
failing to discover situation-specific facts (symptoms, specifications) that
must be incorporated in the model.
® The nature of the inference procedure is orthogonal to the nature of the
operators. Formal operators may still be applied by a heuristig inf'erence
- procedure. Programming, as performed by people, is not algorithmic, but
heuristic. Similarly, operators in board games are also well defined, but the
situation-specific model may be inherently uncertain, as in bridge, or too
numerous and complicated to fully explore, as in chess.

® Formal problems occur in a closed world, so the problem solver can
assume that he has been given all relevant information. Problems in natural

domains are open.

Coupling these observations with what has been accomplished ig stude?nt
modeling, we must temper the successes of mathematical modeling with
sober awareness that we have just begun to model the complexities of human
reasoning for nonalgorithmic problem solving. Our models of what experts do
in controlled situations are meager (Chi et al 1981, Larkin et al 1980, Chi &
Glaser 1982, Chi et al 1986, Glaser 1985); thus our ability to model what a
student is doing is all the more uncertain. Results in modeling heuristic
inference procedures are tentative and incomplete; they barely indicate what
might be possible and do not cope with the difficulties in any general way.

6. TYPES OF QUALITATIVE PROCESS MODELS

The spectrum of “explanation” spanned by student-modeling programs ranges
from detecting discrepant behavior, to relating this behavior to incorrect
beliefs, to accounting for these incorrect beliefs. However, it is possible to
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Figure 12 Types of qualitative models of processes.

const:ruct such interpretations without modeling the inference process itself
In t.hlS section, I consider what a process model of reasoning is, how be;
havioral and functional process models differ, and how a functiona’l model is
represented. Figure 12 summarizes the distinctions made here.

6.1. Process Models of Reasoning

A process model of reasoning is a simulation model that explains behavior in
te'rms of both the student’s general model and his inference procedure (refer to
Figure 5.) The simulation not only says what the situation-specific model is
a.nd how it relates to the general model, but it describes the process, over
time, by which the solution was derived. A mark of a process model is ,that it
descr?bes problem solving in terms of shifting focus of attention. The model
describes a sequence of focusing on situation-specific information and the
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evolving situation-specific model, plus a procedure that determines this shift-
ing focus, which I have termed the inference procedure. A process model is a
strong argument for completeness of the explanation that relates the situation-
specific model to the general model. Many researchers believe that accurate
process models will provide a basis for improving instruction (Glaser 1983).

Many instructional programs do not construct process models of student
reasoning. For example, SOPHIE checks to see if a solution is consistent with
the given information, but it does not explain the order in which information
is gathered or the order in which hypotheses were inferred.

BUGGY, ACM, LMS, and PROUST provide an intermediate case; they
reconstruct the student’s reasoning process but do not match this against his
actual, step-by-step behavior. For BUGGY and ACM, working in subtrac-
tion, the notation is so constraining that a procedure can often be inferred just
from the final solution, without even considering scratch marks (though this
assumption may also account for part of the failure of these programs to
explain some solutions). PROUST constructs a situation-specific model that
accounts for the student’s code and shows how it might be derived from
beliefs about PASCAL operators. But it also works from a final solution, so it
cannot verify that the inference procedure is the same as that used by the
student. Emphasis is on detecting and explaining incorrect behavior in terms
of errors in the general model, not the programming process. Here the formal
domain operators and complex written notation greatly facilitate inferring the
student’s beliefs. The MACSYMA ADVISOR goes a step further and relates
intermediate steps to an idealized inference procedure.

In simulating the inference process, programs like the LISP TUTOR,
SPADE, and ODYSSEUS attempt to explain behavior in terms of the order of
inference for modifying the situation-specific model. Here an attempt is made
to match the step-by-step process that the student goes through as he gathers
more information about the problem and/or writes down partial solutions
[called model-tracing (Anderson et al 1986)]. Thus, ODYSSEUS explains
why the student is making a hypothesis at a certain point, while SOPHIE only
explains if it is consistent. The LISP TUTOR determines the student’s goal for
writing each piece of code at the time he writes it. Of course, what variations
from the ideal model these programs can recognize is a different issue.

6.2. Behavioral vs Functional Process Models

Two types of models simulate the inference process: those stated in
domain-specific terms, which I call behavioral models, and those stated in
terms of abstract operators for manipulating models, which I call functional
models. Behavioral models describe how a system appears in itself; functional
models place behavior in a larger context, indicating the role it plays in
achieving the properties of a larger system.
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In general, a functional model describes the purpose of a system. Thus, a
physical system would be described in terms of its functional components and
how they interact, not just according to the behavioral relations among states.
For example, a functional model of a radio would refer to amplification and
locking on to a station, while a behavioral model alone would only describe
current flow and changing voltages. We move from seeing behavior in
isolation to accounting for patterns in behavior and finally to the larger goals
these patterns satisfy.”

A functional cognitive model describes reasoning in a domain-independent
way that focuses on model construction and use. Thus, NEOMYCIN’S goals
relate to explaining/diagnosing a system’s behavior: e.g. “trying to test a
hypothesis.” Rather than describe what the program is doing in terms of
specific requests for information and inferences about particular diagnoses,
we abstract a sequence of information requests, then relate this pattern to the
more general objectives of forming a model of the patient (Clancey 1984b,
Clancey 1983a).

Similarly, PROUST’S goals relate to designing/constructing a system that
exhibits particular behavior: e.g. “implementing desired functionality” de-
scribes a pattern of inferences during program writing as a specification is
transformed into the operators of the programming language.

Such a model describes not just what the problem solver is doing at the
domain level. It characterizes the function of cognition in terms of operators
for manipulating models. Necessarily, the general domain model is repre-
sented separately from the inference procedure, rather than being combined in
specific situation/action patterns. That is, one separates “what is true about
the world” (the general and situation-specific models) from “what to do” (the
inference procedure), as shown in Figure 5. The inference procedure,
as shown in the next section, is abstract and does not mention domain
terms.

In contrast, behavioral models describe what a system does in particular
situations (e.g. the symptoms of a physical system such as a malfunctioning
circuit; the design decisions or diagnostic questioning of a cognitive system).
A behavioral model may describe unobservable states (such as unarticulated
inferences). Stated as situation-action patterns, a behavioral model may even
simulate processes. This is how the diagnostic process is simulated in MYCIN
(used by GUIDON) and how the programming process is simulated in the
LISP TUTOR and the FLOW TUTOR (Gentner 1977). Note that a behavioral
model of reasoning may articulate goals behind problem-solving steps, but
they are always domain-specific (e.g. in medical diagnosis, trying to de-
termine if the patient has an infection; in LISP programming, trying to add an
element to a list). Figure 13 shows the possible combinations of models of the
domain and reasoning, with examples of instructional programs. Note that the
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Figure 13 Comparison of programs in terms of model of the domain and model of reasoning.
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tion process is occurring at all.® Such a behavioral model should be corll rlags82
with the nonsimulation, pattern-matching approach (Soloway e’:t a ; n(,l
Miller 1980), which makes no attempt to reconstruct the student’s code and

a classification of errors to be detected (analogous to a
prototypes to

ming transform:

relies instead on ' : .
behavioral, nonsimulation representation of diseases as simply

beTtht‘lj(l)fE—)étep, “evaluate and correct each line of coc?e” apprqacl; uls:ed in
the LISP TUTOR is tractable because the problems admit to relatively 1near;
incremental transformation of the evolving program. More (‘:omlc)lle.:x progra;rlrlx

may have many different implementations anfl may be fies1gne. in tc')z) rrtxl on}j
ways to anticipate. A behavioral model 'descrll?es what is df)ne 11n a si :11 on.
specific way. Preenumerating the situation/action patterns 1s onty glac al !
the context of each situation can be narrowly construed, as m. e s1rtn£le
abstract programming of the LISP TUTOR. Use' of a separat;, 1n§plef afor
inference procedure—a functional mode.l——prfw}des greater .dex1 ility ot
adapting to the student’s order and syntac.tlc variations and pro;rll ets a tpa;s -of
many alternative solutions without having to anticipate each situa 1(;985)
forehand (London & Clancey 1982, Johnson & Soloway 1984, Murray .
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If the model is written in an appropriate language, it can be used to articulate

the process and provide assistance as well (Swartout 1981, Hasling et al 1984,
Clancey 1985b).

6.3. Levels of Abstraction

The distinction between a behavioral and functional model can be laid out as a
sequence of four levels of abstraction. Using a simple example from a
hypothetical medical diagnosis program, we progressively separate the do-
main model from how it is applied and abstract the inference procedure.

2. Instance-specific model
(behavioral, domain is one patient)

Pertains to particular problem instances; stated as a procedure of specif-
ic situation/action patterns.

Example:

If (FEVER mary) then (INFECTION mary).”
If Mary has a fever, then Mary has an infection.

2. Domain-specific, proceduralized model with variables (behavioral,
domain is one disease)

Problem-instance objects replaced by variables; stated as a specific
procedure of situation/action patterns. Situation descriptions are in-
terpreted (supplied as data to the program).

Example:

(PATIENT mary).

If (AND (PATIENT $PATIENT) (FEVER $PATIENT))
then (INFECTION $PATIENT).

If the patient has a fever, then the patient has an infection.

3. Domain-specific, general model separated from inference pro-
cedure (functional, domain is medical diagnosis).

Domain concepts are classified as different terms (e.g. DISEASE and
SYMPTOM). A general domain model consists of relations over these
terms (“domain facts” such as CAUSES). A distinction is made between
the general model and the situation-specific model (indicated by the
PRESENT relation here, which strictly speaking should be probabilisti-
cally qualified). Both are referenced by the inference procedure, which

is now expressed as a set of general situation/action patterns for
accomplishing model construction tasks.
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Example: .

(DISEASE infection) (SYMPTOM fever) (CAUSES infec—

tion fever)

TASK: TEST-HYPOTHESIS

FOCUS: (DISEASE $D)

If (AND (CAUSES $D $S)

(PRESENT $5 $PATIENT))

then (PRESENT $D $PATIENT). .

If a disease causes a symptom and there is evidence tha.t the sy.mptom is

present in the patient, then there is evidence that the disease is present

in the patient. o
4. Inference procedure stated abstractly (functiongl, domain dlS <111—

agnosis using a classification general model). Domain terms an reI;—

tions are more abstractly classified (e.g. DISORDER replaces .D -

EASE). Terms in the inference procedure now refer to systems, obje.chs,

and processes; relations refer to spatial, causal, temporal and probabilis-

tic characterizations of terms.

le:
IZ:ZZ;H;I')FEM patient) (DISORDER infection) (EFFECT fe-
ver) (CAUSES infection fever)
TASK: TEST-HYPOTHESIS
FOCUS: (DISORDER $D)
If (AND (CAUSES $D $E) (PRESENT $E $SYSTEM))
then (PRESENT $D $SYSTEM). o
If a disorder causes an effect and there is evidenc'e thgt the effect ;:s
present in the system being diagnosed, then there is evidence that the
disorder is present in the system.

Here it should be clear that the domain relations (e?. g. CAUSES) are not
axioms but may summarize a complex line of reasoning abou.t .t‘hc p‘roc.ess.
Inferring this relation may involve a great deal' of situation-specif; IL‘ Ircue.omng,
as opposed to simply “looking up the fact” in the general mf)clu‘:l e

Note that the transformation from steps 2 to 4 correspon sl 9tc8)4 )
transformation from MYCIN to NEOMYCIN (Clancey & 'Letsmg‘cr ) c;
HERACLES (Clancey 1985c). Furthermore, we may continue the p‘rofcess o
abstraction to produce more primitive relaFlons for denvmg ‘Elfc in eé?ﬁe
procedure itself. For example, we might derws: the rule for TEST-HYP . h;
ESIS from some definition of what that task is supposed .t(? do nr‘wc ml‘gt
derive the ordering of the clauses in this rule from efficiency c..onstram S
(Smith 1985). This level of specification may be u§eful for gcncrutmgd pc:pre—
dundant prosaic explanations, as well as for making reasonable predictions
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about what variations from this procedure might be expected in student
reasoning (Clancey 1985b, Neches et al 1985).

6.4. Flat Functional Models

A special kind of functional model is nonhierarchical and expresses higher-
order control by the ordering of situation/action patterns [e. g. ACM (Langley
et al 1984) and LMS (Sleeman 1982)]. For example, such a model for algebra
would represent the concept “collect/isolate variables” by an ordered set of
primitive conditional actions. Similarly, the diagnostic procedure of
NEOMYCIN could be flattened out by composing productions (e.g. the two
productions “If A & B, then do G” and “If goal is G and C, then do P,” where
P is a primitive action, would become “If A & B & C, then do P”).
Obviously, when the model is constructed by a machine-learning approach
out of primitives, the common concepts we associate with macro or abstract
operators cannot be assigned. In short, the functions of the functional model
have not been specified. For constructing a diagnostic model (just trying to
determine what the student’s procedure is), this may not be a deficiency.
However, it is striking that the procedures used by people in both formal and
natural domains are hierarchical and make strong use of abstract functional
terminology (e.g. in medicine, they group hypotheses into categories and
differentiate among them). Unfortunately, one of the shortcomings of auto-
matically-generated cognitive models (e.g. Langley et al 1984) is that they are
flat and consequently leave out the abstract names that people use to group
and understand complex operations.

6.5. Idealized Competence vs Individual Models

A further complication is introduced by Young in his arguments that hierar-
chical organization of rules or procedures and separation of the general model
from the inference procedure are “psychologically unwarranted” (Young &
O’Shea 1981). He argues that people do not necessarily know such well-
formed procedures; their knowledge is more “anarchic.” In evaluating this
argument, we must distinguish between a computational representation that
models what people are capable of doing (their competence) and a model of
how reasoning is organized and activated in the human brain. In this sense,
the separation of model from inference procedure and its hierarchical repre-
sentation reveals something akin to a grammatical structure, expressing more
of an ideal than what any given person knows. Like a grammar, a functional
model is an abstraction of behavior, in this case relating to the problem-
solver’s larger goals and the constraints under which he operates. It does not
necessarily correspond to what the problem solver is thinking about explicitly.

The thrust of my argument has been that the functional approach is
tremendously valuable for generalizing results across domains. However,
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while this might turn out to be a good software engineering pnnzlple f(g;
constructing instructional programs (and e.xpert syste'tms), we m;y 'tlsctgv ‘
that models of individual people must be inherently 111—s.tructure , situa 1ond
specific, and even incoherent. Neverthelessz our theories of lea'mmghfmal
communication need not be ill-structured and 1ncoherept, and the hlirarc lic

functional approach will serve us wefll there, even if a mode.l g a %ilvstn
person’s problem-solving knowledge is best expressed as flat, independent,
ituation- ific rules.

sm’}‘i:;m;r;i?llef;: is further complicated if the inf.erence. proce.dllllre {'eflltecl;ts
automatic processes of memory, as in meghca} ‘dlagnos¥s, wtzllcl "?;:gt iy z
more properly modeled independent of the §pec1flc doma1.n mo e .d ;rie\,;a]
theory of diagnosis would properly descr.lbe the assoc1at10n' ari T eva
process abstractly, as a functional model, independent of part1cu. ar mel 1in
facts (the general model). In this respect, we must be careful in applying

* Young & O’Shea’s analysis of subtraction to other domains. As another

example, it is possible for an experienceq problem-solver to step Em k(;f an
automatic mode of operating and systematlcally apply a procedu.ref e ov:s
explicitly (essentially moving from predommantl)./ forvyard in ‘?;ence 8(;
means-ends, goal-directed reasoning). For further discussion, see ‘oulngggs
O’Shea 1981, Clancey 1984b, Langley et al 1984, Rouse & Morris ,

Sleeman 1984b, Wenger 1986.

6.6. Computational Representations for Qualitative Models

Broadly speaking, qualitative models of processes are repres;nted com-
putationally in four distinguishable ways. These constitute the bas%c represen-
tational repertoire for modeling physical, inference, and communication pro-

cesses in computer programs.

® Process classification network
Description: Processes described as a hierarchy of input/output or cause/

effect patterns. ‘
Examples: NEOMYCIN (diseases), MENO (bugs in code).

e Causal-associational state-transition network '
Description: Processes described by a graph of system states linked by
cause and subtype.

Examples: NEOMYCIN (pathophysiologic ~states), METEOROLOQY
PROGRAM (Brown et al 1973) and WHY (rainfall temperature and mois-
ture relations).

e Functional/procedural-transition network -
Description: Processes hierarchically described by functional composition
of inputs and outputs.
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Examples: GUIDON (discourse procedure) (Clancey 1979a, Woolf &

McDonald 1984), NEOMYCIN (inference procedure), BUGGY (smitrac-

tion procedure) (Burton 1982), SOPHIE-II (electronic circuit module

behavior lattice), PROUST (programming tasks and program schemas).
® Structure/Function network

Description: Processes hierarchically described by structural composition
of inputs and outputs within functional modules.

Examples: QUAL (electronic simulation), DART (electronic simulation)

Behavioral networks (classification and causal-associational networks) are
generally constructed to account for past behavior of a system, though they
can be used to make predictions as well. They do not necessarily characterize
the full state of the system being reasoned about on any level of analysis, and
do not necessarily explain what state will follow from arbitrary initial con-
ditions (for example, allowing that parts of the system are functioning nor-
mally).

A classification model allows accounting for behavior in terms of familiar
patterns. Of course, even the simplest “explanation by naming” must be based
on assumptions of what kinds of processes are possible and what the range of
possible causes might include. For example, without further information, a
new disease might be classified as a toxic effect, a deficiency of production,
an infectious process, a congenital disorder, etc. Thus, a classification model,
and the features thought to be causally related, might be based on an analogy
with a better understood process.

. A causal network, or script model, does allow simulation of behavior, but

without accounting for how the behavior comes about. “Hidden” internal
states may be described, but the purpose of transitions and how transitions
follow from the structure of the system (the physical components) are not
completely described.

In contrast, a functional network makes a claim about completeness of the
explanation or system description. The purpose of the system is captured
procedurally on multiple levels of abstraction, so that states can be related to
functional goals and their subgoals. Each function can be expressed com-
putationally as a subprocedure made up of ordered and controlled situation/
action statements. Actions are either ordered invocations of subprocedures or
primitive operations.

Finally, a complete structure/function model, to which the term “qualitative
model” is usually applied in the literature, gives a full accounting for each
component (structure) in the system in terms of its role in fulfilling the
function of the system. Thus, a structural model of reasoning would relate
descriptions of physical components in the brain to functional operations
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(Kosslyn 1980). In general, cognitive modeling, and student modeling in
particular, does not go down to this level; though qf course structural model-
ing plays a crucial role in modeling other physical systems, such as an
ic circuit. ‘
ele’lc‘g(l)ar:t(t:er understand these representations of processes, cqn§ider the differ-
ences among a disease description, a network chafacterlzmg ‘ how man-
ifestations are caused by internal states, and an anatomic mode{ of some body
system, characterizing its normal function. Notice how .tl?e inference pro-
cedure for modeling takes different forms as well: recognizing a pattern as
set of features; constructing a partial “historical” af:countmg f.or events (partial
because perhaps only abnormal manifestations will be explained, not normal
functioning of the system); and constructing a complete model of the systc?m
being diagnosed (accounting for both abnormal and normal system behavior
in terms of structural components). . ‘

At this time, researchers are just beginning to ide_nt1fy this spectmm of
qualitative representations for processes (e.g. Szolovits 1985). Theye is no
single program that combines these models to reflect human reasoning in a
robust, well-engineered way. Programs incorporate': a model on one end of the
spectrum or the other. For example, contrast the disease model.s of NEQMY-
CIN, which state causes and effects of abnormal processes, leth the simula-
tion model of QUAL in SOPHIE-III, which descFibes the physw'al structureiof
a system and how the components interact. Multiple repr(?sentatlons, combln-
ing qualitative and quantitative models, are also possible a!nd somlc':tnr'les
advantageous (Brown et al 1982a). Standards for repfe.se.:ntlng qua 1t.at1ve
models to facilitate computation, explanation, and acquisition are still in an
early stage of formalization (de Kleer 1984, Neches et al 1985, Mitchell et al

1985).8

6.7. Classification vs Simulation Models of Bugs

As mentioned in Section 3.5.2, bugs may be preenumerated in a program asa
classification, as in PROUST and WHY, or they may be generated. Th}s
generative process may be a simulation of how the student learned, as in
STEP THEORY, or it may be constructed from the geperal model and
inference procedure, as in PIXIE and ACM.' The bugs might also be con-
structed by composing primitive bugs,7 as in BUGGY. The constructive
is further described in Section 7.
pr(z:ssisnstructional program’s problem-solving model may also take the form
of a classification model, as in FLOW and MENO. These programs cannot
model the programming process; they can only evalugte' the final code,
matching it against patterns. Of course, it is much more difficult to model the
programming process, and we should not expect that the methods that apply
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in subtraction or algebra for representing the inference process and generating
bugs will be adequate in this domain.

Classification models are useful for modeling inference when it is difficult
to otherwise construct an interpretation of what the student is doing from
primitive operators or when primitives might be difficult to define, as in
programming and diagnosis. A compromise approach is to use a simulation
model of the inference process that does not attempt to model human reason-
ing and instead just replicates the planming or “proof” structure of the
situation-specific model, as in PROUST and the MACSYMA ADVISOR. A
classification of frequently occurring bugs can then be used to account for
inability to construct a consistent model, as in PROUST. In PROUST, bugs
are classified abstractly, according to general patterns; for example, there are
general rules for recognizing when goals for filtering data have been com-
bined incorrectly.

It is worth repeating that the general model may be a classification model,
as in NEOMYCIN, even though the inference process is simulated.
Classification is always limited by restricting the situations that can be

adequately modeled, but it may be the only approach possible for some
domains.

6.8. Arguments for Functional Models

As previously stated, it is advantageous for the problem-solving model in an
instructional program to be a functional qualitative model. The alternative
approach is to express all knowledge as domain-specific situation/action
patterns. As for the classification/simulation distinction, the advantages of the
functional approach lie in different aspects of generality:

® Explanation of reasoning:

Because the general model is not composed in situation-action patterns,
it is possible to articulate it and the inference procedure explicitly
(Clancey 1984a). That is, the program can say what is true and what to
do in general, rather than being limited to saying what information to
gather and what conclusions to make (as in GUIDON).

@ Robust engineering:

In a behavioral model, all situations must be specifically anticipated. As
a result, combinatorial problems arise and there is no assurance of
completeness. The possibility of interacting processes (e.g. nested loops
in a program; interacting malfunctions in a circuit) makes it practically
impossible to recognize every problem in terms of previously known
patterns (e.g. program or disease schemas). With the inference pro-
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cedure represented separately, a program can interpret the gcneral model
selectively and have some assurance that model construction goals are

considered and accomplished in general.”

e Modeling misconceptions:
By this separation, it is possible to construct a student mgdel that mz.\kes
the same distinctions. In particular, if one makes certain ass,umptlons
about the inference procedure one can reconstruct the §tudent ] general
model and thus detect gaps and formulate misconcel?tlons. An interac-
tion of misconceptions and procedural differences‘ mlgh.t also be recon-
structed, though the computational problems of doing this have not been

explored.

It is well-established that first-order diagnostic performance 1s 1mproved21Ly
use of a qualitative simulation model (Brown et al 1982a, Gene_ser‘eth 1.98 ;
Davis et al 1982). Just as programs like NEQMYCIN are '11m1ted in no
having a functional model of the body, cognitive dlag‘nos1s systems ?}I,e
limited if they operate upon a behavioral model of reasoning. However3 el
difficulties for cognitive diagnosis are more severe becaus‘e a behav¥ora1
cognitive model typically composes an infcrence procedure w1.th a behav%ora1
general model (refer to Figure 13). For cxample, MYCIN is a behav13ra1d
model of reasoning, with a behavioral model of physical processes embedde

" in it. Both cognitive and physical processes are modeled, but not functionally.

This would be analogous to stating the subtraction model in terms of specﬁl“:c
patterns of numbers—e.g. “If subtracting 9 from 5 and the top ?,olumn tot le
left is a 2, then replace the 2 by 1 and write a 1 next to the‘ 5 The models
of the LISP TUTOR and GEOMETRY TUTOR are similar. A stu@enti
modeling program based on a behavioral model can generate only behﬁvmra

explanations (e.g. “the student wrote down 1 pe?(t m. thc.2 because efwas
subtracting 9 from 5,” etc ); it is unable to d}stmgmsh !a.ctual errorsh r(;)m
inference procedure errors. Even if a behav1oral'cggr.nlwe ‘mOflel 1'1 1a
functional model of the subject system embeddeq within it (which is unli eby
for nonformal domains of any size), the instrucnonal.program'would not :1
able to articulate student errors in terms of systematic crrors in the gener:

m(;l;} 'example, the GEOMETRY tutor cannot detf:ct. if a studen't a%lwa)fs
works backwards for the theorem to be proyed. This inference principle is
implicit in the program’s specific rules for using geometry theorems. Because;
the principle is not independently represente.:d, the program dovssd no
know when it is being applied either by 'fhe'ldea'l model or lh'c stu erlllt.
Also, the program cannot articulate the principle in an explanation to the

student.
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6.9. Overlay vs Bug Models

Typically in the literature one will see a distinction between an overlay model
and a bug model. An overlay model relates student behavior to the internal
problem-solving model; the student model is a subset of the idealized model
("overlay”) and only notes missing or inappropriately used knowledge. In
contmgt. a student model incorporating bugs describes incorrect knowled ‘6 or
reasoning (either by a “generative” construction as in the MACSYMA A]%)VI-
SOR or by a bug library as in WHY).

This dis.tinction is misleading because it suggests that the method of
reconstructing reasoning by overlaying cannot be applied to infer student
btu%u. tl’3y ovzrllaying a functional model, a program can reconstruct the
student's model manipulation subgoal
e o geieral Imde]'g als to detect gaps between what the

For c':xample, a pattern of inference might suggest that the student is tryin
to man.lpulate the model in some way, such as to test a hypothesis. Howeverg
according to the program’s general model, his specific data request might no;
be relevant to the hypothesis he is testing. This inconsistency can be reformu-
lated as facts that the student believes to be true—i.e. misconceptions. This is
how the MACSYMA ADVISOR reconstructs the student’s general‘model
The reasoning of BUGGY is similar when it explains an error in terms of e;
“math table bug” (these are not preenumerated but are inferred from the
‘'gaps” between the reconstructed procedure and the student’s solution). No
similar reconstruction was possible in GUIDON because the cognitive m.odel
was behavioral and did not make a distinction between the domain model and
Inference procedure. The idea that the overlay method has nothing to do with
bugs Probably came about because the first overlay models were either
b‘ehlllsworal (GUIDON) or did not explicitly represent the inference procedure
(B e :1(1)111 2:11;11.\?VEST) so that it could be reasoned about to infer errors in the

There is also a tendency in the community to believe that modeling work in
formal §ystems (subtraction, algebra) is more advanced because it isolates
student inference procedure bugs. On the face of it, it appears inappropriate to
base a student model on an “expert” inference procedure (such as NEOMY-
CIN). .As I have discussed, this analogy fails to distinguish between a
syntactic, algorithmic inference procedure and one that is unformalized and
apparently subconscious, based on processes of memory. Errors in reasonin,
about physical systems seem to be predominantly factual (not “proceduragl
bugs”). Iso?ating misconceptions by reconstruction from the inference pro-
cedufe (as in the MACSYMA ADVISOR) is possible, but it requires sub-
stantial research just to identify what this procedure might be (Johnson &
So{oway 1984, Clancey 1984b). It is not preformalized, as in subtraction, or
easily constructed, as in algebra (Sleeman 1982) or symbolic integratio;l.
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The real work begins in explaining the origin of a misconception in terms of
the background model that supports it (as in WHY) and what inference or
learning process (e.g. false analogy, over-generalization) led to this model
discrepancy (as in PROUST, summarized in Figure 7, or in REPAIR
THEORY). While work in formal systems offers some general mechanisms
for the production of misconceptions, their methods of enumeration
(BUGGY), extraction of syntactic patterns (PIXIE), and generation from
problem-space reduction (ACM) are inadequate. Bugs in BUGGY, ACM, the
MACSYMA ADVISOR, PROUST, PIXIE, etc are either preenumerated or
syntactic variations and combinations of formal operators. Misconceptions
about physical models are unbounded in scope; they cannot be exhaustively
preenumerated or assembled from a fixed set of primitive concepts.

The use of alternative models in teaching and student reasoning, particulat-
ly analogical reasoning, has been of great interest (Gentner & Stevens 1983a,
Stevens & Collins 1978, Bott 1979). In WEST, the inability to consistently
model the student (called cognitive tear), leads the program to try alternative
inference procedures that are based on different strategies for playing the
game (e.g. landing on squares that cause the attractive display to react). In
PROUST, canned remediation text attempts to correct alternative general
models that may have produced the coding error (e.g. confusing READ with a
declaration).

The methods of syntactic variation used in formal systems might be extend-
able to modeling misconceptions about physical processes, not as specific
misconceptions but as patterns in understanding processes in general. This is
similar to the concepts of object primitives (Lehnert 1978) and fault models
(Davis 1983). In general, reconstructive or explanation-based learning is a
rapidly growing area of interest in AI (Kolodner & Simpson 1984, Mitchell et

al 1986).

6.10. Pragmatic Considerations

I have distinguished between different kinds of process models of reasoning:
classification vs simulation, behavioral simulation vs functional simulation,
and different types of functional models (Figure 12). What kind of model is

ifferent domains and how detailed a model must be for explanation

useful in d
example, it may turn out that most

and instruction are independent issues. For
computer programming errors are misconceptions about programming oper-
ators or procedures (“schemas”) for relating operators. The order in which a
student wrote the program may be irrelevant. Or, as assumed by the MACSY-
MA ADVISOR, the order may be the same (and correct) for the vast majority
of students; etrors are in the general model, not how it is used. On the other
hand, information about what the student is trying to do (e.g. what diagnostic
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hypothesis he is trying to confirm) may be useful for providing assistance in
the context of solving a problem.

A complicating factor is that people do not always make conscious de-
cisions about what they are trying to do. Or they may write down a solution
automatically, without having to go through intermediate steps. Thus one
student might be trying to use the fact that “M is a midpoint in segment AB,”
while a second immediately realizes that two triangles are congruent. Prac-
ticed reasoning might even be nondeterministic, consistent with several in-
ference procedure principles, but not causally brought about by any one in
particular (Brown & Newman 1985, Suchman 1985).

Finally, in saying that the function of the cognitive system is model
construction and use, we may find it necessary to explain functional failures
in terms of structural faults in the physical components in the brain (or
computer) itself. However, based pragmatically on the population of students,
cognitive models in today’s instructional programs do not consider structural
faults. Indeed, considering the nature of electronic diagnosis, it is a fascinat-
ing reflection on the nature of the mind that cognitive modeling is so little
concerned with the structural level. References to memory and attention
resources have been the exception (Ohlsson & Langley 1985, VanLehn
1983a).

7. CONSTRUCTING SITUATION-SPECIFIC PROCESS
MODELS

All process modeling involves some kind of reconstruction. The assessments
of student knowledge and reasoning described in Section 4 can be logically
ordered from observations of student behavior to complex constructions of
incorrect reasoning procedures. Here I briefly review how these inferences are
made.

A modeling program generally works backwards from student behavior to
construct a situation-specific model that may include

1. Elements of the program’s domain model evident in student behavior
(e.g. formal operators as in WEST);

2. Unarticulated domain-specific inferences (e.g. as in the hypothesis
evaluation of GUIDON and WHY, and the move interpretation of
WUSOR);

3. Unarticulated domain and inference procedure subgoals (e.g. pro-
gramming intentions in PROUST, diagnostic tasks in IMAGE/
NEOMYCIN, program methods in the LISP TUTOR);

4. Missing or inappropriate inferences and subgoals (e.g. incorrect im-
plementation of programming intentions (deriving from misunderstand-
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ing operators in the programming language), wrong disease hypotheses,
incorrect interpretation of circuit malfunctions, math table bugs, mis-
statements of geometry theorems);

5. Incorrect procedures for accomplishing reasoning subgoals (e.g. in-
correct subtraction subprocedures, inefficient diagnostic reasoning, in- .
effective theorem proving).'®

There is a logical progression here, proceeding from evaluation of actions
to accounting for them in terms of the hypothesized situation-specific model
of the student, current and past domain-specific goals, and inference pro-
cedures for accomplishing goals. Obviously, direct questioning and student-
stated or observed partial solutions are an immediate source of information.
Other assessments are made as follows:

® An idealized executable model (often called the “expert model”) generates
problem-solving behavior that is compared to the student’s behavior.

LIRS

® Differences in action are detected, producing a list of “appropriate,” “omit-
ted,” and “inappropriate” behaviors. Those aspects of the model and
inference procedure (perhaps combined, as in GUIDON, the LISP and
GEOMETRY tutors), used by the expert to derive the “appropriate” and
“omitted” behaviors, are marked as being “used” and “not used” by the
student (Burton & Brown 1979, Goldstein, 1977, Clancey 1979b). This is
called an overlay (Carr & Goldstein 1977) or differential (Burton & Brown
1979) model.

® Applying the accumulation of these markings, the subset of the expert
model that is believed to be known (or typically used) by the student is run
to produce a set of expectations of student actions. Discrepancies between
these expectations and actual student behavior (surprises) drive the in-
structional interaction (e.g. ask the student to explain a surprising correct
problem-solving step).

If the general model and inference procedure are separate, the program can
proceed to explain inappropriate and omitted behavior by several means:
e simulate variations of the inference procedure :

O an alternative (pre-specified) inference procedure, based on different

problem-solving goals (WEST);"!

O switching in alternative buggy subprocedures from a library (BUGGY);

O constructing a procedure from primitive operators by exhaustive search

(LMS) or by discrimination learning (ACM);"?

O syntactic variations, by reordering or deleting subprocedure statements
using a mixture of top-down prediction and bottom-up interpretation
(IMAGE/NEOMYCIN);



436 CLANCEY

O syntactic variations, by hypothesizing operators that bridge the gaps in a
reconstruction |PIXIE (Sleeman 1983, Sleeman 1984b)|.

® simulate variations in the program’s general (domain) model:

O variations of the general model that are simpler or coarser, taken from a
library (WUSOR);

O syntactic variations or transformations of the general model, supported
by a theorem-prover approach for testing equivalence to the ideal model
(Murray 1985);

O inferring general model propositions consistent with the inference pro-
cedure and situation-specific model [MACSYMA ADVISOR (Geneser-
eth 1982a)].

® derivation of the inference procedure in terms of constraints on model
construction and use, to simulate/explain how the student copes with
impasses [inability to accomplish subgoals because of an inadequate do-
main model (missing facts) or missing inference subprocedures (not know-
ing specifically what to do)] (REPAIR THEORY).

Methods for dealing with noise (Burton & Brown 1979), “coercing” partial
matches (Burton 1982), and explaining “migration” of behavior (Brown &
VanLehn 1980) constitute an important subarea of research (Ohlsson &
Langley 1985).

8. CONCLUSIONS

I conclude by recapitulating the main arguments, summarizing the method-
ological lessons and the state of the art, and commenting on trends in the
field.

8.1. Recapitulation

Surveying and evaluating a variety of existing instructional programs, I have
stressed the following points in this review:

o Al programming methodology provides new means to model processes
of physical systems, problem-solving procedures, how learning takes
place, and methods and procedures for communication. In contrast with
traditional CAI programs, these models are executable, so they can be used
to solve the same problems presented to the student. They are also primari-
ly qualitative and describe agents and processes by their causal, spatial, and
temporal interaction. When subject matter is represented in this form, the
internal model is called a "glass box” expert; it can both solve problems and
be described in explanations by the teaching procedures.
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® A general model can be separated from the Inference procedure by
which it is applied to specific problems. This is termed a functional
model, in contrast with a behavioral model, which describes problem-
solving behavior in a situation-specific way. Functional models are repre-
sented in terms of hierarchical composition of functional operators and/or
structural components. Behavioral models are expressed as links between
system states in a causal-associational network.

@ Both behavioral and functional models can be used to simulate physi-
cal and reasoning processes. However, a functional model characterizes
purposes and goals abstracted from particular situations. For example, in a
functional model of reasoning, these purposes are described in terms of
general operators for manipulating a situation-specific model.

® A given functional model can be used in multiple ways. In an in-
structional program, this allows a single encoding of the general model to
be interpreted for evaluating student performance, communicating with
him, and modeling his learning behavior. At the same time, this separation
forces the problem-solving, communication, and learning models to be
represented explicitly, in a well-structured way, enabling the formalized
models to be propetrly communicated and shared in the scientific literature.

® Problem domains differ in terms of the functionality of the system and
the nature of the inference procedure.

© Formal or artifactual domain operators: Is functionality defined, rather
than being inferred from other domain models?

O An algorithmic inference procedure: Is the procedure explicitly taught,
rather than involving predominantly automatic processes of memory and
attention?

O A written calculus: Can the problem-solving steps for constructing a
situation-specific model be written down as a sequence of syntactic
transformations? Or does the procedure involve predominantly mental
operations or partial solution descriptions from multiple perspectives?

Domains cut across these dimensions in different ways. For example,
programming involves formal domain operators, but it has a nonalgorith-
mic inference procedure and an incomplete written calculus. Generaliza-
tion of student modeling methods must take these dimensions into account.
Formal models might be exploited in nonformal domains (e.g. Figure 10)
as a simplification.

In applying modeling methods developed for mathematics to other do-
mains, we face a number of difficulties:

® The functionality of the domain may be indeterminant, so misconceptions
cannot automatically be generated or anticipated.
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® The inference procedure may be heuristic and even unknown by human
teachers; formalizing it explicitly so that it may be reasoned about may be
beyond Al representational capabilities.

® Problem solving may be mostly mental, without a written calculus by
which the student’s situation-specific model may be observed and cri-
tiqued. : :

On the positive side, we have found that it is possible to understand
different domains using common terminology; the ideas of a procedural bug,
domain operator, and inference procedure, among others, carry over for
relating concepts and modeling techniques in different domains.

8.2. Methodology

The research reviewed here has been remarkably successful in uncovering
Interesting representational problems, reconceptualizing Al results (in the
areas of “expert systems,” natural language, learning, knowledge representa-
tion), and formulating new computational methods. It is worthwhile to reflect
on the methodology that has contributed to this progress. A number of
patterns can be discerned:

® By constructing artifacts designed to exhibit intelligent behavior, we are
proceeding experimentally and enhancing our opportunity to learn from
failures. This is an effective heuristic for focusing research and effectively
formulating good theoretical questions, an approach Al shares with tradi-
tional engineering (Petroski 1985).

® By formulating our domain and communication knowledge in programs in
well-structured representations, we are constructing “first-draft” models
that can be studied and reformulated. This idea of using knowledge repre-
sentations to detect patterns, articulate principles, and improve the repre-
sentations has proved extremely powerful (Clancey 1983b). Particularly
when we are trying to model what experts know only tacitly, this provides a
means for abstracting domain-specific statements about “what to do,”
allows us to separately state the general model (what is true about a system
in general) and the inference procedure (how to construct and use a
situation-specific model).

® By constructing complicated programs that must solve problems, learn,
and communicate, we are providing a holistic test for our theories. In order
to construct general programs, we apply our methods in different domains
and to represent different kinds of processes. A systematic set of tech-
niques, including classification and simulation approaches, is used to
qualitatively model processes in- the physical world and in inference,
learning, and communication.
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In summary, our approach is to teuse apart interacting principles of repre-
sentation, inference, modeling, and pedagogy by experimentally constructing
general programs (Clancey 1982a). This Al research is distinguished from
“knowledge engineering” and traditional computer-aided instruction by its use
of programming as a vehicle for moving forward to more abstract (generul)
levels of qualitative model interpretation—in which models of processes are
articulated in terms of interacting causal, spatial, temporal, mathematical, and
social constraints.

8.3. State of the Art

Today’s instructional programs, those that attempt to realize adaptive instruc-
tion in a general way, are among the largest and most complicated computer
programs in the field of artificial intelligence.

Reviewing the requirements for qualitative models of problem-solving
listed in Section 3.4.2:

® Experiments have verified the accuracy of some student models (Brown
1978, VanLehn 1984, Anderson et al 1985); results in the study of mental
models, spawned by this research, have not been generally exploited in the
design of current programs.

® There has been significant progress in explanation of the inference pro-
cedure (in SOPHIE-III, XPLAIN and NEOMYCIN) and minor attempts to
tailor explanations to a listener’s expectations and model (e.g. GUIDON,
XPLAIN, and WUSOR). Results in natural language research far exceed
the capabilities of current instructional programs. However, the generality
of these methods has not been tested on knowledge bases of the complexity
found in instructional programs.

® We have made significant progress modeling learning in formal domainn
[e.g. subtraction (SIERRA), geometry (GEOMETRY TUTOR), and ab-
stract computer programming (Anderson et al 1984a)]. Otherwise, models
of learning go little beyond classification of misconceptions and prerequi-
site ordering.

Some programs have been well-debugged, carefully engineered for casc ol
use, and tested with students (e.g. WEST, SOPHIE-I and II, BUGGY,
REPAIR THEORY). Most programs exist only as experimental prototypes,
perhaps taking years to construct, and are not intended for general use. Given
the methodology outlined above, routine use of a program in a classroom
today is not the only measure of success; designing a new language and
implementing a program and testing it with a small number of cases may
reveal enough deficiencies to keep a researcher busy for several years. Thus,
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there are several stages of model validation: plausibility (can the program
perform at all, established by a small number of cases) and completeness
(does the program explain and cope with real-world behavior, established by a
large number of empirical trials with students).

Regarding progress in explanation and learning, research is slowly pro-
ceeding from simply stating procedures to modeling how they can be con-
structed automatically. It is on this basis that models for learning procedures
will evolve. Today, it is difficult enough to state heuristic inference pro-
cedures in some computational language (Clancey 1984b, Johnson & Solo-
way 1984, Genesereth 1982b). It is no surprise that modeling research has
nssumed that the student has the same inference procedure as the ideal model
or some simple variation of it (composition, deletion, reordering).

Current instructional programs can neither articulate the rationale for ab-
stract procedures (except on an ad hoc basis by canned text) nor understand
the rationale for alternative designs. That is, even the current ideal model in
today's instructional programs contains much implicit information, perhaps
even unarticulated by the researchers themselves (Section 6.3) (Clancey
1984b, Neches et al 1985, Brown et al 1982b).

8.4. Trends

During the past decade, there have been several significant shifts in the field.
First, in the transition from CAI to Al-based systems, emphasis shifted from
constructing a curriculum of exercises (e.g. Barr, 1976) to representing the
knowledge necessary to solve a restricted set of problems. The systems of the
period from 1975 to 1980 were complex, with modeling, explanation, and
problem generation facilities (WEST, SOPHIE-II, WUSOR, GUIDON). The
second shift focused on the modeling of errors (in WHY, BUGGY, MENO)
and their cause (Matz 1981, Brown & VanLehn 1980), and the construction
of better models of knowledge and reasoning (in SOPHIE-III, NEOMYCIN,
PROUST, and STEAMER). Finally, in the 1980s progress in knowledge
representation and the involvement of researchers in cognitive psychology has
brought about a renewed interest in pedagogy (Anderson et al 1984b) and
discourse (Woolf & McDonald 1984).

Research on representation of qualitative models has progressed far enough
to allow attention to return to conmstruction of explanation and teaching
programs. For example, we could exploit what we have learned about
representing processes to decompose communication models in a way that
makes discourse assumptions more explicit. First, improved representation
languages now permit functional representations (as in the shift between
GUIDON and the MENO-TUTOR). Second, there is a synergy between
student modeling and communication modeling research: Better articulated
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student models provide the opportunity for and demand finer-grained state-
ments of what a teaching interaction is supposed to do.

At this point, pragmatic issues may begin to dominate. The programs must
work consistently, students must be motivated to use them, and the interface
must be carefully (and tediously) engineered. Constructing a good graphics
interface may take longer than designing the underlying representation
(Richer & Clancey 1985). For these reasons, it may be another five years
before questions about completeness, usefulness, and reliability of Al-based
instructional programs are even meaningful. Increasingly, there may be a shift
from scientific issues of problem solving and learning to human-engineering
issues. (How many buttons should be on mouse? How large should the screen
be?) Without a convenient interface, the student modeling capability of the
program may be lost. Just the idea of introducing new notations for solving
problems (e.g. Figure 10) poses conceptual difficulties for communicating
with students. For this reason, current research should be viewed as explora-
tory.

It is worth mentioning again that all of the modeling methods in existing
programs can detect non-ideal behavior. The issue is whether they can explain
it. While I have argued that a functional process model has certain advantages
for explanation and modeling, particularly for developing a theory of problem
solving and instruction, it is possible that practical instructional programs can
be constructed that only indicate to a student that his behavior is inappropriate
and state the correct problem-solving step (e.g. “use a CONS here”; “ask
about fever”). Intuitively, some researchers believe that automatically infer-
ring a student’s misconception, especially in physical domains, is more than
good teachers can do (Ohlsson & Langley 1985). In Al, the danger of
expecting programs to do what people cannot generally do is called the
“superhuman human fallacy” (Minsky 1982). Asking the student to explain
what he is doing may be a more practical approach.

While we may find that there are conceptual barriers to accomplishing
some of our goals for adaptive instruction, there is good reason to believe that
useful instructional programs will be produced from this line of research. The
confluence of leamning, memory, and problem-solving research is a most
exciting development; however, its pragmatic and even philosophic effects
are generally yet to be realized in the design of instructional programs. In this
rapidly changing field, there is reason to expect dramatic changes in future
research goals and assumptions, concerning what instructional programs are
in theory capable of doing and what kinds of aids are believed to be worth
constructing (Rouse & Morris 1985).

It is now clear that representation, learning, and discourse, or any subarea
of AI, cannot be studied in isolation. Instructional programs may provide the
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strongest foundation for advances on all fronts, for they are designed on the
very principle of solving problems by multiple models, learning from experi-
ence, and communicating to share problem-solving models. It is this synergy
that may hold the greatest promise for uncovering the nature of intelligence,
perhaps now best defined as the capability to acquire, use, and communicate
qualitative models.

BRIEF GUIDE TO THE LITERATURE

The general reader might start with the chapter on educational applications in
the Handbook of Artificial Intelligence (Clancey 1982b). See Sleeman &
Brown 1982 for a description of more programs in greater detail; this book is
the single most important technical reference in the field. Wenger’s recent
survey (Wenger 1986) provides a good over-all synthesis of the goals and
methods of Al-based instructional programs. Other books, mostly about
Al-based instructional programs, are Gentner & Stevens 1983a, Klahr 1976,
Bobrow & Collins 1975, O’Shea & Self 1983.

Atticles in the Proceedings of Cognitive Science and the Joint Conference
on Artificial Intelligence are short and useful—for example, see Clancey
1979a, Clancey & Letsinger 1984, London & Clancey 1982, Woolf &
McDonald 1984, Johnson & Soloway 1984, Anderson et al 1985. Excellent
articles are published in Cognitive Science—e.g. Sleeman 1984b, Young &
O'Shea 1981, Brown 1978, Brown & VanLehn 1980, Anderson et al 1984a.
Relevant theses include Clancey 1979c, VanLehn 1983b, Johnson 1985, and
de Kleer 1979. The best introduction to functional qualitative models of
physical systems is Bobrow 1984. Three extremely useful surveys of related
cognitive science ideas are Rumelhart & Norman 1983, Greeno & Simon
1984, Rouse & Morris 1985.
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FoorNnoTES

! The term “inference engine” (Davis 1986) often refers to a simple rule interpreter, in which
the “knowledge base” that it interprets is a program that combines the domain model and
inference procedure. This is the relation beween MYCIN's rules and rule interpreter. The trend is
to identify the domain model with the knowledge base and to view the inference procedure as
something much more complicated than a rule interpreter.

> The ABEL program (Patil 1981) attempts to prove the validity of causal associations in
particular cases by using “deeper” or more detailed reasoning to determine resultant effects of
interacting disease processes.

3 Extension of this idea to computer programming poses additional problems. The written
notation (the code) only partially expresses the situation-specific model and omits goal in-
teractions and levels of abstraction (Johnson & Soloway 1984). Moreover, the refinement
operator of the inference procedure for programming tequires a notation for showing composition
and specialization of partial process descriptions. See VanLehn & Brown 1979 and Abelson et al
1985 for examples. See also Rouse & Morris 1985 for a related discussion in terms of “implicit vs
explicit model manipulation” and “behavioral discretion.” My “written notation” and “algorithm-
ic vs heuristic” dimensions are similar but draw the lines more sharply.

“ In contrast with electronic circuit diagnosis, computer system diagnosis includes problems
caused by software and the operating environment.

* See Kosslyn 1980 for a related discussion about levels of scientific explanation.

¢ Nevertheless, the tutor can articulate this process, through the use of ad hoc “planning rules”
that recognize particular situations and offer strategic advice. Thus, the issue is how the model is
expressed in the program—what is separate and explicit—not whether it is present at all.

7 RELATIONS appear in all caps; ground terms—literals—are in lower case; VARIABLES
are preceded by a dollar sign. Translations are in italics.

8 Note that the term “simulation model” might also be applied to a program that is based on a
quantitative general model, such as numeric equations describing a circuit’s behavior. Also, a
classification model might be expressed as a numeric function (Nilsson 1965). Thus the
classification/simulation distinction is orthogonal to the qualitative/quantitative distinction.

9 The problem of generality recurs at this level, of course. This is one reason researchers are
attempting to abstract to the constraints underlying the inference procedure (Section 6.3).

1 An incorrect programming process should not be confused with bugs in computer programs
that follow from misconceptions about program operators. In early work (Miller & Goldstein
1976, Miller 1977), the functionality of the inference procedure is not separated from the
functionality of the computer program. Thus, a hierarchy of “operators” includes both “iterate”
{what the program does) and “decompose™ (what the programmer does in writing the program, a
model-manipulation operator).
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' More precisely, in WEST the spinners constitute a subsystem whose desired behavior is
determined by the desired behavior the student ascribes to the game board (e.g. bumping his
opponent). This “external constraint” is analogous to the social interaction constraints of di-
agnosis. Thus, when we refer to the student’s strategy in WEST we should distinguish between
the interacting constraints of the spinner and board systems and the inference procedure the player
applies to satisfy these constraints. Generalizing WEST or building upon its general design would
require careful articulation of the concept of “strategy” along these lines.

! Here it is important not to confuse diagnostic modeling— inferring the student’s procedure
from a trace of his solutions, as in LMS and ACM—with modeling the human learning process.
The former is concerned with completeness, efficiency, and generality (domain-independence);
the latter with producing an explanatory accounting in terms of psychological assumptions and
the instructional sequence. The ACT* and SIERRA models are attempts to satisfy both goals (see

discussion in Langley et al 1984).
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