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Abstract 

This paper describes the student modeler of the GUlDON2 tutor, 

which understands plans by a dual search strategy. It first produces 

mulriplc predictions of student behavior by a model-driven simulation 

of the cxpcrt. Focused, data-driven searches then explain 

incongruities. By supplcmcnting each other, thcsc methods lead to an 

efficient and robust plan undcrstandcr for a complex domain. 

1. Basic problem: Modeling strategic problem 
solving 

Diagnostic problem-solving requires domain knowledge and a 

plan for applying that kriowledge to the problem. A hypothcsis- 

dircctcd diagnostic plan is a rationale for focusing on diagnoses 

(partial solutions) and for gathering data to solve the problem. ‘I’hc 

plan is thus a strategy for sclccting and ordering the application of 
domain knowledge. 

Teaching diagnosis invol*;cs recognizing the intent behind a 
stuclcr!t’s behavior, so that missing knowledge can bc distinguished 

from inappropriate strategies. ‘I’he teacher inferprefs behavior, 
cri!iqztcs it, and provides advice about other Llpproachcs. To do this 

successfully and cfficicncly in a complex domain, the tcachcr benefits 
from mltltiplc, complcmcntary modcling strategies. 

GUIDON2 is a tutoring program that uses the cast m&hod A top-down, model-driven search works well in an arc‘1 where 

approach to teach medical diagnosis [5]. The system divides this task the number of plausible solutions is sm:lll, and the cost of computing 

among three components: an “expert.” a student modeler, and an them is m,ln;~gcablc. In the si’ADt:-O advisor for designing simple 

instructional manager (see Figure l-l). Its expel t component, programs [!I], Miller could USC a nal.rvw-branching, context-free 

NI:OMYCIN 141, scparatcly and explicitly rcprcscnts knowledge about “problem-solbing grammar” to recognize next steps. Medical 

the medical domain and the rjotnnin-intiel,etrdf?tIl strategies of diagnosis dots not gcncrally fit this rcquircmmt. ‘L’racking down a 

diagnostis. The student modclcr, a subprogram called I.UAGI:, single solution can be very cxpclGvc, and many possible answers may 

intcrprcts the student’s behavior by using KliOMYCIN’s knowlcdgc, exist. Howc\cr. if the model of expcrtisc offers a way to rank-order 

cvaluatcs the student’s skill, and produces alternatives. The strategic decisions, then it cm bc used by a top-down search to suggest 

instructional module of GUIDON2 will then apply discourse and some range of solutions. Problems include: how to apply the model, 

teaching strategies in deciding whcthcr to interrogate or advise the how far to go in tracing a possible answer, and how many such 

student. soiutions to gcncratc. 
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I:igurc I-f: Components of the GUIDON2 teaching system 

A model of student strategies in medical diagnosis must 
disambiguatc the possible purposes and knowlcdgc underlying the 

student’s actions. ‘L’hc approaches followed by other plan rccognizcrs 

and student modclcrs arc not sufficient here because: 

1. the complex domain makes thorough szarchcs impractical, 
whcthcr top-down or bottom-up; 

2. WC arc not modeling only facrs and lulcs t~scd in isolation. 
but also the proccdurcs for applying them; 

3. every one of the student’s actions must bc monitored in 

case the tcnching module dccidcs to interrupt; 
4. his behavior must be evaluated and not just explained; and 

5. wc might not hove any explicit goal sLtcrrt2nts from the 

student, so WC cxpcct to rely only on his queries for 

problcln data as evidcncc for his thinking. 
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A bottom-up, data-driven search is best in domains where it is 
easy to recognize the reasons underlying a solution. Hut in medical 

diagnosis, an “upward” search often lends to cxcessivc combinatorics. 
If the student asks how long the patient’s headache has lasted, 

NEOMYCIN links could show that he is testing a hypothesis of viral or 

bacterial meningitis, or hemorrhage, hcmatoma, migraine, etc. Or his 

diagnosis might bc more inclusive (meningitis or vascular disorders in 

gcnernl). He might not bc tcscing any specific diagnoses, but routinely 

following up rcccnt data, or exploring for new hypothcscs. Even if his 

focus can be spccificd, WC would still have to surmise his overall 

purposes by searching for patterns in his previous actions: we must 

account for his platmhg -- not only his knowledge -- if WC arc going to 
teach proccdurcs of diagnosis. 

Other student modelers and plan rccognizcrs have offered useful 

tools and have also shown why particular features prcvcnt their direct 

application for teaching stratcgics of medical diagnosis. If a student 

modeler is infrequently invoked (say when the user explicitly asks for 

help) then a thorough multi-technique, multi-pass search is practical. 
Gencscrcth’s XLACSYVA advisor [6] takes this approach; it also has the 

uscfs explicit statt’mcnt of his goal as a guide in the starch. The 

BELIFWII program [lOI predicts the subject’s current plan and updates 

the plan’s details after observations, but does not judge the 

appropriatcncss of his behavior. Its single predicted plan, plus data- 
driven completion of details and repairs, is appropriate in its domain 

of common-sense actions where there arc few probabls interpretations 

of any given action; since the prcdictcd plan is unlikely to bc far off, 
the need for repairs is relatively minor. Another ICAI program, 

BUGGY [l], succeeds in a forward, data-driven search of a “procedural 
net” bccausc the domain (children’s subtraction) was complctcly 

dcscribcd by about 200 rules. The student’s skills could thus be 
m:,ppcd or “overlayed” onto the procedural net. Goldstein and Carr’s 

WU;\iPUS coach 12, 71, and the student modclcr for the first version of 
GUilX>N [IS], also "overlay" estimates of the student’s performance 

onto semi-indcpcndcnt rules of problem knowlcdgc, in ii primarily 

data-driven way. 

The IXIAGE student modclcr uscs two SCpi\ratC but 

complcmcntary apporaches to infer and cvnluatc the student’s plan, 

under our rcquircmcnts as listed above. It first forms a model-driven 

range of pwlic~iotzs, then data-driven descrip/iotzs about the student’s 

behavior. (IMAGE also takes two firrthcr steps: describing the 

student’s lcvcl of domain knowledge, and evaluating the success of the 

student model itself; these are discussed clscwhcrc [S].) 

Figure 1-2: Phases of the modeler 

2. Understanding strategies: An example 

In a test case, the tutor presented a patient who complained of 

headaches. vomiting, and bouts of irrationality and apathy. The 
student then asked several questions about the patient’s h&ache, and 

whether hc had been irritable or dcprcsscd (both negative). At this 

point IMAGE, using NEOMYCIN’S knowledge, infers that the student’s 

active hypothcscs arc brain pressure and tension headache; and that 

his current task (purpose) is trying to set up a group of hypotheses to 
consider. (Rcfcr to Figure 2-2 for IMAGI~‘S resolution of these actions 

into a global plan.) 

Since IMAGE bclievcs the student is not yet focusing on any one 

diagnosis, it predicts that he will continue to ask questions which 
follow up previous data, rather than focus on hypotheses. (We will see 

below how the predictions arc gcncrated.) At this point, the data 

cxpcctancies are: 

Stiff neck; Fcvcr: Prccipitnting factors of hcadachcs; Abruptness of 
hcadachc onset; Apathetic; Confused; Amnesiac: Dysphasic; 

Aphasic 

‘I’hcse rcprcscnt the choices NEOMYCIN would favor, in the 

partial order given. However, the student’s next query is: “Does the 

patient show focal neurological signs?“‘ This dots not match tile 

expectancies: the model-driven phase has not cxplaincd the student’s 

thinking here. So IMAGE begins r? rule-based, bo~otn-up search 

strafcgl? to understand his behavior. One focused starch is guided by 

the rule shown in Figure 2-l. This search succeeds in finding a new 

diagnosis (brain mass-lesion) which is a refinement of an active 

hypothesis (brain pressure) and is also related to the query (focal 

signs). Thus IMAGE assmiles the student is “refining” (specifying) his 
diagnosis. 

Rule-20: Refined hypothesis 
IF some untested hypotheses that are closely relevant 

to student's data query are related as causal or 
"taxonomic" descendents of any members of his 
set of active hypotheses, 

THEN assume he is "Refining" an active hypothesis: 
if it can be pinpointed to one hypothesis, then 
consider "refining" that node in the student-model 

___-_________-___-__------- 

Figure 2-l: Example of a rule for Descriptive phase 

Explaining the student’s action leads to updating the student 

model in several ways. Since he seems to be .tcsting a diagnosis, 
Ihl.\GE infers that the student is no 1onge.r gathering initial data 

(“Identify-problem” node in Figue 2-2): now hc is trying to focus on a 
few diagnoses (“Establish-hypothesis-space” node). (Further 

modcling hcrc includes “overlaying” domain knowledge, and student 

evaluation [8].) 



IMAGE now predicts the student’s behavior by a model-driven 

generalion of tnulliple expectalions, since the student has entered a 

new stage in his problem solving. I3y simulating NFOMYCIN, IMAGE 

finds that the expert model’s prcfcrrcd plan would bc to pursue the 

current focus (brain prcssurc). Its sccoudary choice is to pursue the 

other active hypothesis. Thcsc preferred plans lcad to the following 
data cxpcctancics (in order of cvidcntial strength): 

For hypothesis br:un pressure: Papillcdcma; Enlarged head; 

Diplopia; Seizures 

For hypothesis tension hcadachc: Headaches sensitive to emotional 
disturbances; Headache pressure; Headache throbbing?; 

Fever (disconfirmatory) 

As it turns out, the student asks whcthcr the patient has a fever. 
IMAGE confirms its prediction: it believes that one part of the 

student’s plan is to test (by mildly disconfirming ebidcnce) the 

diagnosis of tension headache. The top-down prediction products an 

immediate, likely explanation. (This step is incorporated into the 
global plan as the “Test-hypothesis” node in Figure 2-2. It would 

have been very difficult to pin down the student’s thinking with a 

bottom-up search starting with “fever” bccausc of the multiple 

purposes such a datum could serve.) 
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Figure 2-2: 10 explanations rcsolvcd into a global student plan 
(Boldface nodes are tasks invoked by M:OXlYCIN mcta-rules; 

small capitals &note active hypothcscs; numbers are 
followed by student’s data query; remaining terms 

refer to kinds of stratcgics and contexts) 

3. Prediction and description: Discussion 

IMAGE’s predictions arc termed “prcscriptivc” bccausc they 

rcprcscnt the range of plans that the student should bc doing, because 

they arc what the NEOMYCIN expert would do. They pin down the 

most likely possibilities of student behavior immediately. If the 

student’s actions violate the predictions, then slower data-driven 
processing is required to explain the data. But when the observations 

match the predictions, student behavior is,quickly cxplaincd. 

IMAGE generates its predictions by simulalirlg the cxpcrt at key 

points: applying the domain-intlcpcndcnt tasks and strategic mcta- 
rules to the infcrrcd context of student thinking. I-lo\ccvcr, it makes 

several adjustments to increase (1) likelihood of st;cccssful ~cogrririo,~ 
and evaluatiotz of student behavior, (2) depth of riefrd, and (3) 

computational eJficio~-~~. Also, WC want (4) a robots/ model: it should 
perform reasonably well cvcn if the student acts in unusual ways, and 

it should bc able to recover from its own errors. (SW [Sj for discussion 

of latter two issues.) 

To gain the most bcncfit from its predictions in tcnns of 

ur!dcrsratlding and evafualitlg student behavior, I.MAGI: generates 

niultiplc c:rpectations. It does not stop at ihe first action that 
NEOhiYCIS would take; it finds both the set of near-cquivalcnt favorite 

actions and a range of secondary alternatives. ‘1 his increases the 

challcc of nlatching the student’s obscrvcd action, and provides a 

spectrum of behaviors against which his behavior can bc judged. 

Of what value to the teaching module is a confirm~cl prediction? 

MAGI: has not simply gcncratcd data cxpxtancics in each prediction, 

but has kept a tract of the strategies and domain rules used in the 
simulation of hl~O\IYCIK along the way. I:or cxaniplc, the prediction 

lending to the cxpcctcd query of “fcvcr” also records the following: 

Task: Test the focused hypothesis 

Strategy: Stl,atcgy-rulcCO3: If “triggci” and “enabling” data has 

already been tried, then consider any other cvidcnce 

available. 

Focus: Tension hcadachc 

Domain rule: Rule156: if patient has a fcvcr, then his hc&che is 

not a tension-hcadachc [.2 bcliofl 

This information about the studcut’s behavior is passed to the 

instructional cxccutive, along wilh arzalugo~~s i:ljb-mafiotl rtboul Ihe 

o/her yredicliot1s, many of which could bc judgctl mure appropriate at 

the moment. ‘I’he gcncration of multiple prctlictions, with their traces 

of strategical decisions, thus add a uorma~ive clcmcnt to the 
understanding of student plans. Since WC can often identify one 

strategical choice as prcfcrablc to another, wc can group behavioral 
predictions by their desirability. This provides a ready basis for 
advising the student. 
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Recall the cxamplc in Section 2: the student apparently 

considered brain pressure in his first query, then moved to a new 

hypothesis. IMACX’S predictions show that the expert would have 

continued to pursue the more likely hypothesis of brain prcssurc; and 

if it did pursue tension headache, stronger cvidcnce could have been 

chosen (such as the role of emotional factors). The teaching module 
could use one of these altcrnativcs as a basis fdr advising or testing. 

The rule-b‘jqcd, bottom-up searches are a valuable complement 

to the top-down predictive phase. Rut they have a disadvantage: since 

the bottom-up scarchcs are only practical under tightly focusing 

heuristics, WC cannot get alternative answers. So they give no ready 

basis for comparison of possibilities, as do the top-down predictions. 

The only way to evaluate the appropriateness of our bottom-up 

explanation is by incorporating explicit "buggy" links [l, 111. Buggy 

rules have not yet been added to the h’l;ol\~~C~iv cxpcrt model. 

4. Ccnclusion and current status 

Preliminary tests of the IMACX student rnodclcr have indicated 

that the complementary search strntcgics of model-driven predictions 

and data-driven descriptions yield highly plausible analyses of 

students’ strategical behavior. The eflciency, detail, and robuslness of 

the modeling have also satisfied initial demands. Even with occasional 

unusual queries, IMAW almost ncvcr yields implausible explanations: 

this is because the (1) bottom-up scar&es arc highly focused, and (2) if 

an explanation is not confidently believed, only partial results are 

saved in order to help disambiguatc the next observation. WC are now 

arranging to run controlled exp&imcnts with medical students and 
experts, in which we will test built-in methods of localizing 
inconsistcncics to either the student, the student model, or the cxpcrt 

model [8]. 

A few plan understanding programs include a predictive phase 

(such as 13EI.II:vr~l~, for common-sense plans [lo]). Very few plan 

understanders generate multiple prcdictians; for many applications 
this would be inefficient. Multiple predictions arc useful in domains 

whcrc (1) cithcr the number and cost of likely solution paths (from 

high-lcvcl stra:cgies down to result) are not very large, or else the 

paths can be ranked by appropriateness (so that generation of 

predictions can bc sclcctivc), and (2) recognizing solution paths by 
observing final data is often combinatoriaily impractical. Medical 

diagnosis fits this description. ljottom-up searches are not ruled out; 

in fact, they complcmcnt the model-driven predictions by often 

cxplnining observations that violate cxpcctations. 

WC have shown how the multiple prediction strategy can aid plan 

recognition for teaching medical diagnosis in several ways: depth of 

&fai in plan recognition; student evcllunfion (using ranked groups of 

“prcscribcd” behaviors as a stand‘lrd); and complctc alternatives ready 

to st’rvc as &ice or as a basis for /es(ing the student. With the 

student’s behavior cxplaincd as strengths and wcakncsscs in problcm- 
solving s/rtrfcgy (ordered tasks and methods, hypothesis management 

and focus) as well as in domain-specific kno&~l,ne (hypotheses, rules, 

and relations), the tutor is then in a position to pinpoint its instruction 

to the areas in most need of attention. 
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