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Abstract

‘This paper describes the student modeler of the GUIDON2 tutor,
which understands plans by a dual scarch strategy. It first produces
multiple predictions of student behavior by a modcl-driven simulation
of the expert. Focused, data-driven scarches then explain
incongruitics. By supplementing each other, these methods lead to an

efficient and robust plan understander for a complex domain.

1. Basic problem: Modeling strategic problem
solving

Diagnostic problem-solving requires domain knowledge and a
plan for applying that knowledge to the problem. A hypothesis-
dirccted diagnostic plan is a rationale for focusing on diagnoses
(partial solutions) and for gathering data to solve the problem. The
plan is thus a strategy for sclecting and ordering the application of
domain knowledge.

Teaching diagnosis involves rccognizing the intent behind a
student’s behavior, so that missing knowledge can be distinguished
from inappropriate strategies. ‘'he teacher interprets behavior,
critiques it, and provides advice about other approaches. To do this
successfully and cfficiently in a complex domain, the teacher benefits

from multiple, complementary modeling strategies.

GUIDON? is a tutoring program that uses thc case mcthod
approach to tcach medical diagnosis [S]. The systern divides this task
among thrce components: an “expert,” a student modeler, and an
instructional manager (sce Figure 1-1). Its expert component,
NEOMYCIN [4], separately and explicitly represents knowledge about
the medical domain and the domain-independent strategics of
diagnostis.  The student modeler, a subprogram called IMAGE,
interprets the student’s behavior by using NEOMYCIN's knowledge,
The
instructional module of GUIDON2 will then apply discourse and

evaluates the student’s skill, and produces alternatives.

teaching strategies in deciding whether to interrogate or advise the
student.
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Figure 1-1: Components of the GUIDON2 teaching systcm

A model of student strategies in medical diagnosis must
disambiguate the possible purposes and knowledge underlying the
student’s actions. The approaches followed by other plan recognizers

and student modelers are not sufficient here because:

—

. the complex domain makes thorough scarches impractical,

whether top-down or bottom-up;

I

we are not modceling only facts and rules used in isolation,
but also the procedures for applying them;
3. every onc of the student’s actions must be monitored in

casc the teaching module decides to inteirupt;

Ea

his behavior must be evaluated and not just explained; and

o

we might not have any cxplicit goal statereents from the
student, so we cxpect to rely only on his queries for

problern data as evidence for his thinking.

A top-down, model-diiven scarch works well in an arca where
the number of plausible solutions is small, and the cost of computing
them is manageable. In the SPAbE-0 advisor for designing simple
programs [9], Miller could usc a narrow-branching, context-free
Mecdical

diagnosis docs not generally fit this requircment. ‘l'vacking down a

"problem-solving grammar” to recognize next steps.
single solution can be very expensive, and many possible answers may
exist. However, if the model ol expertise offers a way to rank-order
strategic decisions, then it can be used by a top-down scarch to suggest
sotne range of solutions. Problems include: how to apply the model,
how far to go in tracing a possible answer, and how many such

soiutions to generate.



A bottom-up, data-driven search is best in domains where it is
casy to recognize the reasons underlying a solution. But in medical
diagnosis, an "upward" scarch often leads to excessive combinatorics.
If the student asks how long the patient’s headache has lasted,
NEOMYCIN links could show that he is testing a hypothesis of viral or
bacterial meningitis, or hemorrhage, hematoma, migraine, cte. Or his
diagnosis might be more inclusive (meningitis or vascular disorders in
general). He might not be testing any specific diagnoses, but routinely
following up recent data, or exploring for new hypotheses. Even if his
focus can be specified, we would still have to surmise his overall
purposes by searching for patterns in his previous actions: we must
account for his planning -- not only his knowledge -- if we arc going to
teach procedurces of diagnosis.

Other student modelers and plan recognizers have offered uscful
tools and have also shown why particular features prevent their direct
application for tcaching strategics of medical diagnosis. If a student
modeler is infrequently invoked (say when the user explicitly asks for
help) then a thorough multi-technique, multi-pass search is practical.
Genesereth’s MACSYMA advisor [6] takes this approach; it also has the
uscr's explicit statement of his goal as a guide in the scarch. The
BELIEVER program [10] predicts the subject’s current plan and updates
the plan’s details after observations, but does not judge the
appropriateness of his behavior. Its single predicted plan, plus data-
driven completion of details and repairs, is appropriate in its domain
of common-sense actions where there are few probable interpretations
of any given action; since the predicted plan is unlikely to be far off,
the need for repairs is relatively minor.  Another ICAIL program,
RUGGY [1}, succeeds in a forward, data-driven search of a "procedural
net” because the domain (children’s subtraction) was completely
described by about 200 rules. The student’s skills could thus be
mapped or "overlayed” onto the procedural net. Goldstein and Carr’s
WUMPUS coach [2, 7], and the student modcler for the first version of
GUIDON [3]. also "overlay™ estimates of the student’s performance
onto semi-independent rules of problem knowledge, in a primarily

data-driven way.

The modeler uscs  two

complementary apporaches to infer and cvaluate the student's plan,

IMAGE  student separate  but
under our requirements as listed above. It first forms a model-driven
range of predictions, then data-driven descriptions about the student’s
behavior.  (IMAGE also takes two further steps: describing the
student’s level of domain knowledge, and evaluating the success of the

student model itself: these are discussed clsewhere [8].)

PRESCRIBE: Observe DESCRIBE: EVALUATE:
Simulation || student [, Match Score
Multiple predictions| action Search Debug
Data expectancies Overlay Repair

[ T

Figure 1-2: Phascs of the modcler
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2. Understanding strategies: An example

In a test case, the tutor presented a patient who complained of
The
student then asked several questions about the patient’s headache, and

hcadaches, vomiting, and bouts of irrationality and apathy.

whether he had been irritable or depressed (both negative). At this
point IMAGE, using NEOMYCIN’s knowledge, infers that the student’s
active hypotheses arc brain pressure and tension headache; and that
his current task (purpose) is trying to set up a group of hypotheses to
consider. (Refer to Figure 2-2 for IMAGE's resolution of these actions

Since IMAGE believes the student is not yet focusing cn any one
diagnosis, it predicts that he will continue to ask questions which
follow up previous data, rather than focus on hypotheses. (We will sce
below how the predictions are generated.) At this point, the data
expectancies are:

Stiff neck; Fever; Precipitating factors of headaches; Abruptness of
headache onset; Apathetic; Confused; Amnesiac; Dysphasic;
Aphasic

These represent the choices NEOMYCIN would favor, in the
partial order given. However, the student’s next query is: "Does the
paticut show focal ncurblugical signs?”  This docs not match the
expectancies: the model-driven phase has not cxplained the student’s
thinking here.  So IMAGE begins a rule-based, bottom-up search
strategy to understand his behavior. One focused scarch is guided by
the rule shown in Figdre 2-1. This scarch succeeds in finding a new
diagnosis (brain mass-lesion) which is a refinement of an active
hypothesis (brain pressure) and is also related to the query (focal
signs). Thus IMAGE assumes the student is "refining” (specifying) his
diagnosis.

Rule-20: Refined hypothesis

IF some untested hypotheses that are closely relevant
to student's data query are related as causal or
"taxonomic" descendents of any members of his
set of active hypotheses,

THEN assume he is "Refining" an active hypothesis;
if it can be pinpointed to one hypothesis, then
consider "refining" that node in the student-model

Figure 2-1: Example of a rule for Descriptive phase

Explaining the student’s action leads to updating the student
modcl in several ways. Since he scems to be testing a diagnosis,
IMAGE infers that the student is no longer gathering initial data
("Identify-problem" node in Figue 2-2); now he is trying to focus on a
(Further

modeling here includes "overlaying” domain knowledge, and student

few diagnoses ("Fstablish-hypothesis-space” node).

evaluation [8].)



IMAGE now predicts the student’s behavior by a model-driven
generation of multiple expectations, since the student has entered a
new stage in his problem solving. By simulating NFOMYCIN, IMAGE
finds that the expert model’s preferred plan would be to pursuc the
current focus (brain pressure). Its sccondary choice is to pursuc the
other active hypothesis. These preferred plans lead to the following
data expectancies (in order of cvidential strength):

For hypothesis brain pressure:  Papilledema; Enlarged head;
Diplopia; Seizures

For hypothesis tension headache: Hcadaches sensitive 1o emotional
disturbances; Headache pressure; Headache throbbing?;
Fever (disconfirmatory)

As it turns out, the student asks whether the patient has a fever.
IMAGE confirms its prediction: it believes that one part of the
student’s plan is to test (by mildly disconfirming evidence) the
diagnosis of tension headache. The top-down prediction produces an
(This step is incorporated into the
It would
have been very difficult to pin down the student’s thinking with a

bottom-up scarch starting with “fever” because of the multiple

imrnediate, likely explanation.
global plan as the "Test-hypothesis” node in Figure 2-2.

purposcs such a datum could serve.)
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Figure 2-2: 10 explanations resolved into a global student plan
(Boldfacc nodes are tasks invoked by NEOMYCIN meta-rules;
small capitals denote active hypotheses; numbers are
followed by student’s data query; remaining terms
refer to kinds of strategics and contexts)
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3. Prediction and description: Discussion

IMAGE’s predictions are termed “prescriptive” because they
represent the range of plans that the student showld be doing, because
they arc what the NEOMYCIN expert would do. They pin down the
If the
student’s actions violate the predictions, then slower data-driven

most likely possibilities of student bchavior immediately.

processing is required to cxplain the data. But when the observations
match the predictions, student behavior is-quickly explained.

IMAGIE generates its predictions by simulating the cxpert at key
points: applying the domain-independent tasks and strategic meta-
rules to the inferred context of student thinking. However, it makes
several adjustments to increase (1) likelihood of successful recognition
and evaluation of student behavior, (2) depth of detail, and (3)
computational efficiency. Also, we want (4) a robust model: it should
perform reasonably well even if the student acts in unusual ways, and
it should be able to recover from its own crrors. (Sce [8] for discussion

of latter two issues.)

To gain the most benefit from its predictions in terms of
understanding and evaluating student behavior, IMAGE generates
multiple expectations. It does not stop at ihe first action that
NEOMYCIN would take; it finds both the sct of ncar-equivalent favorite
actions and a range of sccondary alternatives. This increases the
chance of matching the student’s observed action, and provides a

spectrum of behaviors against which his behavior can be judged.

Of what value to the teaching module is a confirmed prediction?
IMAGE has not simply generated data expectancics in cach prediction,
but has kept a tracc of the strategics and domain rules used in the
simulation of NFOMYCIN along the way. ['or example, the prediction
leading to the expected query of "fever" also records the following:

Task: Test the focused hypothcsis

Strategy: Suategy-rule003: If "trigger™ and "enabling” data has
alrcady been tried, then consider any other cvidence
available.

Focus: Tension headache

Domain rule:  RulelS56: if patient has a fever, then his headache is

not a tension-headache [.2 belicf]

This information about the student’s behavior is passed to the
instructional cxecutive, along with analogous information about the
other predictions, many of which could be judged more appropriate at
the moment. The generation of mualtiple predictions, with their traces
of strategical decisions, thus add a normative clement to the
understanding of student plans. Since we can often identify one
strategical choice as preferable to another, we can group behavioral
predictions by their desirability. This provides a rcady basis for

advising the student.



Recall the example in Section 2: the student apparently
considered brain pressure in his first query, then moved to a ncw
hypothesis. IMAGE’s predictions show that the expert would have
continucd to pursuc Lhcb more likely hypothesis of brain pressure; and
if it did pursue tension headache, stronger evidence could have been
chosen (such as the role of emotional factors). The teaching module
could usc onc of tirese alternatives as a basis for advising or testing.

The rule-based, bottom-up searches are a valuable complement
to the top-down predictive phase. But they have a disadvantage: since
the bottom-up scarches are only practical under tightly focusing
heuristics, we cannot get alternative answers. So they give no ready
basis for comparison-of possibilitics, as do the top-down predictions.
The only way to cvaluate the appropriateness of our bottom-up
explanation is by incorporating cxplicit "buggy” links {1, 11]. Buggy
rules have not yet been added to the NEOMYCIN expert model.

4. Cenclusion and current status

Preliminary tests of the IMAGE student modeler have indicated
that the complementary scarch strategics of model-driven predictions
and data-driven descriptions vicld highly plausible analyses of
students’ strategical behavior. The efficiency, detail, and robustness of
the modcling have also satisficd initial demands. Even with occasional
unusual queries, IMAGE almost never yields implausible explanations:
this is because the (1) bottom-up searches are highly focused, and (2) if
an cxplanation is not confidently believed, only partial results are
saved in order to help disambiguate the next observation. We are now
arranging to run controlled experiments with medical students and
experts, in which we will test built-in methods of localizing
inconsistencics to either the student, the student modcl, or the expert
model [8].

A few plan understanding programs include a predictive phase
(such as BELIEVER, for common-sense plans [10]). Very few plan
understanders generate multiple predictions; for many applications
this would be inefficient. Multiple predictions are -useful in domains
where (1) cither the number and cost of likely solution paths (from
bigh-level strategies down to result) are not very large, or else the
paths can be ranked by appropriateness (so that gencration of
predictions can be sclective), and (2) rccognizing solution paths by
Medical
diagnosis fits this description. Bottom-up searches are not ruled out;

observing final data is often combinatoriaily impractical.

in fact, they complement the model-driven predictions by often

explaining obscrvations that violate cxpectations.

We have shown how the multiple prediction strategy can aid plan
recoghition for teaching medical diagnosis in several ways: depth of
detail in plan recognition; student evaluation (using ranked groups of
"prescribed” behaviors as a standard); and complete alternatives ready

to serve as advice or as a basis for festing the student. With the
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student’s behavior explained as strengths and weaknesses in problem-
solving strategy (ordered tasks and methods, hypothesis management
and focus) as well as in domain-specific knowledge (hypotheses, rulcs,
and relations), the tutor is then in a position to pinpoint its instruction
to the arcas in most need of attention.
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