
Artificial Intelligence 53 (1992) 1-115 1
Elsevier

Model construction operators

W i l l i a m J. C l a n c e y

Institute for Research on Learning, 2550 Hanover Street, Palo Alto, CA 94304, USA

Received February 1990
Revised October 1990

Abstract

Clancey, W.J., Model construction operators, Artificial Intelligence 53 (1992) 1-115.

Expert systems can be viewed as programs that construct a model of some system in the
world so that it can be assembled, repaired, controlled, etc. In contrast with most
conventional computer programs, these models represent processes and structures by
relational networks. Control knowledge for constructing such a model can be described as
operators that construct a graph linking processes and structures causally, temporally,
spatially, by subtype, etc. From this perspective, we find that the terminology of blackboard
expert systems is not specific to a particular set of programs, but is rather a valuable
perspective for understanding what every expert system is doing.

This paper reviews different ways of describing expert system reasoning, emphasizing the
use of simple logic, set, and graph notations for making dimensional analyses of modeling
languages and inference methods. The practical question is, how can we systematically
develop knowledge acquisition tools that capture general knowledge about types of domains
and modeling methods? Examples of modeling operators from ABEL, CADUCEUS,
NEOMYCIN, HASP, and ACCORD demonstrate how diverse expert system approaches
can be explained and integrated by the model construction perspective. Reworked examples
from TEIRESIAS, XPLAIN, and KNACK illustrate how to write metarules without using
domain-specific terms, thus making explicit their model construction nature. Generalizing
from these observations, we combine the system-model and operator viewpoints to describe
the representation of processes in AI programs in terms of three nested levels of domain,
inference, and communication modeling. This synthesis reveals how the use of relational
networks in computer programs has evolved from programmer descriptions of computation-
al processes (such as flowcharts and dataflow diagrams) to network representations that are
constructed and manipulated by the programs themselves.

I. Introduction

How can we systematically develop knowledge acquisition tools that capture
general knowledge about types of domains and problem solving methods?
Generalizing from existing programs, we seek dimensions for describing types
of expert systems [15, 24, 63]. One useful approach is to view expert systems as
programs that construct a model of some system in the world so that it can be
assembled, repaired, controlled, etc. In contrast with most conventional com-
puter programs, these models represent processes and structures by relational

0004-3702/92/$05.00 © 1992--Elsevier Science Publishers B.V. All rights reserved

2 W.J. Clanc O,

networks. Control knowledge for constructing relational models can be de-
scribed as operators that construct a graph linking processes and structures
causally, temporally, spatially, by subtype, etc. Adopting this perspective, this
paper synthesizes different ways of describing expert system reasoning, em-
phasizing the use of simple logic, set, and graph notations for making dimen-
sional analyses of modeling languages and inference methods.

This study reveals that the familiar distinction between "shallow" and
"deep" reasoning is too simplistic [42, 50]. We observe that all expert systems
are "model-based", and proceed to distinguish between classification models
and simulation models of processes. For the purpose of designing knowledge
acquisition tools, expert systems are fruitfully described in terms of how
relational networks are used for modeling processes. We ask: What system is
being modeled, for what purpose? Do network nodes represent internal states,
structures, functions, or processes? Does the program have predefined descrip-
tions of entire system models? Does it reason about process interactions on
multiple levels of detail? Can it assemble structural and process components
into new system models? Strikingly, this model construction perspective reveals
that the idea of a "blackboard" is not specific to a particular set of programs,
but is rather a valuable perspective for understanding what every expert system
is doing.

Generalizing from these observations, we combine the system-model and
operator viewpoints to describe the representation of processes in AI programs
in terms of three nested levels of domain, inference, and communication
modeling. This synthesis reveals how the use of relational networks in compu-
ter programs has evolved from programmer descriptions of computational
processes (such as flowcharts and dataflow diagrams) to network representa-
tions that are constructed and manipulated by the programs themselves. I
conclude that qualitative process modeling is a good way of characterizing AI
programming for scientists and engineers; providing a useful pedagogical
answer to the question, "What constitutes an AI program?".

1.1. Origins in knowledge representation research

An important discovery in the design of expert systems is that representing
control knowledge separately from a model of the domain facilitates main-
tenance of the knowledge base and provides a basis for a shell that can be
reused for similar problems [5, 20, 71]. Consequentially, a broad collection of
"generic" expert system shells have been developed. They are called task-
specific architectures because the control knowledge upon which they are based
is specialized for different tasks such as diagnosis or design and often different
domains such as electronics or medicine [16, 24, 47, 62]. The idea that a
procedure for controlling reasoning, also called strategic knowledge, should be
represented and made explicit as a body of knowledge in its right has thus
emerged as a basic topic in the building of expert systems.

Model construction operators 3

The original motivation behind this research is that a domain model should,
if possible, be accessible and interpretable for multiple purposes: in different
situations within a given expert system (e.g., "metarules and rule schemas"
[34]), in explanation (e.g., "domain principles" [87]), in tutoring (e.g.,
"strategies and structural relations" [21]). More generally, "what is true" (e.g.,
facts about the world, facts about the representation) is represented separately
from "what to do" (e.g., inference, communication, and learning procedures).
This research has progressed by moving from the idea of simply controlling
rules (as in Davis' conception of metarules) to reasoning about models of the
domain (as emphasized by Swartout's notion of strategic explanation). In
NEOMYCIN research, this involved separating out control knowledge implicit
in MYCIN's domain rules [21].

The technique for building expert systems has thus advanced from tools that
provide an "empty knowledge base" (e.g., EMYCIN [91]) to tools that
presuppose a particular task. These tools provide a way of organizing knowl-
edge (a language for representing a domain model) and an inference procedure
for applying this knowledge. As we collect these tools and attempt to integrate
them, we need to understand the relation between specific expert systems and
general ways in which knowledge can be organized and applied. From the
perspective of knowledge acquisition tools, can we relate "problem types" and
program designs in a big-switch knowledge acquisition program that could help
a knowledge engineer choose and apply the appropriate task-specific architec-
ture? In essence, how can we formalize the part of the knowledge base that
gets reused so its capabilities and limits can be related to new problems?

1.2. Generalizing NEOMYCIN

In HERACLES-DX, a diagnostic shell developed from NEOMYCIN, the
reusable knowledge consists of an inference procedure represented by
metarules, organized into subprocedures called subtasks, and a language of
relations by which domain knowledge is expressed (see appendices). 1 In effect
this paper is a study of NEOMYCIN's metarules, analogous to the epi-
stemological study of MYCIN's rules that led us to develop NEOMYCIN [21,
24]. Our approach is to look for patterns in metarules so we can describe what
they are doing in more general terms.

Our first study of NEOMYCIN's metarules led to the heuristic classification
description of inference structure (the relations among assertions). The analysis
here focuses on the inference process itself, addressing the following questions:

• What are guidelines for writing metarules for a new task (e.g., for design) ?

1 To avoid confusion, I will consistently refer to tasks as the purpose for constructing a model
(e.g., diagnosis, design). Subtasks are H E R A C L E S - D X subprocedures that construct a model
(e.g., TEST-HYPOTHESIS) .

4 W.J. Clancey

Can we relate NEOMYCIN's metarules for diagnosis to the configuration
control knowledge in ACCORD [47]?

• Can we relate the proliferating set of application shells ? What is the space
of domains and modeling methods covered by existing programs? Is a
dimensional analysis possible? How can we organize the modeling
operators in programs such as NEOMYCIN [321, MDX [38], ABEL [74],
CADUCEUS [75], and KNACK [53]?

• Can we relate the diverse terminology used for representing control knowl-
edge: metarules, blackboards, objects~methods ? For example, why doesn't
NEOMYCIN use a blackboard? Is ABEL's patient-specific model a
blackboard? How are blackboard architectures fundamentally different
from other expert system shells? What do they enable and for what kinds
of problems are they appropriate?

• Can general knowledge in different programs be systematically combined in
one shell? How is a diagnostic procedure for electromechanical problems
different from a diagnostic procedure for medicine? More generally, why
is the control knowledge for diagnosis different from that used for design?
Are there common subproblems?

• How is an inference procedure for constructing a process model different
from NEOMYCIN's heuristic classification method for building a case?
Heuristic classification is characterized in terms of "taking a model off the
shelf", but even this involves contrasting alternatives and building a case
by weighing contrary evidence. Given that any particular line of reasoning
follows a characteristic abstraction/heuristic-association/specialization
path, how are these alternative paths constructed, supported, and com-
pared?

At the heart of this analysis is an evolving perspective of what constitutes a
solution in reasoning or, put another way, how we can fruitfully describe and
compare what inference procedures are doing? The paper begins with a
chronological exposition: the description of search in MYCIN in terms of
A N D / O R trees [12]; search of subtype and causal networks in CASNET [55]
and CADUCEUS; and construction of a situation-specific model in ABEL,
ACCORD, HASP [73], and NEOMYCIN. The view that inference consists of
constructing and comparing situation-specific models of processes is then
applied to describe inference procedures in these programs in terms of
operators for manipulating graphs that represent processes. These ideas--
operators, graphs, and processes--interrelate and form the basis for a synthe-
sis that firmly anchors knowledge engineering contributions to both computer
science and traditional scientific modeling.

1.3. The system-model task perspective

As in the epistemology [21] and heuristic classification [24] papers, the result

Model construction operators 5

here is not a new theory of intelligence or new architecture. Rather I abstract
existing programs so the methods can be more easily taught and better tools
can be designed. One result is an integrated description of object-oriented
programming, rule-based programming, logic programming, and blackboard
architectures. Although it may appear counterintuitive at first and even
obscuring, a reformulation of past work indicates that we would be right to say
that every expert system has a blackboard and, from a related perspective, every
expert system is "model-based". This is true in the same sense that we can say
that MYCIN does top-down refinement of a disease classification, even though
such a characterization would have been foreign to the original designers
(indeed, they might have said that this was an appropriate characterization of
the "opposition" approach used by researchers developing medical expert
systems based on frame representations).

The redescription of NEOMYCIN's metarules in terms of graph manipula-
tion operators follows the familiar pattern in science of relating empirical
phenomena (the metarules and control knowledge from diverse expert sys-
tems) to a formal language (here, simple constructs from logic, set and graph
theory) [4]. Unfortunately, a formalization phobia has made the very mention
of mathematical techniques anathema to many researchers. The concrete
examples provided here demonstrate that "doing logic on networks" [84] does
not entail something lifeless or useless. Indeed, by such an analysis--which
abstracts a wide variety of techniques to show a common approach--we find
that expert systems researchers have perhaps unwittingly made major contribu-
tions to computer science in the development and use of languages for
modeling processes.

Equally important, as we redescribe what expert systems are doing, we make
a major shift from a one-dimensional programmer's view of rules and frames to
descriptions on multiple levels, which are appropriate ways of describing any
expert system:

• a system in the world being modeled for some purpose (a task),
• general and situation-specific models of processes in this system (corre-

sponding to the knowledge base and a problem solution),
• relational networks that represent these processes (hierarchies and transi-

tional graphs),
• computational methods for constructing these models (inference proce-

dures), and
• an implementation of the relational networks and inference procedure in

some programming language (e.g., frame and rule-based languages).

This general framework is called the system-model perspective and forms the
basis, along with the set-graph-operator description of inference procedures,
for answering the questions posed above. The title of this paper reflects the
idea that control knowledge can be fruitfully described in terms of operators for

6 W.J. Clancey

constructing models, and this is something that all expert systems do. As will
become evident, we can use this perspective to define expert systems as a class
of computer programs that use relational networks for representing processes
so the system being modeled can be assembled, repaired, controlled, etc.
Compilers and operating systems are interesting special cases--an important
realization if we are to efficiently integrate the relational network approach of
A1 with computer science as a whole.

1.4. AI programming as qualitative process modeling

Successfully synthesizing the work on task-specific architectures and all its
attendant jargon requires changing common ways of talking about AI program-
ming in general. In particular, three fundamental changes are called for:

• view qualitative reasoning as including both classification and simulation
models of processes (that is, all knowledge bases contain models and all
expert systems do qualitative reasoning),

• view AI programming as a methodology for representing processes by
relational networks (specifically, rule, frame, and blackboard languages are
methods for encoding and manipulating relational networks),

• view a domain expert as an informant about some system in the world
(therefore, knowledge acquisition is primarily concerned with modeling
some system in the expert's world, in contrast with modeling his mental
processes).

These shifts in perspective add up to a view of AI programming as a
contribution to scientific and engineering modeling in general. In expert
systems, processes are represented by spatial, temporal, causal, and subtype
relations among objects and events, in contrast with traditional numeric
models, which are based on relations among measures. The shift is from linear,
quantitative measures of substance (mass, energy, length) to nonlinear descrip-
tions of form (orders, grammars, space/time relations). The distinction be-
tween numeric programming and relational modeling thus reflects the scientific
trend of this century and, more specifically, the origin of heuristic program-
ming in cybernetics and operations research [4, 82, 92]. In effect, we are
claiming that qualitative modeling (the system-model approach) provides di-
mensions for systems analysis and design that are lacking in traditional numeric
modeling. Furthermore, by appeal to mathematical concepts and notation,
qualitative modeling can be made as rigorous as numeric modeling (a point
emphasized by Bateson [4]) and need not connote a "soft" science.

Perhaps the most difficult part of our analysis is to realize that there are
always different perspectives for describing a representation and never one
uniquely correct interpretation. Because representations can be used to im-
plicitly encode relations by position and ordering, such as elements in a list or

Model construction operators 7

clauses in a rule, we must often go beyond surface terminology to find the
relational networks embedded in a set of expert system rules. Therefore, it
requires some work to extract the process-graph-operator methods in most of
today's programs.

We study existing programs because we believe there is a high payoff in
synthesizing the common methods they are based on. An important claim of
this paper is that describing knowledge acquisition tools in terms of model
construction operators facilitates collecting and sharing knowledge bases and
representational languages. These generalized methods can then be conveyed to
communities of scientists and engineers for their use, something already
happening today in a limited way in fields such as civil engineering and
molecular genetics.

Identifying the historical roots of qualitative modeling and its contribution to
the whole of science and engineering provides a substantial basis for teaching
these methods and making them available to the application communities. This
is no idle task, given that the very aim of expert systems research is to provide
useful tools for every community from physicians to geneticists and civil
engineers. And it is indeed in this connection that the system-modeling
description is so intuitive and useful.

1.5. Organization of the paper

This paper begins by recapitulating the development of NEOMYCIN's
subtask and metarule language (presented in Appendix A.1), emphasizing the
nature and importance of abstract control knowledge for multiple use of a
knowledge base. Domain-specific metarules, such as those in TEIRESIAS, are
shown to be inadequate for representing model construction operators because
reasoning strategies are implicit within the metarules and within the domain
rules they control (Section 2). The idea of a situation-specific model is
presented as the unifying concept for understanding the inference process
(Section 3). Examples from ABEL, CADUCEUS, HASP, and ACCORD
illustrate the clarifying nature of the model construction perspective for
describing task-specific architectures; a blackboard is described as a graph that
represents structures and processes in some system being modeled; MYCIN's
context tree is shown to be a blackboard (Section 4). The idea of abstract
control knowledge is then described as a special form of object-oriented
programming, which reveals the flexibility offered by control blackboards in
BB1 over NEOMYCIN's subtasks and metarules (Section 5).

Combining the system-model and blackboard perspectives, we then view the
representation of processes in AI programs in terms of three nested levels of
domain, inference, and communication modeling (Section 5). A formal frame-
work using simple logic, set, and graph notations provides a dimensional
analysis for describing NEOMYCIN's subtasks and relating model construction

8 W.J. Clancey

operators in different programs (Section 6). Heuristic classification is reconsi-
dered in this light, revealing the relation between classification and simulation
models and the macrostructures found in knowledge bases (in the form of
recurrent variants of hierarchies and transition networks) (Section 7). These
ideas are then applied to examples from XPLAIN and KNACK, illustrating
how to write metarules without using domain-specific terms, and thus how to
describe knowledge acquisition tools in terms of families of tasks and domain
processes (Section 8). Adopting a historical perspective, we consider how the
use of relational networks in computer programs has evolved from programmer
descriptions of computational processes (such as flowcharts and dataflow
diagrams) to representations or models of processes that are constructed and
manipulated by the programs themselves (Section 9). Finally, the argument is
summarized and more general conclusions are drawn (Section 10).

2. Abstract control knowledge

To create knowledge acquisition tools, we generalize from the design of
particular expert systems. We seek leverage by reusing the language for
representing a model of the domain, as well as by reusing the inference
procedure that interprets the domain model. This is difficult if the domain
model and inference procedure are conflated, as they are in MYCIN. We have
developed two guidelines for bringing about the desired separation: The
clauses of domain rules must be arbitrarily ordered, and the inference proce-
dure should not mention domain terms. We say that an inference procedure is
abstract if it uses variables instead of domain terms [20, 31].

In this paper, we use the terms "inference procedure" and "inference
strategies" and "control knowledge" synonymously. In this section, we review
the methods and advantages of representing control knowledge as abstract
metarules in NEOMYCIN. In the next section, we begin the study of these
metarules, which unifies different ways of talking about control knowledge.

2.1. From TEIRESIAS to NEOMYCIN

The idea of abstract control knowledge evolved during the late 1970s from a
combination of research:

• Davis' use of metarules in TEIRESIAS for controlling MYCIN's rules,
• Miller's [64] and Rubin's [78] studies of strategies in medical diagnosis,
• Greeno's [40] and Schoenfeld's [81] studies of strategies in mathematical

problem solving,
• Brown, Collins, and Harris' [11] synthesis of strategic reasoning in alge-

bra, reading, and electronic diagnosis.

Model construction operators 9

The work in medical diagnosis and teaching made clear that there is a
semantic level to control of reasoning, above the syntactic manipulation of
rules or formulae. This semantic level is expressed as strategic concepts such as
focus of attention, discrimination and grouping of problem solving methods,
hypothesis formation, etc. The development of NEOMYCIN was an attempt
to represent such strategic concepts, formalizing the work of Miller, Rubin,
and related studies [19, 22]. However, the step from TEIRESIAS' metarules to
NEOMYCIN is not direct. The steps in the development of the metarule
language are illustrated here by an example.

First, strategic knowledge in NEOMYCIN is conceived not primarily as
metarules or layers of these as in TEIRESIAS, but as procedures and
subprocedures. This follows from the observation that knowledge for control-
ling tutorial dialogues in GUIDON [27] is naturally expressed as ordered,
conditional steps in a procedure, not as a collection of rules. Furthermore,
when describing the strategies for a complex problem such as medical diag-
nosis, we use procedural abstractions such as "differentiate among alternative
hypotheses", which include subprocedures such as "test a hypothesis" and
"determine whether a finding is present". From this perspective, metarules are
the ordered, conditional steps within each subprocedure.

Second, the diagnostic metarules in TEIRESIAS are domain specific--they
mention domain terms such as "pelvic-abscess" and "gram-positive rods" (Fig.
1). This prevents us from using a metarule directly in another application in a
different domain--the strategy remains implicit. To generalize a domain-
specific metarule, we remove the domain terms by representing the relations
between them and write a metarule that uses these relations to control
reasoning (Fig. 2). We now have a metarule that refers to common and
unlikely causes of disorders, with statements relating infections and organisms
made explicit in the domain model.

The strategy is now expressed not in terms of applying domain rules per se,
but in terms of "considering a disorder", a step in a diagnostic procedure.

IF: 1) The infection is PELVIC-ABSCESS, and

2) There are rules which mention in their
premise ENTEROBACTERIACEAE, and

3) There are rules which mention in their
premise GRAM-POSITIVE RODS,

THEN: There is suggestive evidence (.4) that
the former should be done belore the latter.

Fig. 1. Domain-specific metarule from TEIRESIAS.

1(! W.J, Clancey

What Is true:

(COMMON-CAUSE-OF Enterobactenaceae Pelvic-infections)
(UNLIKELY-CAUSE-OF G+ rods Pelvic-infections)

Enterobactedaceae organisms are
<common causes of> pelvic infections.
G+ rods are <unlikely causes of> pelvic infections.

What to do:

SUBTASK:TEST-HYPOTHESIS
FOCUS:$DISORDER

IF: (AND
(COMMON-CAUSE-OF $DISORDER $HYP1)
(UNLIKELY-CAUSE-OF $DISORDER $HYP2))

THEN: (DO-BEFORE
(TASK TEST-HYPOTHESIS $HYP1)
(TASK TEST-HYPOTHESIS $HYP2))

<Common causes of> a disorder should be considered before
<unlikely causes of> a disorder.

Fig. 2. Metarule restated abstractly by replacing domain terms by references to the relations
between them.

Furthermore, in replacing the domain terms by variables, we abstract them
into types, such as "disorder" and "hypothesis". The particular choice of
words is not as important here as the fact that the procedures will have typed
arguments, as indicated by the choice of variables $HYP1 and $HYP2 (i.e.,
TEST-HYPOTHESIS takes a hypothesis as an argument). Why this is so and
its importance are not necessarily obvious at first; it is a pattern that is evident
after abstracting a number of domain-specific control rules.

We have introduced a classification of domain terms in order to remove them
from the metarule; this idea will return as a basic theme throughout this paper.
The metarule uses relations by which the domain model is expressed and
organized. A particular set of abstract metarules operates upon a knowledge
base organized in a particular way. Operating on a knowledge base in different
ways (e.g., for explanation, tutoring, or compilation) requires different proce-
dures with different relations, and hence a reclassification of expressions in the
knowledge base. This is a basic property of procedures and has important
consequences for knowledge acquisition within a given task-specific architec-
ture, as well as knowledge acquisition of new metarules.

The third step in developing the idea of abstract control knowledge is the
realization that if strategies are implicit in the clause order of domain rules,
then metarules must be able to reorder clauses for flexible control to be
achieved. In particular, MYCIN's rules are designed to do top-down search of
a disease taxonomy (Fig. 3). To consider more specific diseases first, one would

Model construction operators 11

DOMAIN RULE-513

IF: 1) The infection is MENINGITIS,
2) The type of the infection is BACTERIAL,
3) The patient has undergone SURGERY,
4) The patient has undergone NEUROSURGERY,
5) The NEUROSURGERY-TIME was less than 2 months ago,
6) The patient received a VENTRICULAR-URETERAL-SHUNT

THEN: There is evidence that the organism which might be causing the
infection is E.COLI (.8) KLEBSIELLA-PNEUMONIAE (.75).

Fig. 3. Domain rule from MYCIN: when clause order matters, domain relations and strategic
knowledge are implicit.

need to skip over or reorder clauses in almost every rule. Since TEIRESIAS'
metarules only control the ordering of rules and not clauses, this mechanism is
at the wrong grain size for expressing strategic reasoning in general. Specifical-
ly, without rewriting MYCIN's rules, we could not use TEIRESIAS' metarules
to produce diagnostic search that is not top-down. Indeed, whenever rule
clauses cannot be arbitrarily reordered without changing the correctness of a
rule, there must be a relation between domain terms implicit in the rule. This is
an important heuristic for identifying strategic knowledge in domain rules.

Figure 4 again illustrates the method of abstraction by which a relation is
introduced, the SUBTYPE of a disorder. The action of the metarule corre-
sponds to clauses (1) and (2) of the domain rule. By recursion, Klebsiella and
E.coli, subtypes of bacterial meningitis, will be tested after bacterial meningi-
tis. (The subtask PURSUE-HYPOTHESIS tests a hypothesis and then refines
it, placing its children on the differential.) The resulting domain rule is shown
in Fig. 5 (for brevity not all of the organisms in the original rule are listed in
our examples).

Once again, the remaining clauses cannot be reordered--we want to ask
about surgery before asking about neurosurgery, a strategy for minimizing the
number of questions asked during the consultation pruning them at a more
abstract level. This strategy is expressed in NEOMYCIN as a metarule for the
subtask FINDOUT (Fig. 6). This metarule is in effect a generalization of the
many "screening rules" in MYCIN (e.g., "If the patient has not had surgery,
conclude that the patient has not had neurosurgery, cardiacsurgery, etc."),
which were one means for removing redundant screening clauses. The advan-
tage of this representation is that the domain relation between surgery and its
subtypes is now explicit and only one rule is required.

Figure 6 also includes a definition for "recent neurosurgery", abstracting the
specific time reference in the original rule. This definition is referenced by a
similar F1NDOUT metarule. Such an abstraction is advantageous for explana-

12 W.J. Clancey

What is true:
(SUBTYPE Meningitis Bacterial-mengilitis)
(SUBTYPE Bactedal-mengititis E.coli)
(SUBTYPE Bactedal-mengititis Klebsiella-pneumoniae)

Bactedal-mengititis is a kind of meningitis infection.
Diplococcus-pneumoniae is a kind of bacterial-meningitis.
E.coli is a kind of bacterial-meningitis.

(DIFFERENTIAL $HYP)
There is evidence for the disorder $HYP.

What to do:
SUBTASK: EXPLORE-AND-REFINE
FOCUS: {the differential = the set of believed hypotheses}

IF: (AND
(DIFFERENTIAL $HYP)
(SUBTYPE $HYP $CHILD))

THEN: (DO-BEFORE
(TASK PURSUE-HYPOTHESIS $HYP)
(TASK PURSUE-HYPOTHESIS $CHILD))

If there is evidence for a disorder,
consider evidence for the parent before refining the disorder.

Fig. 4. Rule clause ordering restated abstractly by replacing domain terms by references to the
relations between them.

tion to a user. Furthermore, now stated as an explicit constraint, the rule could
be relaxed by the inference procedure to improve a specific diagnostic model.

In the final statement of the domain rule we have reworded the shunt
concept to make explicit that it is the recent structural change that is causally
significant (Fig. 7). 2 A surprising discovery is that after clause dependencies are
replaced by domain propositions, abstractions, and definitions, 80% of the
domain rules (of 176) have just a single clause (remaining multiple clauses
usually represent conjunctive causal conditions). In fact, there is no uncon-
trolled backward chaining at all; all domain goals are deliberately pursued by
metarules. The metarules themselves either make an assertion, request data
from the user, or apply a domain rule (where again, the assertion, datum, and
domain rule are all expressed by variables in the metarule). Figure 8 gives a

-" Certainty factors in MYCIN's rules (e.g., Fig. 3) are artificially high to compensate for the
effect of multiplying the conclusion's certainty by the minimum certainty from the premise clauses.
When goals are nested, the multiplicative effect often results in values below the 0.2 threshold at
the top of the reasoning chain (termed the "cascading certainty factor problem" [27]). MYCIN
rules were written to take this propagation effect into account; for example, rules for concluding
the type of the infection use 0.8 as the threshold of minimum positive evidence. NEOMYCIN
handles inherited belief calculations separately, so the domain rules can use a uniform interpreta-
tion of the certainty factor scale, another advantage of our representation.

Model construction operators 13

REVISED DOMAIN RULE-513

IF: 3) The patient has undergone surgery,
4) The patient has undergone neurosurgery
5) The neurosurgery was less than 2 months ago,
6) The patient received a VENTRICULAR-
URETERAL-SHUNT

THEN: There is evidence that the organism which might
be causing the infection is E.COLI (.8)

KLEBSIELLA-PNEUMONIAE (.75).

Fig. 5. Revised domain rule from MYCIN after implicit hypothesis testing strategy has been
removed.

metarule for the subtask TEST-HYPOTHESIS, showing how it indirectly
applies domain rules (this example should be contrasted with the metarule in
Fig. 2, which orders hypothesis testing as opposed to data gathering).

In practice, we do not use the DO-BEFORE construct in NEOMYCIN.
Instead, the metarule shown in Fig. 8 is written as two ordered metarules
(corresponding to clauses (1) and (2) and clauses (3) and (4), both invoking

What Is true:

(SUBSUMES Surgery Neurosurgery)
(SUBSUMES Neurosurgery Recent-Neurosurgery)
(IF (Neurosurgery-time < 2 MONS) Recent-Neurosurgery)
(SUBSUMES Recent-Neurosurgery Ventricular-ureteral-shunt)

Neurosurgery is a kind of surgery.
Recent neurosurgery is a kind of neurosurgery.
Recent neurosurgery is defined to be surgery within 2 months.
Having an impleced ventdcular-ureteral-shunt is a kind of

recent neurosurgery.

What to do:

TASK: FINDOUT
FOCUS: SFINDING

IF: (AND
(SUBSUMES $PARENT $FINDING)
(NOTSAME CNTXT $PARENT))

THEN: (CONCLUDE CNTXT $PARENT 'YES TALLY -1000)

if a desired finding is a subtype of a class of findings and
the class of findings is not present in this case, then
conclude that the desired finding is not present.

Fig. 6. Rule clause ordering restated abstractly by replacing domain terms by references to the
relation between them.

14 W.J. Clancey

NEOMYClN'S DOMAIN RULE-~;I~3

IF: The patient has recently had an implaced
ventricular-ureteral-shunt

THEN: There is evidence that the organism which
might be causing the infection is E.COLI (.3)
KLEBSIELLA-PNEUMONIAE (.3).

Fig. 7. Domain rule from NEOMYCIN with implicit strategies removed.

APPLYRULES). Thus, there are two kinds of subtasks, those in which the
metarules constitute steps in a procedure (such as PURSUE-HYPOTHESIS,
which tests before refining) and those which constitute alternative methods for
accomplishing a single subtask (such as the metarules for FINDOUT and
TEST-HYPOTHESIS).

To summarize, we began with a domain rule having six clauses and replaced
it by subtype and causal relations and metarules for ordering data acquisition
and hypothesis testing (Figs. 4, 6, and 8). Further details about NEOMYCIN's
subtask and metarule language are provided in the appendices and [31]. The

What Is true:

(ENABLING-CAUSE Bacterial-meningitis Exposure)
(CIRCUMSTANTIAL-CAUSE Bacterial-Meningitis Neurcsurgery)

Exposure to an infectious agent is a necessary condition for
Bacterial meningitis infection.

Neurosurgery is a circumstantial, unnecessary condition causing
Bacterial meningitis infection.

What to do:

TASK: TEST-HYPOTHESIS
FOCUS: $HYPOTHESIS

IF: (AND
(ENABLING-CAUSE $HYPOTHESIS $FINDING1)
(EVIDENCE $HYPOTHESIS $FINDING1 $RULES1)
(CIRCUMSTANTIAL-CAUSE $HYPOTHESIS $FiNDING2)
(EVIDENCE $HYPOTHESIS $FINDING2 $RULES2))

THEN: (DO-BEFORE
(TASK APPLYRULES SRULES1)
(TASK APPLYRULES $RULES2))

When testing a hypothesis, apply rules that mention findings that
are enabling causal conditions before applying rules that mention

circumstantial causal conditions.

Fig. 8. Metarule that invokes the domain rule interpreter.

Model construction operators 15

procedural language includes inherited end conditions, control of the metarules
by "do-while" and "case-statement" constructions, and primitives for accessing
a history of subtask invocations.

2.2. What the relational representation reveals

Davis describes different ways for controlling reasoning, such as doing
something after a goal is accomplished. However, the idea of control knowl-
edge in TEIRESIAS was essentially that of metarules, that is, rules controlling
other rules. As we introduce terminology such as "finding" and "hypothesis",
we find that strategies are expressed in the following terms: how to test a
hypothesis, what to do when a new finding becomes known, how to infer a
needed finding from an already known finding or believed hypothesis, etc.
Thus, control knowledge is more specifically about the acquisition of data, the
relation of data to the solution, the state of the current solution, the contrast-
ing of solutions, etc.

Viewing the inference process just in terms of applying rules or making
assertions misses the abstract patterns that constitute a common, reusable
problem solving procedure for a task such as diagnosis in different domains
(e.g., generalizing questions, pursuing common causes, explaining a finding).
Metarules are just the notational language. Strategic knowledge is the recurrent
collection of relations, subtasks, and ordering preferences. The possibility of
this language and reusable body of knowledge was missed in TEIRESIAS
because metarules were stated in a domain-specific way.

Stating the premises of metarules (and hence the domain knowledge) in a
form of the predicate calculus reveals that strategic knowledge has a content
that can be systematically described and shared between programs. Originally,
metarule premises in NEOMYCIN were just LISP functions; however, this
prevented writing a program that could explain why the metarules failed
(besides requiring a redundant textual description of the metarule itself for
providing strategic explanations) [44]. The restatement in a relational notation
reveals how the domain terms are classified into a finding hierarchy (via the
SUBSUMES relation) and a disease taxonomy (via the SUBTYPE relation).
Other relations express aspects of causality between findings and diseases, as
well as definitional and commonsense relations between findings (see Appendix
A.5 for a complete listing). The idea of heuristic classification emerged from
this analysis of the types of relations and how they were composed to link
findings and hypotheses to each other. We extend this analysis in Section 6 to
view the links as oriented edges in a graph (blackboard).

Perhaps more surprisingly, we find that writing a new metarule almost
always requires defining a new domain relation, which further subclassifies the
distinctions made before. For example, CAUSES becomes ENABLING-
CAUSE and CIRCUMSTANTIAL-CAUSE. Each new relation effectively

16 W.J. ('lancey

creates a subset, intersection, or composition of the domain terms or rules
defined by previously existing relations. The subtasks can therefore be viewed
as operating on sets of findings, hypotheses, and domain rules, collecting,
sorting, and filtering them in order to control how subtasks are accomplished.
Relations in metarule premises (e.g., SUBSUMES, ENABLING-CAUSE)
serve as conditions by which domain terms and rules are retrieved from the
knowledge base, collected, and passed on to subtasks. We therefore find it
convenient to state the metarules in terms of set operations, for example,
"select the set of findings that are enabling causes of the hypothesis; select the
set of rules that link these findings to the hypothesis; then apply these rules". A
dimensional analysis of the subtasks in terms of typed sets makes it possible to
detect missing metarules, missing subtasks, or subtasks that should be decom-
posed for clarity (Section 6).

2.3. Reusability of abstract control knowledge

Besides allowing us to relate different architectures--a central concern of
this paper--abstract metarules also have many practical benefits, including
knowledge acquisition (GUIDON-DEBUG, Section 6.3), strategic explanation
[44], articulation of a relational domain model (Appendix A.5), modeling of
student strategies [59, 93, 94], and line-of-reasoning strategic hints in a tutoring
dialogue [77]. These applications are briefly described at appropriate places in
this paper and summarized in [26].

It is interesting to consider how the notion of reusable knowledge changed
during NEOMYCIN research. The first idea, stemming from MYCIN, was that
a knowledge representation should be interpretable for explanation as well as
problem solving. Davis nicely exploited this in the knowledge acquisition
debugging dialogue of TEIRESIAS. Next, GUIDON illustrated how--with
the clauses annotated to indicate their purposes--the same set of rules could
be used in a case-method instructional dialogue. With NEOMYCIN came the
possibility of literally reusing part of the knowledge base (and not just the
backward-chaining inference engine) for different problem domains (illustrated
by the CASTER sandcasting diagnosis system [89]). Thus HERACLES-DX
became the first task-specific expert system architecture [21, 31].

However, a more subtle form of reusability lies within a given problem
solving session itself, when a given metarule or domain fact gets used in
different situations. It is no longer necessary for a knowledge engineer to
redundantly encode strategies in the ordering of domain clauses, essentially
restating the strategy in terms of every specific situation in which it must be
used. The design is more elegant and less prone to error (Figs. 4, 6, and 8).

Furthermore, new domain facts can be added using the relational language
and they will be applied appropriately by different metarules. If the program is
told that the patient has neurosurgery, it can use the subsumption relation to

Model construction operators 17

conclude that the patient has undergone surgery. Or if the program knows that
the patient has not undergone any kind of surgery it knows about, it can use
the closed-world assumption and conclude that the patient has not undergone
surgery. The knowledge base is easier to construct because the expert need not
specify every situation in which a given fact or relation should be used. New
facts and relations can be added in a simple way; their meaning is procedurally
represented by the abstract metarules, which concisely state how the relations
will be used. The same generality makes the knowledge base more robust. The
system is capable of using facts and relations for different purposes, perhaps in
combinations that would be difficult to anticipate or enumerate. Figures 9, 10,
and 11 illustrate the compositions that are typical, showing how forward-
reasoning can lead to a focus change and hence recursive application of the
TEST-HYPOTHESIS subtask.

Specifically, question (8) in Fig. 9 is directed at meningitis; after a follow-up
question about seizures duration, the new information leads the program to
pursue a different hypothesis, intracranial mass lesion. Thirteen metarules are
on the line of reasoning between questions (9) and (10), shown in Fig. 10.
There are two hypothesis-directed inferences (annotated as {1} and {4}) and
two data-directed inferences ({2} and {3}), which are shown graphically in Fig.
11. The order in which the links of the general model of Fig. 11 are interpreted
is not coded into the network; metarules can index and apply these relations in
either a hypothesis or data-directed way, dependent on the problem solving
situation.

NEOMYCIN's metarules were originally developed to enable a tutoring
program to converse about diagnostic strategies. Perhaps the most revealing
incarnation of this capability is in GUIDON-MANAGE, an instructional
program in which the student issues commands to NEOMYCIN using the
subtask language [77]. The instructional intent is to give the student a language
for talking about the diagnostic process, providing a means for detecting
missing domain knowledge, as well as a means for learning from observation of
teachers and fellow students. For example, the student might say, "I know that
I should test the hypothesis of intracranial pressure; is there an ENABLING-
CAUSE I should know?". Figure 12 illustrates how the subtask stack from Fig.
10 is interpreted to generate hints for the student.

7) What is Susanne's temperature?
** 105.8 farenheit
8) Has Susanne experienced seizures recently?
** YES
9) What is the duration of Suzanne's seizures?
** 1 HOUR
10) Does Susanne have an abnormal fundoscopic exam?
** NO

Fig. 9. Sequence of questions from a NEOMYCIN consultation.

18 W.J. Clancey

{ I . Top of the line of reasoning; we are pursuing meningitis as a generalization of some
hypothesis triggered by the initial data}

CONSULT
MAKE-DIAGNOSIS

COLLECT-INFO
ESTABLISH-HYPOTH ESIS-SPACE

GROUP-AND-DIFFERENTIATE
TEST-HYPOTHESIS [Meningitis]
APPLYRULES [Rule060 Rule323]

APPLYRULE! rRule060]

{2. After finding out about seizures to apply rule 60, we consider other data-directed
inferences; the follow up question (#9) about seizures duration is generated; then rule 262,

marked "antecedent," is applied}

FORWARD-REASON
PROCESS-FINDING [Seizures]
APPLYRULES.ANTE [Rule262]

APPLYRULE! [Rule262]

{3. Rule 262 concludes that seizures might also be caused by increased intracranial
pressure; is that linked to anothing else we have been considering? It might be explained
itself by an intracranial mass lesion, but more evidence is required before the rule can be

applied. Test-hypothesis is now invoked recursively; a focus change has occurred}

FORWARD-REASON
PROCESS-HYPOTHESIS [Increased-lntracranlaI-Pressure]

APPLYRULES,ANTE [Rule239]
APPLYRULE! [Rule239]

FINDOUT [Increased.lntracranlaI-Pressure]
TEST-HYPOTHESIS [Increased-lntracranlaI-Pressure]

APPLYRULES [Rule209 Rule233 Rule373]
APPLYRULE! [Rule2091

{4. Rule209 requires information about papilledema; the inquiry is generalized to
fundoscopic-abnormal, question #10}

FINDOUT [Papilledema]
FINDOUT [Fu ndoscopic-Abnormal]

Fig. 10. NEOMYCIN subtask stack, indicating that thirteen metarules lie between questions (9)
and (10) (Fig. 9), with a focus change from meningitis to increased intracranial pressure.

(Numbers in brackets correspond to domain rules in Fig. 11.)

In this sequence of hints, the program takes the student down a line of
reasoning, beginning with the most abstract or highest subtask on the stack. In
generating this subtask stack, G U I D O N - M A N A G E simulates what
N E O M Y C I N would do in the current situation. Because the subtasks are
stated abstractly and refer to the evolving model of the patient, a separate data
structure, they can be run at any time in any order. We were surprised that the
translations of the subtasks, which can be too abstract in consultation explana-
tions, are appropriately general when provided as hints. As can be seen by
comparing Figs. 11 and 12, G U I D O N - M A N A G E uses heuristics for compres-
sing the sequence, including direct statements of domain rules (rather than

Model construction operators 19

INTRACRANIAL-MASS-LESION

{3} RULE2~9 (trigger)
INCREASED-INTRACRANIAL-PRESSURE

{4} RULE209 {2} RULE262 (ante)
PAPILLEDEMA SEIZURES

subsuted-by
FUNDOSCOPIC-ABNORMAL

MENINGITIS

{1} RULE060

Fig. 11. Interpretation of domain relations in specific case, showing mixture of hypothesis-directed
({1} and {4}) and data-directed reasoning ({2} and {3}). All relations are causal, except for
subtype relations between papilledema and fundoscopic-abnormal. (Numbers in braces correspond

to subtask stack fragments in Fig. 10.)

saying "apply a rule") and special treatment of metarules with CONCLUDE
actions. The classification of subtasks required to do this interpretation further
illustrates how new distinctions are typically added to a representation in order
for it to be applied by a new inference procedure. In this case, the subtasks are
classified for GUIDON-MANAGE's simulation and hint procedures.

3. Three views of inference

To this point, we have described the method of representing control
knowledge abstractly and illustrated its benefits. We are ready to study
NEOMYCIN's subtasks and metarules. Our intuition is that the inference
procedure is not an arbitrary program, but must be based on some logic, which
could be used for driving the process of writing new metarules and evaluating
their completeness and correctness. For example, can we provide a student
with a global orientation that transcends the design of individual subtasks and
metarules? Viewed as a task-specific knowledge acquisition tool, how is the
HERACLES-DX model of diagnosis different from that in other programs?

More basically, how can we describe what an inference procedure is doing?
Paralleling developments by other researchers, our view of inference has
evolved through three perspectives:

• chaining goals and rules, such as a line of reasoning in MYCIN's explana-
tions, an inferential or means-ends analysis perspective;

• traversing causal-associational networks, such as the path from a finding
to a syndrome in CASNET, a domain relation perspective;

20 W.J. Clancey

Name Age Sex Race
1)** Susanne 44 FEMALE CAUCASIAN
2) The chief complaints:
** HEADACHE
** PHOTOPHOBIA
** FEBRILE

NEXT TASK: CLARIFY-A-FINDING HEADACHE
3) How long has Susanne had this kind of headache?
** 6 HOURS

N~:;~T TASK: TEST-HYPOTHESIS MENINGITIS
8) Has Susanne experienced seizures recently?
** YES

NEXT TASK: CLARIFY-A-FINDING MENINGITIS
9) What is the duration of Suzanne's seizures?
** 1 HOUR

NEXT TASK: HINT
Determine the implications of a new finding.

NEXT TASK: HINT
Try focusing on seizures.

NEXT TASK: HINT
Seizures can be caused by increased intracranial pressure.

NEXT TASK: HINT
Determine the implications of a new hypothesis.

NEXT TASK: HINT
Try focusing on increased intracranial pressure.

NEXT TASK: HINT
An intracranial mass lesion can cause increased intracrania]

NEXT TASK: HINT
Decide whether Susanne has increased intracranial pressure.

NEXT TASK: HINT
Increased intracranial pressure can cause papil ledema.

NEXT TASK: HINT
Attempt to conclude about a more general finding.

NEXT TASK: HINT
10) Does Susanne have an abnormal fundoscopic exam?
** NO

pressure.

Fig. 12. Excerpt from GUIDON-MANAGE illustrating generation of hints from NEOMYCIN's
subtask stack (Fig. 10). (Student inputs are in bold font.)

• C o n s t r u c t i n g a s i t ua t i on - spec i f i c m o d e l , such as t h e p a t i e n t - s p e c i f i c de -

s c r i p t i o n o f p a t h o p h y s i o l o g i c a l p r o c e s s e s in A B E L a n d N E O M Y C I N , a

system-modeling perspective.

T h e s e p e r s p e c t i v e s a r e i l l u s t r a t e d a n d d i s c u s s e d in tu rn .

Model construction operators 21

3.I. Chaining goals and rules

From the early days of MYCIN, we wanted a way to describe a knowledge
base abstractly, above the level of individual rules, if for no other reason than
to teach novice knowledge engineers how to make large-scale changes to the
rule set. Because procedural knowledge is encoded redundantly in rule pre-
mises, we found that there are characteristic patterns in how goals are related,
independent of the patient case. For example, whenever a rule for determining
the type of bacterial meningitis is applied, the program always determines first
whether the patient has an infection and then whether it is meningitis. This is
independent of which bacterial meningitis rule is applied first, because they all
have the same initial clauses. We termed this recurrent pattern the inference
structure of a knowledge base. Bennett demonstrated the usefulness of the idea
for structuring initial knowledge acquisition sessions in ROGET [5]. GUIDON
presents the inference structure of a knowledge base when outlining the main
goals for approaching a new case [28].

Figure 13 shows part of the inference structure of MYCIN corresponding to
the example discussed in Section 2. For the reasons already discussed, an
A N D / O R tree of domain goals and rules--a common way of describing
rule-based inferenceais not an adequate description of MYCIN's reasoning.
Subtype relations are implicit in the terminology and attribute-value relations
(compare the terms INFECTION, SUBTYPE, and COVERFOR to the
representation used in Fig. 4). Clause order does not distinguish between
logical conjunction and procedural relations. In short, the inference procedure
is implicit, handicapping the debugging, explanation, and instructional pro-
grams that must reason about it. Another way must be found for describing the
inference process.

COVERFOR

RULE513

INFECTION SUBTYPE SURGERY NEUROSURGERY

Fig. 13. Inference structure: the AND/OR tree of rules and goals generated by backward-chaining
through rules.

22 W.J. Clancey

3.2. Traversing causal-associational networks

Concurrent with MYCIN's development, other researchers were represent-
ing disease knowledge separately from the diagnostic procedure. Szolovits and
Pauker [88] distinguish between categorical and probabilistic strategies for
integrating evidence. Categorical evidence is used to rule out general processes
(e.g., a traumatic problem is ruled out because the patient has not fallen
recently). Probabilistic evidence is used to refine and sort out specific processes
(e.g., enterobacteriaceae organisms are common causes of bacterial meningitis,
so they are considered first). Thus, a general inference strategy is described in
abstract terms, referring to subtype and causal relations among domain pro-
cesses.

An even better example is provided by CASNET [55], in which a satisfactory
diagnostic explanation of an abnormal finding is characterized in terms of a
path of confirmed nodes on a path from the finding, through intermediate
pathophysiological states, to syndrome types (which can then be heuristically
related to therapies). Thus, a general inference strategy is described in terms of
traversing paths in the knowledge base.

We adopted this perspective as the first way of describing NEOMYCIN's
diagnostic strategy (Fig. 14). The figure shows a portion of a disease taxonomy.
Initial information about a patient triggers an arbitrary hypothesis, such as
Chronic-meningitis. The subtask ESTABLISH-HYPOTHESIS-SPACE leads
the program to first look up to more general categories (GROUP-AND-
DIFFERENTIATE), then to look down to establish specific causes. Thus, a
general inference strategy is described in terms of the global, hierarchical
structure of the knowledge base.

These examples are valuable for understanding the diagnostic process. The
task-specific nature of diagnosis cannot be described in terms of applying rules
or backward-chaining alone. Diagnosis involves considering categories of evi-
dence, establishing causal-associational paths between findings and disease
processes, and contrasting alternative paths and subprocesses (subtrees). In
Fig. 14 we are viewing the knowledge base as a representation of processes that
can occur in the system being diagnosed and viewing inference in terms of how
this representation is searched.

Of particular importance is the idea that diseases are processes. The levels of
NEOMYC1N's disease taxonomy are annotated in Fig. 14 to indicate how the
description of the processes gets more specific as we move down the hierarchy.
Each level adds a particular characteristic to the process description: the
location, its duration, the agent that caused it (of course, not all subtrees have
the same levels; trauma does not involve agents). A disease taxonomy can be
viewed as a classification of abnormal processes, just specific enough to
distinguish between therapy alternatives (e.g., viral meningitis is not broken
down because all types are treated the same way). The top-level processes can

Model construction operators 23

ANY-DISORDER

PROCESS

CONGE~AL XIC

GROUP & DIFFERENTIATE
J I (LOOKUp)

. s m , s

j OCUS
J

DURATION

ACUTE_MENI / - ~ NGIT SiS ~

BACTERIAL

/ • ~ EXPLORE & REFINE
/ ~ ~ (LOOK DOWN)

G~IEG sK,.~-o Gs ~ORGS, ~ CRY

Fig. 14. Looking up and looking down in diagnostic search: viewing inference as searching the
domain model.

be generalized: assembly flaw (congenital), environmental influence (infection,
toxicity, trauma, psychological overload), and structural degeneration (vascular
disorder, immunoresponse, muscular disorder). In contrast, in CASTER, an
expert system built within the same architecture, the top-level abnormal
processes correspond to what can go wrong during stages in the sand casting
process (wooden pattern design, sand molding, metal melting, pouring,
cooling/venting, etc.).

Both NEOMYCIN and CASTER contain models of physical systems.
Externally observable manifestations of the system's behavior are explained in
terms of internal system behavior (e.g., increased intracranial pressure), using
a state-transition network (not shown here, but discussed in Section 7), and
then tracked back to faulty structures and malfunctions of subsystems. These
internal aberrations are then explained in terms of the etiologies, or final
causes, of the disorder taxonomy, emphasizing processes in which the system
interacted with its environment, bringing it to its current state. In medicine,

24 W.J. Clancey

these etiologies include congenital problems (which may be caused by the
mother's lifestyle or her environment), psychogenic problems such as emotion-
al stress, trauma that structurally damages the body, food toxicities, etc. In the
human body, internal systems regenerate new subsystem structures, so de-
velopmental and degenerative processes are central.

Stating inference in terms of searching a representation (the knowledge
base) makes the structure of the knowledge base a subject of study. What are
the different ways of organizing an abnormal process classification? How is the
nature of the system in the world that is being diagnosed reflected in the
process representations we use? Are there abstract categories for describing
processes (such as environmental interaction processes) which we can use when
approaching a new domain, to organize the questions we ask a domain expert
or the cases we choose? We consider these questions further in Section 7, after
considering a number of other examples.

3.3. Constructing a situation-specific model

Describing inference in terms of searching a domain model is useful, but it
fails to characterize the purpose of the inference procedure. What is a good
diagnosis? More generally, how can we relate the inference process to the goals
an inference process is attempting to accomplish? From the perspective of
these questions, the idea of looking up and down hierarchies is too superficial.
Why should we look up before looking down? What underlying constraints
suggest this procedure? Answers to these questions come from new ways of
visualizing NEOMYCIN's problem solving process.

In GUIDON-WATCH, we were trying to find useful ways to visually present
the program's reasoning, both as a debugging aid and for instructional explana-
tions [76]. Although it may seem obvious now, it required many months to
realize that the program's inferences could be shown as graphs linking the
program's final diagnoses to the findings that support them (Fig. 15). Indeed,
this representation shows that the program's solution is not the name of a
disease, such as acute bacterial meningitis--our way of talking about program
output since the early days of MYCIN--but rather a causal argument having
the structure of a proof, called the situation-specific model (SSM).

Our conception of the situation-specific model combines two ideas from
previous work. In Patil's ABEL program [74], a causal explanation is repre-
sented as a five-layered graph containing the particular findings, disorders, and
their causal or subtype relations that are believed to be present in the
particular patient being diagnosed. In ABEL this graph is called the patient-
specific model (PSM) [60]. Although we knew about the PSM idea, we did not
draw NEOMYCIN's solutions in this way because we did not think of the
program this way; we thought we had a different kind of program, one without
a PSM. As will become clear, this single-minded perspective leads expert system

Model construction operators 25

I Acute bacterial meninqitis] [Increased intracranial pressure

I Acute meningitis I
J 80o

I Meninqitis I

p n ~ s I
7OO I 97O

Rule 423

Feb!ile

Rule 271

I
High-grade fever

Rule 424

Headache lexion

Rule 144 Rule 282

I I
CNS finding duration Seizures

(12 hours)

Fig. 15. Situation-specific model in NEOMYCIN.

researchers in general to believe that a blackboard depiction of a program's
solution is something unique to a particular class of programs.

With the PSM idea in mind as an elegant way of describing the diagnostic
process, we were struck by Anderson's use of a graph to represent a geometry
proof [3]. Anderson replaces the standard linear two-column table of assertions
and justifications by a graph linking the theorem to be proved to the inter-
mediate axioms, theorems, and finally the terminal nodes of given facts. This
representation, very similar to Fig. 15, helps a student keep track of the
current state of a proof, revealing gaps, assertions that do not lead anywhere,
and unused information. Furthermore, the graph reifies the possibility of
working top-down from the theorem to be proved or bottom-up from the given
information. The graph shows that a proof is a structure with certain prop-
erties: It is a connected graph of assertions, with each assertion supported by
known theorems or given information.

From the perspective of diagnosis, this proof is not just an arbitrary belief
dependency graph; it is an object having a particular, preferable structure:

• There should be just one graph containing all abnormal findings (a
single-fault assumption).

• Abnormal findings (terminal nodes) are causally explained by hypotheses
they are said to support (e.g., headache is explained by a meningitis
process).

• Hypotheses and hence explanations are more specific higher in the graph
(e.g., acute bacterial meningitis is more specific than meningitis) and
hence more specific characterizations of what is going on in the system

26 W.J. Clancey

being modeled are incorporated in the model (e.g., an infectious process
explains the fever; acute bacterial meningitis accounts for the fever being
high and its duration).

• The root diagnosis (shown at the top) should be specific enough to select
among competing therapies (e.g., acute bacterial meningitis is not specific
enough because bacteria respond to different antimicrobial drugs).

Thus, the particular relations of cause and subsumption are oriented so
higher nodes cause or are subsumed by lower nodes. The form of the graph as
a single, connected network, with the root being specific enough to be useful
for repair of the system being diagnosed, relates to the task-specific nature of
the inference process: We are attempting to construct a specific enough model
of what is occurring in a particular physical system so we can account for all
our observations and be able to modify the system to make its behavior normal
again. These constraints can be formalized and used for explanation, teaching,
or to generate the inference procedure itself (Section 6).

For our purpose in describing inference, the idea of a proof is not as
important as the idea of a a model graph constrained to have a certain form.

The form--specified as constraints on the structure of the graph--arises
because the graph is not an arbitrary network, but is a representation of
processes occurring in a physical system, constructed for a purpose. (In
particular, if our purpose were scientific description rather than medical
therapy, we would want to know what causes viral meningitis and would not
say that the model is satisfactory when that node is the root.) The idea that the
graph describes a process (e.g., in the CNS) was not emphasized in ABEL or
most other programs, and is an important step for realizing what is fundamen-
tally new in AI programs: Systems are modeled not just in terms of numeric
measures, rather they are internally described in terms of spatial, causal, and
temporal relations among objects and events. Simply put- - to make the
distinction with traditional numeric programs--expert systems model processes
qualitatively.

The key idea for our argument is that this internal description, the SSM, is
inspected by the program itself during reasoning, and its partial state, viewed
structurally in global terms (as opposed to looking only for specific assertions),
is used to drive the inference process. Specifically, we can view NEOMYCIN's
subtasks as operators that examine and modify links in the SSM (Fig. 16).
Figure 14 already suggests that inference subtasks are not just arbitrary
procedures. Rather, subtasks can be viewed as operators that traverse different

types o f links or traverse them in a particular order. The more powerful
perspective we are suggesting here is that these operators are placing nodes
and links in the SSM, and the process of searching the general model (e.g., the
disorder taxonomy) is secondary, a matter of finding the processes that might
be occurring in this case.

Model construction operators 27

[Acute bacterial meninqitis] [Increased intracranial pressure

I Acute meninqitis]

I RH eoo
I Meninaitis I

Infectious
process I

700 I 970
Rule 423

Febrile

Rule 271 Rule 144 Rule 282

High-grade fever CNS finding duration Seizures
(12 hours)

Rule 424

H d A~~I
ea a c e in-necK-on-flexion

Fig. 16. Diagnostic subtasks shown as operators for constructing a situation-specific model (arrows
indicate the order in which nodes were linked; see text).

Subtasks in Fig. 16 are indicated by abbreviations. The example presented in
Figs. 9-11 is presented here in terms of constructing a model of processes
causing the patient's complaints. Information about headache triggered
Rule424, which led a question about stiff-neck-on-flexion to be asked and
meningitis to be hypothesized (subtasks PROCESS-FINDING and APPLY-
RULE!). The subtask GROUP-AND-DIFFERENTIATE looked for support
for meningitis by considering categorical evidence (for infectious process, a
more general process description). To use the node and link language more
explicitly, TEST-HYPOTHESIS grows links downwards, here placing febrile
and a causal link (Rule 423) below infectious process. Similarly, REFINE-
HYPOTHESIS grows subtype links upwards, here placing acute meningitis and
then acute bacterial meningitis in the SSM.

The idea of inference operators is developed well by Pople [75] in
CADUCEUS and also in ABEL. However, the more powerful formulation we
advocate involves a third shift in perspective, namely shifting from talking
about inference in terms of the knowledge base (as in CADUCEUS) to talking
about the specific model the program is constructing of the particular system it is
diagnosing (as in ABEL). PROCESS-HYPOTHESIS makes a connection to
previously known information, growing a link to the CNS duration (which was
itself placed in the SSM by PROCESS-FINDING, in abstracting the headache
duration). Similarly, we see PROCESS-FINDING growing a link to increased
intracranial pressure, at this point a disconnected, competing explanation of
what is occurring in this patient.

The explanatory value of the SSM for characterizing the inference process is
particularly clear when there are two or more disconnected graphs, as in Fig.

28 W.J. Clancey

16, where the incomplete nature of the solution is evident. Specifically, the
work to be done is made explicit by the form of the SSM: Can a link be drawn
between seizures and the acute bacterial meningitis graph? In terms of the
relations required by the operators, could seizures be caused by acute bacterial
meningitis? Could increased intracranial pressure cause acute meningitis? Of
course there are many such questions that might be asked. The important point
is that looking at such a representation of the inference process suggests
questions about the general model that could improve the current solution.

More specifically, it is our knowledge of the form of an adequate solution--
the constraints listed previously--that allows us to criticize an SSM. It is our
knowledge of operators and link types that allows us to translate these gaps
into general questions. A student looking at Anderson's proof graphs can ask
similar questions. For example, how could I prove that AB is congruent to
CD? How could I use the information that angle ABC is equal to angle ABD?
When we consider how we rely on a situation-specific model for calculations as
well-defined as subtraction or division, we realize that portraying the diagnosis
process by a linear sequence of questions, typical of consultation programs, is
showing just the superficial behavior of the program.

Probably the biggest surprise is that the subtasks can now be formally
described in terms of the particular nodes or links they place in the SSM (with
more-abstract operators controlling how these primitive operators are applied).
This is quite a big step from the original implementation of the metarule
premises as LISP code, with abstract terms like ESTABLISH-HYPOTHESIS-
SPACE being the only theoretical language for describing what the subtasks
were doing. This dimensional analysis is presented in Section 6.

The idea that NEOMYCIN's subtasks are constructing a model may appear
to be at odds with the claim that it selects a model by classification. Section 7
resolves this possible confusion by contrasting selection of a process description
(such as acute bacterial meningitis) with construction of a new process descrip-
tion that accounts for (or designs) process interactions.

Once we realized the value of the SSM for detecting the adequacy of the
program's diagnosis, we began to print it routinely and use it as the starting
point for knowledge acquisition discussions with our physicians. We also
developed a program called GUIDON-DEBUG that detects gaps in an SSM
and reformulates them as questions about missing propositions or rules in the
knowledge base (Section 6).

Before reviewing how the system-model-operator perspective applies to
other programs (Sections 4 and 5), we show how different perspectives on the
nature of inference are manifested in different research emphases.

3.4. Drawing the elephant: piecing together different perspectives

The system-model-operator perspective provides a way of integrating how

Model construction operators 29

different researchers have described their programs and their research objec-
tives. We consider designs for modeling tools, spaces for describing inference
operators, inference procedures contrasted with inference engines, and ways of
classifying expert system tasks.

3.4.1. Modeling tools
Alternative views about the nature of inference strongly influence our beliefs

about what a tool might do for us and hence influence the tools that we design.
Tools can be viewed as using different perspectives for asking questions about a
representation, ranging from a microlevel of nodes and links to a macrolevel of
paths and subgraphs:

• node: terminological consistency (e.g., subsumption in NIKL, where
should a new concept be placed in a classification?);

• path: inference nets (e.g., use/conclude browsing in EMYCIN, what rules
conclude that the organism causing the patient's infection is E.coli?);

• subgraph: logical dependency (e.g., common to belief maintenance sys-
tems, includes "what-if" reasoning, backtracking, alternative models/
worlds, detecting contradictions, endorsement/justification relations);

• graph: model construction (e.g., operators for detecting completeness/
coverage or adequacy for task/specificity, scenario-generation programs,
database discovery).

The system-model perspective suggests that these are not different kinds of
programs per se, but operations that are conceivably desirable for any expert
system over the range of its development, maintenance, and use for multiple
purposes. This analysis suggests that we might gain leverage by integrating tool
capabilities rather than pursuing them in isolation. For example, consider the
benefit of relaxing NIKL's classifier to modify ABEL's general model in order
to improve a particular diagnosis.

3.4.2. Operator spaces
Figure 17 illustrates a second way of piecing together alternative views. We

can understand different program descriptions in terms of the space that
researchers have used for defining inference operators. Programs like CEN-
TAUR [1] and CASNET are described in terms of operators for searching the
domain theory space of subtype and causal relations. 3 In NEOMYCIN, ABEL,
etc., operators are described with respect to the form of the situation-specific
model. Other researchers have focused on the problem of deciding what
operator to apply; for them inference is described in terms of impasses,

3 CENTAUR is a kind of half-breed between MYCIN and NEOMYCIN. The disease classifica-
tion is explicit, but strategies are domain-specific (e.g., "after confirming that the patient has an
infection, determine the specific disease").

30 W.J. (?lance)'

C~DUCELIE"
HERA CL ES
ABEL
ACCORD

CENTAUR

SOAR, BB I
PRODIGY

Fig. 17. Alternative spaces for defining inference operators.

agenda, a control blackboard, operator preferences, etc. As Fig. 17 shows,
these are not three kinds of programs per se or specific to kinds of problems
(e.g., design contrasted with diagnosis). Rather these are points of flexibility
open to every program in every problem. By making explicit that these
different perspectives exist, we can begin to study how they interrelate and
how specific strategic knowledge in each space relates to the constraints posed
by the structure of the domain theory, the structure of the situation-specific
model, or the structure of the environment in which inference must take place
(e.g., resource limitations that make planning useful). Indeed, the study then
moves to characterizing types of structures and how they relate to types of
systems to be modeled (Section 7).

3.4.3. Levels of interpretation
A third integration is possible by reconsidering how the idea of interpretation

is used for describing inference. Figure 18 illustrates the view that an inference
procedure constructs a situation-specific model of some system.

It may not be obvious at first that this diagram is not specific to diagnosis;
rather it describes what every expert system does. Specifically, for design
problems the general model describes particular structures and how they can
be assembled to produce particular functions or processes. The data includes
constraints on the cost, manufacturing process, environment of use, etc. The
SSM is a description of the designed system. In this way, we can characterize

Model construction operators 31

Situation- r General I ,.._1 Inference ,.._I Specific Model Model of v
System I - I Pr°cedure I (SSM)

T
Observations
& constraints

(Data)

Fig. 18. An inference procedure is a program for gathering information about system behavior and
the environment (data) in order to make assertions about the system producing this behavior
(diagnosis), the system that could produce this behavior (design and control), or how a system will

behave (prediction).

diagnosis as an analytic problem (describing processes in an existing system),
and describe design as a synthetic problem (designing a new system). For the
task we call control, the SSM describes how the system should be configured
(and possibly what the input should be) to produce desired behavior. For
assembly, the SSM describes a containing system, a manufacturing process,
that will produce the desired system. A dimensional analysis of these possibili-
ties relating to input/output relations is provided in [24].

Figure 18 suggests that the idea of an inference engine interpreting a knowl-
edge base is inadequate for describing inference, particularly for contrasting
inference procedures for different kinds of tasks. Figure 19 suggests that the
inference engine idea, exemplified by EMYCIN's backward-chainer, has prob-
ably evolved from how we view traditional computer programs, which are
interpreted or compiled by other programs, which itself developed from the
idea of "programs as data".

It is intriguing to realize that just as MYCIN's inference procedure is lost
inside its domain rules, the inference procedure in programs like CASNET is
lost inside LISP code. Viewed this way, the frame-rule controversy of the
1970s was partly a matter of competing perspectives: Researchers using frames
realized the importance of stating domain knowledge as propositions (viewed
as networks of concepts), separately from the programs that use the knowl-
edge. Researchers using rules realized the value of stating all knowledge in a
stylized language so it could be annotated and hence interpreted by different
programs for multiple purposes.

The description of inference operators in ABEL and CADUCEUS is a
major step towards integrating these views, but these operators are still coded
in a way that is not interpretable in multiple ways for explanation, student
modeling, etc. The major contribution of NEOMYCIN is to identify the

32 W.J. Clancey

I I ~ I INTERPRETER/
C£~PILER

Traditional View of Programs

I KNOWLEDGE I INFERENCE
BASE ENGINE

Conventional View of Expert Systems

,1
1

[I II BASE

Combined in rule systems

Combined in frame systems

INFERENCE]
PROCEDURE

)

INFEI~NCE
ENGINE

More Accurate View of Expert Systems

1
Fig. 19. An inference procedure interprets a task-specific representation; an inference engine is a

programming-language interpreter.

inference procedure as something that must be represented in a stylized way, and
by its formalization can be studied as an object in its own right. As we will see,
other researchers view strategic knowledge as structured, but have not repre-
sented all levels in a stylized way. For example, strategic knowledge sources in
blackboard systems are generally LISP functions or rules with LISP premises
(Section 4). NEOMYCIN's architecture suggests three tiers: a knowledge base
expressed as a set of propositions, an inference procedure that references the
relations of the knowledge base, and an inference engine that applies the
subtasks and metarules in which the inference procedure is encoded. Procedur-
al knowledge in XPLAIN is coded as stylized procedures, but the particular
statements are not objects in their own right, which can be annotated, flexibly
interpreted, or reordered, an advantage of the metarule formalism (Section 8).

As indicated in the discussion of GUIDON-MANAGE, it is the ability to
store facts about inference procedure constructs (subtasks, metarules, premise
relations) that enables it to be used for multiple purposes. Just as the inference
procedure relies on the classification of domain terms to interpret the domain
model, a program like GUIDON-MANAGE relies on the classification of sub-

Model construction operators 33

tasks and metarules to generate hints (e.g., subtasks not to mention when gen-
erating hints include APPLYRULE! and APPLY.ANTECEDENT.RULES).
Similarly, the compiler that produces LISP code from the predicate calculus
representation of metarule premises uses a classification of relations that
describes how they are implemented in the underlying LISP (e.g., SUBSUMES
is implemented as a property list attached to the first term of the relation; see
Appendix A.4). Other researchers have emphasized the relation between
control knowledge and classifications (e.g., [41]); the model construction
perspective reveals the role relations play in selecting operands of SSM
operators.

The idea that an inference procedure in effect asks questions about the terms
it is manipulating is illustrated by Fig. 20. The inference procedure for
GUIDON-MANAGE asks questions about subtasks and the metarule com-
piler asks questions about domain relations. Although the inference engine
also asks questions about the inference procedure, these are part of the
language (e.g., the idea of an iterative subtask) and never introduced by the
knowledge engineer. In contrast, a knowledge engineer can modify existing
inference procedures, adding new relations by which the knowledge base is
defined. This distinction is of course just relative, consistent with the idea that
a programming language (such as the subtask/metarule language) is relatively
fixed and not modified by its users, a constraint that enables programmers to
share tools.

3.4.4. Process modeling
To summarize, an SSM is a model of processes occurring in some system.

Many researchers call the SSM a blackboard and emphasize that domain
knowledge can be organized in terms of changes to the blackboard. In
NEOMYCIN, we make explicit that these changes are made by inference
operators, which reference relations by which the domain knowledge is ex-
pressed and hence structured. Several key ideas come together here that in
some respects violate common ways of describing expert systems:

(FOLLOW-~he SFINDING)?

(CAUSED-B~SIS)?
Fig. 20. An inference procedure inspects the general model by seeing if particular relations hold

between the terms it is manipulating (e.g., domain terms, subtasks, metarules).

34 W.J. Clancey

• A knowledge base contains a general model of some system (a description
of an abnormal process, such as a disease, is a kind of model).

• An inference procedure constructs a situation-specific model of the par-
ticular structures and/or processes occurring in a desired or actual system.

• Both the general and situation-specific models (and indeed the inference
procedure) can be represented as relational networks.

• Inference procedures can be described in terms of operators for placing
nodes and links in the SSM.

The strong claim here is that all expert systems have an SSM, although
researchers may not visualize the program's assertions this way (and hence the
SSM's structure may be unarticulated or nonsystematic, as in MYCIN, Section
4.5). The advantages of the SSM perspective for tracking the completeness and
consistency of a program's "solution" suggest that every expert system should
have a blackboard; that is, the SSM should be routinely displayed to reify the
program's operation. The SSM can be studied to compare and criticize
inference procedures (Section 6). The important realization that enables this
form of analysis is that all expert systems are constructing and using models; all
expert systems are model-based. This term has been used too restrictively in the
literature to refer to programs with simulation, as opposed to classification,
models (Section 7). Indeed, there is strong reason to believe that classification
models are necessary for modeling open systems and cannot be reduced to
structure-function simulation models.

Generalizing a step further, we can characterize the general inference struc-
ture of expert systems in terms of a sequence that involves constructing a model
and then using it for some purpose (Fig. 21).

Broadly speaking, for design we start with a description of desired behavior,
produce a system design, and possibly an assembly plan. For diagnosis we start
with actual behavior and identify what system is producing it, often followed by
a modification (repair) or control plan. Either design or diagnosis might make
predictions about behavior for testing a design (to see if it meets
specifications), hypothesizing findings to confirm disorders, or monitoring a
therapy plan. Of course, the inference process can iterate over these steps, for

Model of desired (specified) System
or actual (monitored) l, design or

system behavior identification

Assembly, modification, Predicted
or control plan behavior

Fig. 21. General inference structure for reasoning about systems.

Model construction operators 35

example, moving from a hypothesized design back to inquire about further
specifications.

This diagram shows that planning depends on having a model of a system to
be assembled, modified, or controlled. Indeed, it violates all common sense to
say that MYCIN could prescribe appropriate therapy without having a model
of the patient. Furthermore, planning is not something to be viewed in
isolation, as something done by a particular class of programs, rather it is an
integral asp,:ct of all expert systems. (Otherwise, there would be no reason for
constructing the SSM; see Section 9 for a discussion of decision support
systems, which fit this description.) We might say the model is not the usual
solution of expert systems, however plans themselves are models of systems
that will behave in some way, often involving some configuration of processes
that will interact with the object system (e.g., a therapy plan may include a
combination of drugs, food, exercise, and later visits to the physician). (See
[24] for related discussion.)

This diagram can serve as a template for describing any given expert system.
The idea behind task-specific architectures is that particular problems can be
viewed as recurrent specializations of this diagram. This seems clear enough
given the examples of diagnostic and design architectures to date. For com-
parison, contrast this diagram with early CAD systems, which did not have the
capability to construct the electronic or architectural model from input specifi-
cations and were not fed into automatic manufacturing or construction-
planning systems. It is the internal SSM and inference operators for construct-
ing it that enables this cascading of model construction and use in expert
systems.

Our next step is to study operators for constructing SSMs, study the
structure of SSMs, and determine how operators and SSM structure relate. If
SSM structures recur, then presumably operators will recur. We will then be
able to characterize a generic system, say a diagnostic expert shell like
HERACLES-DX, in terms of the structure of its SSM and the corresponding
operators of its inference procedure.

4. Blackboards and operators

To illustrate the central importance of the system-model-operator perspec-
tive, we review here several programs with an explicit SSM-operator design.
This reveals the usefulness of the perspective for describing reasoning, the
prevalence of the perspective in 1980s' research, and how the subtask/metarule
formulation adds to previous accounts. We begin with CADUCEUS, ABEL,
and ACCORD, which provide diverse examples of model construction
operators. We then analyze HASP to show how the traditional blackboard
architecture alone does not make explicit the structure of the SSM or the

36 W.J. Clancey

operators; blackboards and knowledge sources are shown to have a regular
structure in process-graph-operator terms. Finally, we use our new-found
perspective to resolve an old puzzle--what is MYCIN's context tree?

4.1. CADUCEUS's model construction operators

Pople [75] describes diagnosis as a process of constructing a "diagnostic
task" (an SSM) via operators that combine problem descriptions (disease
hypotheses and findings) (Fig. 22). The essence of differential diagnosis is
constructing sets of competing diagnoses, in which each set accounts for the
symptoms and contains one or more disease descriptions (allowing for multiple
faults). Thus, each differential diagnosis is an SSM. Diagnosis consists of
searching the space of alternative SSMs. Thus, Pople emphasizes that given a
large set of disease classes which can be intricately interrelated (both causally
and in heterarchies), there are potentially dozens if not hundreds of SSMs
consistent with a given set of findings. Diagnostic search must be conceived at
this level, not just in terms of deciding what operator to apply to a given SSM.
Differential diagnosis is not just a matter of deciding between a flat list of
disease descriptions, but of combining and comparing subgraphs that represent
relations between disease processes. Indeed, Pople emphasizes that his synthe-
sis operators construct a differential diagnosis, viewing a "differential diag-
nosis" as an object, not merely a name for the process of asking questions.

Synthesis Operator 01
Subclasslflcatlon

Specialization

Synthesis Operator 02
Subclasslflcatlon

Intersectlon

Synthesis Operator 05
Comblnatlon

Fig. 22. Synthesis operators from CADUCEUS by which "multiple task definitions may be
combined into unified task complexes" (excerpted from [75]). (Arrows indicate causality, vertical

lines indicate subtype.)

Model construction operators 37

The examples in Fig. 22 illustrate how two disease hypotheses P and Q can
be discovered to be related via subtype (operator 01), via common subclasses
(operator 02), or via an intermediate disease which is caused by P and is a
subtype of Q (operator 05). Similar operators include causal specialization,
intersection, and more complex intermediate connections. These operators
transform networks of disease hypotheses from competing subgraphs into
single graphs, constituting a single causal story of processes occurring in the
patient (by which one disease causes another or is manifested in a particular
way). Thus, Pople's formulation makes explicit the idea of operators construct-
ing graphs; however he does not emphasize that these graphs are models of
processes. As mentioned previously, the process-model perspective is useful
because it focuses our attention on how different types of networks can be used
to represent processes in different ways (e.g., the different forms a disorder
taxonomy takes in NEOMYCIN and CASTER).

4.2. ABEL's model construction operators

Concurrent with the development of CADUCEUS and NEOMYCIN, Patil
was formalizing diagnosis in ABEL in terms of operators for constructing a
patient-specific model (Fig. 23).

The operator "projection" is what Pople calls "causal specialization". How-
ever, the other operators are different because they operate on different levels
of detail. Aggregation and elaboration relate a composite, abstract term (a
disorder name) to a subgraph that details the causal and component relation-
ships of this process. Summation and decomposition relate quantities and

Level N

composite

C a U S e S
o' r rconst i tuant

focal

Level N+ 1

Fig. 23. "The PSM is created by instantiating portions of ABEL's general medical knowledge and
filling in details from the specific case being considered" [74].

38 W.J. Clancey

sources of substances within a process description at a particular level of detail
(e.g., A and C might correspond to water loss and sodium loss, both con-
stituents of Lower-GI-fluid-losses, node B). With this representation, ABEL
has the capability of reasoning about interactions of processes. For example,
when one process produces a substance that another consumes, ABEL can
hypothesize the resultant quantity of the substance. The advantage of ABEL
over CADUCEUS and NEOMYCIN is therefore its representation of the SSM
at different levels of detail, by which it can construct descriptions of processes
that are not pre-enumerated in the knowledge base. CADUCEUS can account
for processes that co-occur, but process interactions are all preclassified via the
causal and subtype specialization relations in the knowledge base. ABEL is not
just dealing with disorder names (corresponding to the P and Q nodes in Fig.
22), rather it constructs subgraphs that it treats as new process descriptions and

relates these to each other (corresponding to the line around the nodes at level
N + 1 of Fig. 23). However, it is also true that ABEL's ability to aggregate and
elaborate process descriptions is limited by the general model, as well as its
ability to find higher-level relations among the summations and aggregations it
has made.

4.3. A C C O R D ' s model construction operators

Following the development of ABEL, CADUCEUS, and NEOMYCIN,
Hayes-Roth reformulated the representation of control knowledge in BB1 in
order to make explicit the task-specific operators and blackboard structure
used for configuration problems [47]. The resultant framework is called
ACCORD; it nicely builds on the work of Sowa [84] to make explicit the
domain relations used by each operator. 4 Operators are viewed as verbs, with
the subject and object relations corresponding to types of domain terms. For
example, the operator YOKE links two subgraphs in the SSM, corresponding
to a spatial constraint between partial configurations of the system being
designed (Fig. 24). Operators are abstracted, so control knowledge can be
written in terms of types of operators. For example, control rules can reason
about when and where to attempt a POSITION operation.

The operator language in ACCORD is a state-of-the-art representation, with
the advantage of reifying inference operators as objects which have properties,
are abstracted into hierarchies, and can be independently applied. The careful
choice of names for these operators is also a major contribution to the
community's goal of accumulating libraries of operator definitions and control
knowledge. Terms like "yoke", "dock", and "anchor" are general and could
be usefully applied to temporal as well as spatial aspects of an SSM. For
example, these operators could be respecialized for combining portions of a

~BB1-ACCORD is thus analogous to HERACLES-DX. BB1-ACCORD is a task-specific
specialization of BB1, and H E R A C L E S - D X is a specialization of HERACLES.

Model construction operators 39

~ R E A T E
DEFINZ~-. . ._.~ iNCLUDE

- ' " O R I E N T

~ NCHOR
PPEND

POSITION ~ - - - - - - - -~ EO~ETRIC T
~ ' - , C O N S O L I D A T E

COORDI.ArE' ..EF!."L
P.UU U ~ , /

.~ . . - - - .~E
INTEG RATE~. . . .~ INCORPORATE

"OOCK

Fig. 24. Operators in ACCORD, abstracted according to the effect each has on the evolving SSM
(from Hayes-Roth et al. [47]).

process description in diagnosis (e.g., "position" might be interpreted in terms
of a place on a time line; "append" would show two temporal sequences to be
contiguous). Besides the clarity of its design, ACCORD reveals the generality of
the idea that an SSM is a model of a system and provides a systematic
vocabulary for building a library of operators. The limitation of ACCORD's
design, common to every system we will consider in this paper, is that no
dimensional analysis is offered to argue that this set of operators is in any sense
complete.

4.4. HASP' s blackboard reconsidered

Part of the difficulty of synthesizing past research is that it is not just a
matter of identifying one previous conception as being most correct or useful,
and then subsuming everyone's work under that. The blackboard model of
control provides a major foundation for retelling the story of expert systems,
however an adequate synthesis requires viewing blackboards themselves in a
new way. For example, it should be clear that ABEL's PSM is a blackboard: It
is a network that the program uses to post a solution, and it uses the partial
state of this solution to decide what data to gather and assertions to make next.
However, it should be equally clear that the idea of multiple levels is useful,
but not an essential characteristic of a blackboard, as illustrated by
NEOMYCIN and CADUCEUS. Furthermore, the medical examples suggest
that we view the blackboard as a representation of some system being modeled,
not just a data structure. Finally, the idea that the data structure is "common"
or shared crosses the line from a description of how a model is constructed to a
programming language view.

Figure 25 provides a starting point for relating blackboard research to a more
general conception of qualitative process modeling. The system being modeled

40 W.J. Clancey

FLEET ~ ~'~C~-~ Trackspeedpredlct°r& ~r~.ck
PLATFORMS predictor

Source cllulfler
SOURCES ' % ~----CrossArray lator

H A R M O N I C SETS % ~-~-Lineflnder
pectal target lormer

LINES
SEGMENTS ~ Line tormer

Fig. 25. HASP's blackboard (from Nii [73]).

in HASP consists of ships and submarines in the ocean. The task is to identify
what system is present, the particular combination of platforms (vessels) and
their combination into fleet(s). The system being modeled is not a static
structure, but a set of loosely interacting parts with temporal characteristics
(the vessels are usually always moving).

Figure 25 shows how very low-level behavioral characteristics of the system
(chiefly sounds emitted by propulsion subsystems) are abstracted to identify
source types and ultimately related to specific vessels. Thus, HASP's problem
is essentially a design problem, given that the system being identified usually
has novel configuration and process characteristics (to be contrasted with
NEOMYCIN's selection of complete system descriptions such as "Acute-
bacterial-E.coli-meningitis" from the disease taxonomy).

HASP's operators are called "knowledge sources". As is evident from their
names, these operators can be abstracted according to the type of change they
make in the SSM. "Formers" aggregate descriptions (e.g., a line former
abstracts segments in the sound data to line patterns). "Predictors" work in the
opposite direction to elaborate a description in terms of substance or process
details that should be occurring in the specific system being modeled and thus
form expectations for hypotheses or findings that should appear in this SSM. In
short, these are not merely "knowledge sources" modifying "hypothesis ele-
ments" in a blackboard. They are operators that correlate, form, predict, find,
etc. process representations in order to construct a space-time model of a
system.

With this system-model-operator perspective in mind, we now realize that
important characteristics of the model have been left implicit in its blackboard
implementation. Most importantly, what are the spatial, temporal, causal, and
subtype relations between the levels? If these are made explicit, it will be
easier for the program to be modified and enhance its explanation ability.
Crucial for the objective of developing task-specific frameworks, we want to
know how the blackboard is structured so we can model similar systems using

Model construction operators 41

platform-X- operatiig-in-area
platflrm-X

propeller-5

H a r m ~

Ilne-~~ne-m
/ -

segment-n segment-n+1

platform-Z-
operatlnt-in-area

p la t f ~ t rm 'Z
propeller-4 aux-pump-p

Ilne-a

Fig. 26. "Partial lofargram analytic model" (from Keeler, 1987).

the same design. This design is relatively clear in ABEL and is a major
contribution of ACCORD; in both systems it is the subtype, causal, temporal,
and component relations between blackboard elements and not the levels per
se that drive the inference process.

After reviewing the SSM description of NEOMYCIN [26], Keeler 5 rede-
scribed HASP in terms of operators constructing a relational network (Fig.
26). Adopting the language used to describe NEOMYCIN's SSM, Keeler says:

The process of lofargram analysis is the construction of a proof tree
relating the acoustic spectrum and sources that could have gener-
ated these signals The target has a three-bladed prop (pro-
peller-4); what platform could have that component? An auxiliary
pump, type p, is unique to platform-Z types, and we direct our
attention from above in searching for a line-a.

This example shows the generality of the SSM-operator perspective, as well
as how the blackboard model of control can be reformulated to make explicit
the model-graph-operator characteristics of inference.

In summary, we need to move blackboard terminology from the program-
ming-language level to the process-modeling level. Words like panel, knowledge
source, events, rules, focus of attention, and scheduler emphasize how a model
and inference operators are encoded in a programming framework. Missing are
mathematical concepts--such as relation, operator, graph, link, edge
direction--and system-modeling operations--such as explain, locate, se-
quence. Nodes on the blackboard can be described in terms of an ontology of
substances, processes, states, structures, and events (in the process being

5 Larry Keeler, Personal communication, NTSC, Orlando, FL (March 1987).

42 W.J. £Tancey

modeled)• Finally, a global perspective of the blackboard as a model of a
system with certain space-time characteristics is essential for arguing about the
adequacy of a solution and for describing the space of operators represented by
a given set of "knowledge sources"• Relating the structure of the blackboard as
a model to inference operators provides a way of systematically designing or
looking for knowledge sources.

4.5. M Y C I N ' s context tree reconsidered

One of the defining characteristics of EMYCIN's design is the context tree

[12], a means of organizing dynamic information during a consultation (Fig.
27). 6 The tree's design, dating from 1972, exhibits many features we associate
with object-oriented programming today:

• a hierarchical class structure, with distinction between classes and in-
stances;

• dynamic generation of an instance hierarchy, with provision for nonhierar-
• - 7 chical associations (e.g., infection/organism, organism/recommendation,

culture/current therapy);

PERSON

CULTURE INFECTION F~-C, CMIVENDA~

ORGANISM (TYPE of CULTURE) PRIOR CUI:~::~zNI" POSSIBLE
e.g., bacterial- THERAPY THERAPY THERAPY

meningtis

I
(COVERFOR of CULTURE)

e.g., E.coli

Fig. 27. MYCIN's context tree (circa 1977), with culture "parameters" shown as infection
subtypes.

6 In the original program, TYPE and C O V E R F O R are parameters of a C U L T U R E context.
The values of TYPE are infection categories (e.g., bacterial meningitis). The values of COVER-
F O R are subcategories of these (e.g., E.coli bacterial meningitis). As I have said, the community
of computer scientists and physicians who designed MYCIN did not talk in terms of disease
classifications. The representation of the disease classification is distributed across several object
types and parameters: INFECTION, "name of infection"; C ULTUR E, "type of infection", and
C U L T U R E , "organism that therapy should cover for". To make explicit these relations, I have
shown the parameters TYPE and C O V E R F O R as contexts below INFECTION.

7 The value of an attribute can be an instance name or list of instance names. For example,
"current therapies affecting a culture" is a parameter of a culture context and has current therapy
instances as values.

Model construction operators 43

• inheritance of class and instance properties;
• methods for filling in slots of instances (EMYCIN's parameters and rules

for concluding about them);
• rule primitives for collecting, filtering, sorting sets of instances according

to arbitrary predicates (e.g., a rule might refer to "the positive cultures
from sterile sites with gram-negative rod organisms").

In effect, the context tree provides a place for posting information about the
current case. The tree structure shows how objects are related (e.g., the
organisms observed on a particular culture are grouped as children of that
culture). Examining Fig. 27, we observe that there are three kinds of relations:
spatial (organism located in a culture), subtype (kind of infection), and
componential (drug therapy pari of a recommendation). This systematic rela-
tional structure reveals that the three parts of the context tree are modeling
three systems:

(1) The physical structure and history of the person, including cultures and
organisms from different parts of the body.

(2) Pathophysiological processes (in the meninges and blood), that is, the
disease process causing observed symptoms and positive cultures.

(3) The therapy plan (a list of drugs, dosages, and methods of adminis-
tration).

It is now apparent that MYCIN's context tree corresponds to three situation-
specific models; that is, it is a blackboard with three panels (Fig. 28). Each
panel has different relations between the levels (as we observed in HASP, Fig.
25). The instances or objects--cultures, organisms, disease processes, drugs--
are copied over from the general model, which describes what instances are
possible (e.g., names of all sites where cultures can be taken) and how they can

I

PERSON

CULTURE

ORGANISM

II III

INFECTION

(TYPE of CULTURE)
e.g., bacterial-

meningtis

(COVERFOR of CULTURE)
e.g., E.coli

RECOMMENDATI£Xq

PRIOR I CUF:RENT
THERAPY THERAPY

POSSIBLE
THERAPY

Fig. 28. MYCIN ' s context tree shown as a blackboard with three panels.

44 W.J. Clancey

be related (e.g., what drug combinations are allowed and what organisms they
are effective against). As discussed in Section 2, some of this information, such
as the disease hierarchy, is implicit in rules.

Throughout, I have emphasized that how we visualize program structures
influences how we talk about them (e.g., the three views of inference). This
lesson is particularly clear when we replace the hierarchical lines of the context
tree by boxes--suddenly, MYCIN has a blackboard! A number of observations
leap out:

(1) The three panels loosely correspond to three stages in the consultation.
The PERSON/INFECTION link is accomplished by heuristic classifica-
tion. The INFECTION/RECOMMENDATION link is accomplished by
generate and test from a grammatical description of valid drug combina-
tions [23].

(2) The PERSON-CULTURE-ORGANISM panel models the system being
diagnosed as a whole, setting up its physical and historical structure.
This pattern is seen also in SACON (in terms of a building and reasons
for failure analysis) and TOPO, an experiment in using HERACLES for
configuration of computer networks (organizational structure and phys-
ical layout of working groups). Examination of other programs suggests
that the first step in design or diagnosis modeling of a system (e.g., a
person) is to model the physical structure of the system (its parts and their
properties) and the historical environment of the system (in the case of
diagnosis, its creation and where it has been; in the case of design,
constraint specifications for assembly and future use).

(3) Therapies are related temporally, shown here as three sections at one
level in the third panel. Temporal reasoning is very important in
MYCIN, in order to determine how culture results are affected by
current and prior therapies (i.e., drugs may mask the effect of an
infection, obscuring the symptoms, without curing the patient). This
reasoning mainly concerns the overlap of events (e.g., did a symptom
occur more than three days after therapy began?).

(4) Broadly speaking, the operators (implicit in rules, EMYCIN's interpre-
ter, and the therapy program) describe the patient's physical/historical
structure (the task "specify", panel I), develop a top-down description
of the disease process (the task "diagnose", panel II), and construct a
therapy recommendation (the task "configure", panel III). In effect,
NEOMYCIN's subtasks and metarules (Section 6) make explicit and
generalize the operators in panels I and II.

It is no surprise that it took so long to realize that the context tree
corresponds to a blackboard. First, the idea of a blackboard was developed
years after MYCIN was designed; the context tree picture was firmly en-
trenched. Second, general descriptions of "blackboard systems" appropriately

Model construction operators 45

emphasize opportunistic reasoning, which does not occur in MYCIN. If the
idea of a blackboard as a place for posting a model of a system--an overarch-
ing theme of this paper--had been emphasized over the use of the blackboard
for driving the reasoning process, researchers might have more readily seen
that the context tree is a blackboard. In this respect, it is interesting that both
EMYCIN and HASP fail to make explicit the relations between objects. This
lack of attention to structure (the representation of a model) and overemphasis
on programming (EMYCIN's rule interpreter, HASP's scheduler) played a
major role in obscuring the commonalities of the designs. Ironically, a third
obscuring factor is that the reasoning about spatial, temporal, and component
relations in MYCIN is more complex than the simple "levels" idea in black-
boards. That is, the blackboard conception alone does not have the complexity
required for reasoning about the relations among cultures, organisms, infec-
tions, therapy recommendations, and drugs.

As stated at the beginning of this section, synthesizing research is not a
simple matter of mapping onto one existing conception. In identifying the
blackboard idea as a good orientation, we have moved back and forth between
showing what it clarifies and what it fails to bring out. Our study of
NEOMYCIN, HASP, and MYCIN in particular shows that if researchers
simply dropped their own representations and adopted the blackboard concep-
tion (of say, BB1), important distinctions would be lost. Specifically, a
synthesis shows that the relations among objects, levels, and panels need to be
made explicit in order to make explicit how processes/systems are modeled.
Furthermore, recurrent structures emerge (i.e., the first panel is similar in
several programs), which we will want to build into knowledge acquisition tools
and convey to knowledge engineers as guidelines for designing blackboards.
These patterns are discussed further in Section 8, when we consider knowledge
acquisition tools. But first we consider what kinds of processes are modeled in
programs in general, and then the patterns in NEOMYCIN's subtasks and
metarules.

5. AI programming as process modeling

Having established the value of the blackboard and operator perspective, we
now consider more broadly how blackboards can be used in an AI program.
This brings out the different kinds of processes that a program might model
and what flexibility the blackboard perspective offers over other architectures.

Not surprisingly, we generally describe a new kind of computer program in
terms of a programming language. Thus, papers about MYCIN emphasized the
production rule language and interpreter. Papers about blackboard systems
emphasized the relation between knowledge sources and schedulers. General-
ly, the news to report at first is how to get certain performance out of a

46 W.J. Clancey

program or how to code something so it can be easily modified. In this respect,
object-oriented programming has emerged from AI research as an important
contribution to computer science, even to the extent that it is sometimes
identified with intelligent programs in the popular literature. How is the
blackboard conception related to object-oriented programming?

As shown by the examples in this paper, programming-language descriptions
(e.g., HASP's "blackboard events") are inadequate for describing expert
systems because they combine process-model characteristics with how the
model is encoded and interpreted as a running program. Programming-
language descriptions have in fact so disguised the expert system enterprise
that the underlying model structure and construction operations are even
denied by researchers in the misleading "shallow" versus "model-based"
distinction. Nevertheless, programming-language descriptions can be useful for
comparing alternative views of inference, making explicit the contribution of
the blackboard perspective. This analysis is particularly valuable for describing
the methods of AI programming to other computer scientists.

5.1. An object-oriented view of inference operators

Consider the following sequence of programming languages, more or less
corresponding to the evolution of techniques for encoding inference proce-
dures: procedural code in a conventional program, inference rules as in
MYCIN, an object-oriented domain model as in CENTAUR and MDX, an
object-oriented method hierarchy as in NEOMYCIN, methods viewed as
operators for constructing an SSM graph as in ABEL, and finally the use of a
scheduler for controlling methods as in BB1-ACCORD.

5.1.1. Procedural code
A traditional computer program combines a general model with an inference

procedure, coded as conditional statements. Runtime ordering of statements
must be explicitly coded. Typically, the system being modeled is implicit;
attributes are represented as variables.

Representation in C code:
Boolean FEVER, INFECTION;
if (FEVER) then INFECTION = TRUE;

If there is a fever, then there might be an infection.

5.1.2. Inference rules
In a typical rule-based system, attributes or relations are distinguished from

objects, which are signified by variables (e.g., CNTXT in MYCIN). Attributes
are represented by literals. Facts about the system being modeled are treated
as global data; they are structured objects (e.g., propositions), not just values
of variables. Conditional statements are called rules, which can be controlled in

Model construction operators 47

a data-directed way, not just linearly executed like program steps. Rules are
generally written in a language with a restricted syntax amenable to interpreta-
tion by different programs (translation, explanation, knowledge acquisition,
student modeling, tutoring). Thus, conditional statements are treated like data.

Representation in EMYCIN:
(PATIENT Mary)

(IF (AND (PATIENT $CNTXT) (FEVER $CNTXT))
THEN (INFECTION $CNTXT))
If the patient has a fever, then the patient has an infection.

Uncertainty is represented by second-order relations, e.g., the following is a
formal representation of EMYCIN's rule predicate, MIGHTBE:

(IF (AND (BELIEF ($RELATION $CNTXT) $CF)
(GREATERP $CF -200))

THEN (MIGHTBE $RELATION $CNTXT).

5.1.3. Object-oriented domain model
In a typical object-oriented system, such as CENTAUR or MDX, domain

objects are represented in a hierarchy and inference methods are attached to
them. This approach makes explicit the classification nature of the domain
knowledge, but often domain relations that could be stated in process-model
language are stated procedurally. For example, in OCEAN (developed by
Cimflex-Teknowledge, Inc. as a reformulation of R1 for NCR) structural-
component relations in a computer system being configured are expressed by
the " F R O M " and "TO" relations, indicating the way in which the model is
interpreted to refine the SSM. Also, methods are often stated using domain
terms, rather than abstracted, as illustrated by an "if-confirmed" method from
CENTAUR (using the same infection example).

Representation in CENTAUR:
(MORE-SPECIFIC infection (disease meningitis))

(IF-CONFIRMED infection
(DETERMINE disease of infection))

5.1.4. Object-oriented method hierarchy
In NEOMYCIN there is both a domain object hierarchy (the disease

taxonomy) and a method hierarchy (the subtasks/metarules). The methods do
not reference domain terms directly; they are abstract. Although this discipline
could be applied by moving all methods to the most abstract objects in the
domain hierarchy, as is done in MDX, representing methods in a separate
object hierarchy makes clear that they are not just associated with abstract
domain objects (such as "disorder" or "finding"), but they are themselves

48 W.J. Clancey

hierarchically abstracted. Figure 4 illustrates how the infection example is
handled in NEOMYCIN; see Section 8 for further examples of method
abstraction in generic systems.

5.1.5. Methods as SSM-graph manipulation operators
In HERACLES-DX, the generalization of NEOMYCIN into a diagnostic

shell, the object hierarchy is viewed as a process classification. The method
hierarchy is viewed as operators for constructing an SSM. Specifically, the state
of the program's reasoning is reified as an object in its own right, the SSM,
with dynamic properties that drive the application of methods (e.g., "an
unexplained abnormal finding exists in the SSM"). This perspective is in most
respects adopted in ABEL, CADUCEUS, and ACCORD. ACCORD's use of
abstraction for describing methods is illustrated by Fig. 24. The importanrshift
is from talking about object-oriented programming in general to talking about
a particular kind of computer program in which the objects represent pro-
cesses (and indeed, this applies to both the domain and method object hier-
archies).

5.1.6. Agenda~blackboard and scheduler for posting and selecting methods
In BB1/ACCORD, methods are not executed directly, but an intermediate

reasoning step involves posting the methods that could be applied on an
agenda. In other variations, such as Hayes-Roth's model of planning [46] and
Lesser's HEARSAY variants [58], goals and methods are posted on a control
blackboard. That is, the inference process itself is represented on an inference
SSM, paralleling the posting and reasoning about alternative processes in the
domain system being modeled (sometimes called the "data blackboard").

In this sequence we have compared diverse programs like MDX, EMYCIN,
and BB1/ACCORD, using the idea of object-oriented programming as a
backbone for understanding the shift from directly executing programming
statements to representing them as objects with properties. In parallel, what is
a simple conditional statement in a FORTRAN or C program becomes two or
more statements: the causal, subtype, temporal or spatial relation of the
domain model and the operator that places this relation in the SSM.

Crucially, the program's output is viewed not just as values for variables, but
a structured representation of processes occurring in some system being
modeled. This representation takes the form of a list of diseases, called the
differential in the early NEOMYCIN. It then becomes a graph, relating
substances, states, and processes, called the SSM. A similar transition occurs in
moving from a linear agenda, which simply orders operators that can be
applied (a kind of differential), to a control blackboard in which alternative
inference processes are described, elaborated, and contrasted.

Model construction operators 49

5.2. Advantages of a control blackboard

We now understand that the advantage of BBl’s architecture over HERA-
CLES is that it allows control of inference operators to be represented in a
more general way, directly analogous to the advantage of NEOMYCIN’s
subtask/metarule representation over rule-clause ordering in MYCIN’s rules.
In fact, representing alternative inference processes is precisely what ODYS-
SEUS does (and must do) when modeling a student’s diagnostic strategies.
Alternative strategic abstractions of a sequence of patient data requests are
posted as alternative lines of reasoning, that is different explanations for why
the student requested the information in this order 1931. The same idea is
exploited in Murray’s [69] BBl-tutor in which alternative instructional plans
are posted on a blackboard. Figure 29 summarizes how the idea of an SSM can
thus be generalized for representing processes in the world (the system model
and plans for assembling, controlling, or modifying this system), processes in
the program (the inference process), and processes of interaction between the
program and the world (e.g., discourse or instructional plans).

The innermost two ellipses in Fig. 29 correspond to the domain or general

Describes a process
in the war/d:

SSM of Object
System

QS~ultloOnsGn

lBlloaLhmrdlD

Describes a process
in the program.

SSM of Reasoning
System

OUmlng
Blrckborrd)

-

COMMUNICATION
(knowledge acquisition, explanation,

Fig. 29. General view of AI programs showing nested representations of domain, inference,

50 W.J. Clancey

model (the knowledge base) and the inference procedure, which we have been
discussing in this paper. ~ The SSM we have focussed on is shown at the top left.
The next layer corresponds to the control or planning blackboard and
scheduler in programs like BB1. The reasoning process is represented by
combinations of operators on the planning blackboard, which may be elabo-
rated into alternative lines of reasoning. In essence, this is where ODYSSEUS
posts alternative strategic models of a student's reasoning. Stefik's MOLGEN
[86] provides another good example, in which there are explicit planning
operators (called metaplanning operators because the object SSM is an ex-
perimental laboratory plan). Stefik's inference planning operators include
GUESS-UNDO and LEAST-COMMITMENT. Of course, these are model-
manipulation operators, too. They manipulate the model or representation of
the inference process, in contrast with inference operators, which manipulate
the representation of processes in the system being modeled.

The outermost layer concerns processes by which the program interacts with
its environment. For example, in GUIDON and BBl-tutor these are instruc-
tional discourse processes. Again, there are two layers. The first, here labeled
"current dialogue", is a representation of the interaction as it has been
occurring (e.g., the student has just asked for help). The second SSM, here
labeled "discourse plan", is another planning blackboard; here the program
posts alternative dialogue interactions it might have with the student (e.g.,
generate a hint, provide a simpler example). Objectifying the discourse process
in this way facilitates interruption and return to a previous state of the
dialogue, as well as lookahead (e.g., to determine whether an example can be
suitably elaborated and related to the current situation or to estimate duration
of an interaction and take resource limitations into account). A similar pair of
blackboards could be used for acquiring data from sensors, allowing interrupts
from multiple sources to be posted and selectively attended to.

In both GUIDON and NEOMYCIN, which lack planning blackboards,
these considerations have to be coded in an ad hoc way. For example, after
GUIDON selects a candidate domain rule to present, it must look ahead to
determine if the rule can be adequately discussed (perhaps its syntax is too
complicated). In general, a planning blackboard is useful for determining
whether operators can successfully apply to a candidate focus operand in the
object SSM. An analogous problem occurs when an abstract operator selects a
line of reasoning; a control blackboard provides a systematic way of posting the
selection criteria so the lower-level operators can refer to it when instantiating
the plan. For example, GUIDON might select a domain rule for presentation
because the student forgot to apply it in a previous case. However, the
discourse procedure for discussing a domain rule is separate from the proce-

Figure 29 is not a Venn diagram. Outer processes reason about and /o r control inner processes,
e.g. , the inference procedure reasons about the domain model.

Model construction operators 51

dure for selecting what rule to discuss, and thus the selection criteria is not
available for biasing the presentation method, except through ad hoc use of
flags and other bookkeeping records. Put another way, levels in a blackboard
represent support for planning decisions and make selection criteria available
for subsequent processing--an important theoretical principle in controlling
reasoning revealed by our analysis. 9

Similarly, NEOMYCIN's inherited end conditions lead it to interrupt a line
of reasoning (e.g., pop up from TEST-HYPOTHESIS back to ESTABLISH-
HYPOTHESIS-SPACE to reconsider what hypothesis to focus on). However,
it retains no explicit description of the line of reasoning it interrupts (just the
SSM and a record of the contexts in which subtasks have been applied). In
general, a planning blackboard enables posting which subtasks have been
started, but are incomplete, enabling a program to deliberately compare
alternatives and pick up where it left off, rather than beginning entirely new
lines of inquiry (which could confuse the student/user).

In summary, the representation of inference and discourse in NEOMYCIN
and GUIDON respectively is abstract (using no domain terms) and represented
via hierarchical operators, enabling these operators to be represented non-
redundantly and flexibly applied. However, without a control blackboard for
posting the current, interrupted, and alternative lines of reasoning (operator
sequences), communication between operators concerning the state of the
inference process (for constructing a domain SSM and constructing a dialogue
SSM) must be handled in an ad hoc way. The use of a network representation
for lines of reasoning in ODYSSEUS and a blackboard for posting alternatives,
in contrast with IMAGE in which lines of reasoning are represented as a fiat
agenda, enables the ODYSSEUS student modeling program to contrast differ-
ent lines of reasoning and argue for completeness of its explanations (e.g., a
given strategic model encompasses the full sequence of student data requests).
A similar conclusion concerning explanation dialogue planning is reached by
Moore and Swartout [67].

5.3. The generality of process modeling

Figure 29 captures a recurrent result in diagnosis, explanation, and cognitive
modeling research. We need to treat the diagnosis, the dialogue, and the
inference process as explicit structures. In all cases, the SSM makes explicit the
model construction nature of the inference process, provides a place for
posting and reasoning about alternative models, and by an analysis of the form
of the model allows arguments about its incompleteness or inadequacy for the
purpose at hand to drive the inference process.

It is worth mentioning again that I use the term "blackboard" because it makes explicit the
idea of an SSM. I am not promoting wholesale acceptance of the programming style of a
"blackboard architecture", which focuses on symbol-level manipulations, illustrated by the analysis
of HASP (Section 4.4).

52 W.J. Clancey

In each case, a process is treated as a structured object which can be reasoned
about, rather than being something that is executed or interpreted directly as
code (e.g., the contrast between metarules that post subtasks on a control
blackboard versus metarules whose actions directly apply subtasks). Posting
and reasoning about processes enables parallel execution, suspension/resump-
tion, and dynamic ordering (contrasted with selection of predefined action
sequences). This idea is very general and has important implications for
computer science in general: AI programming methods enable representations
of processes to be constructed and manipulated by different programs (them-
selves represented as structured processes). Indeed, it should be evident that the
nesting of domain model, inference process, planning, and communication is
very general; it could be argued that this covers the gamut of what programs
must know and do.

It is worth recalling that we developed this picture by beginning in
NEOMYCIN with the idea that different processes should be represented
separately. From this method, we have demonstrated a range of programs with
new capabilities: modeling a student's diagnostic strategies, generating strategic
hints, detecting that a solution is incomplete, generating hypotheses about
missing domain facts. Figure 29 and the process-modeling perspective also
provide a good starting point for teaching about AI programming. For it
should be clear that we have stepped beyond expert systems per se to
encompass the full sweep of AI research concerns, including planning, natural
language generation, and learning. The value of this perspective is obviously
not in resolving all open questions, but rather in providing a single architecture
for integrating work in different areas.

We have also learned that what makes software reusable by different
interpreting inference procedures is the ability to classify process constructs in
different ways. For example, domain relations in NEOMYCIN's metarules are
classified so the compiler can replace them by LISP code. Other properties of
domain relations are used by the explanation program (e.g., if one relation
implies another, it may be sufficient to state just the more specific clause). The
subtasks are classified in one way for GUIDON-MANAGE's hint generator
and classified another way for the explanation and student modeling programs
(e.g., GUIDON-MANAGE does not suggest subtasks below the level of
subtasks in the student's menu). IMAGE must know how metarules can be
reordered or omitted when generating advice from a student model. At a lower
level, the arguments of subtasks (called loci) are also classified (into finding,
hypothesis, and domain rule), so the explanation program can determine
whether a type change has occurred in a line of reasoning (arbitrary variable
names would not allow this). In short, different interpretation procedures
require different views of the model~process being reasoned about. These views
take the form of new relations by which elements of the model/process are
classified, hence new structure. These relations appear in conditions for

Model construction operators 53

applying operators for constructing an SSM using the model (e.g., the compil-
er's SSM is the LISP representation of the inference procedure). In essence,
these relations act as filters by which different elements of the process model
are preferentially collected and sorted for incorporation in the SSM (cf. the
description of inference in SOAR).

We have also discovered a recurrent set of operations that are performed on
processes: specification, design, assembly, diagnosis, etc. In general, the
relations among these operations shown inFig. 21, which was presented as a
description of how a domain model is created and used~ applies equally to the
inference, planning, and communication processes. For example, the inference
planning process is a design task; the compiler is an assembly task; the
knowledge acquisition program includes both diagnosis and repair tasks. Given
that the representations of all these processes are similar (using compositions of
hierarchical and state-transition networks), the possibility arises that there are
common inference procedures. That is, if the relational network representation
is similar (see Section 7), the diagnostic operators for constructing a patient-
specific model should share some similarities with the operators for diagnosing
what has gone wrong in an instructional dialogue. Indeed, everything would
collapse to the inner two ellipses of model and model-manipulation procedure,
as shown in Fig. 18, with different representations and inference procedures for
different types of systems (e.g., CNS versus LISP program) and different tasks.

This analysis suggests that we should now study the relation between types of
systems, process model structures, SSM structures, and inference procedures.
In Section 6 we present a dimensional analysis of NEOMYCIN's subtasks; in
Section 7 we study the types of relational networks used for representing
processes. These ideas are then applied in Section 8 to improve our descrip-
tions of knowledge acquisition tools.

6. Formal analysis of subtasks and metarules

Subtasks are essentially functions; here we adopt three different perspectives
for describing them:

(1) as operators placing oriented edges in the SSM graph;
(2) as operators manipulating typed sets (the SSM-graph nodes--findings,

hypotheses, and domain rules);
(3) as operators satisfying constraints on the form of an adequate SSM.

In these three perspectives we view subtasks according to how they change
the SSM, viewed at the different levels of edge, node, and subgraph. The
purpose of this section is to show that an inference procedure can be
systematically described using simple graph, set, and logic distinctions. This
description provides a convenient means of determining the completeness of a

54 W.J. Clancey

given inference procedure, as well as a common language for comparing and
collecting libraries of inference operators.

6.1. Placing oriented edges in the SSM

Figure 16 suggests that at least some subtasks can be described according to

the types and directions of the links they place in the SSM. Table 1 describes

many of N E O M Y C I N ' s subtasks in this way. For example, F I N D O U T and
C L A R I F Y both place an edge between findings, moving downwards from a

finding to a more specific finding (e.g., F I N D O U T grows a link from medica-

tions to aspirin; C L A R I F Y grows a link from headache to the headache 's

duration). The key on the far left indicates that this is a supporting link, an

a t tempt to find evidence for or details about a more general process.

We also see that F I N D O U T can grow links in the opposite direction, f rom a

known specific finding to an unknown general finding (e.g., if the patient has

undergone neurosurgery, we can conclude that the patient has undergone
surgery, and hence go on to ask about cardiacsurgery). Whether the focus

findings are known or not is a secondary consideration; there are systematic

pat terns in the metarules, so they are noted here.

Notice that the subtasks are described in this table by several dimensions, in

terms of:

Table 1
NEOMYCIN's subtasks viewed as o

SUBTASK

(support)
From node

I

To node

RELATION

To node

I
From node
(explain)

SUBTAS~

FINDOLrI"

CLARIFY
(gen'l ->

unknown
specific)

(specialize)
F
I

F

subsumes

F

I
F

(generalize)
FINDOUT

(known
specific ->

unk,
general)

9erators that)lace oriented ed

F
I

N

causes

F

I
FI

"lEST

CONSIDER H
(new H ->
known F)

H
I

F

causes

H

I
F

CONSIDER F
(new F

-> any H)

es in the SSM.

GROUP

(generalize)
N
1

subsumes

I

(specialize)
REFINE

Model construction operators 55

• the type of the subtask focus (e.g., hypothesis, indicated by H, is the focus
type for TEST-HYPOTHESIS),

• the type of node to which the subtask seeks to grow a link (e.g.,
TEST-HYPOTHESIS seeks to link its focus hypothesis to a finding node),

• the relation linking these nodes (e.g., "causes" for TEST-HYPOTH-
ESIS), and

• the direction in which the graph is being modified (e.g., TEST-HYPOTH-
ESIS grows a "support link", from a hypothesis node to a finding node
lower in the graph).

Further distinctions can be made regarding whether the nodes represent
known findings (or previously considered hypotheses). Findings are never
linked directly above hypotheses (column 2) because by definition, a finding is
an observed system behavior that is caused by or subsumed by an internal
state, structural change, or process (which are called hypotheses because in
diagnosis we are attempting to infer the description of the system). For findings
to be placed above hypotheses, the direction of causality or subtype would
have to be reversed, and there would not be a consistent interpretation of the
SSM in terms of support (that a process is occurring from below) and
explanation (for particular behaviors from above). This underscores the point
that an SSM is not an arbitrary graph, but is a representation of processes, a
model that is interpreted for the purpose of the tasks at hand, such as diagnosis
and repair.

This table only shows operators for extending a given graph by adding one
link between findings and hypotheses. Other operators incorporate laboratory
tests (a kind of finding), relate hypotheses in different subgraphs (such as
DIFFERENTIATE), or simply place a node in the SSM (e.g., an unexplained
new finding).

It should be apparent that this kind of table provides a dimensional analysis
that merely listing operators (as in Fig. 22 (CADUCEUS) and Fig. 24
(ACCORD)) does not provide. The graphic presentation of ABEL's operators
(Fig. 23) shows the kinds of links the operators grow and their direction, but
there is no way of seeing quickly what the possible operators are.

The subtasks listed in Table 1 are primitive operators because they directly
place links in the SSM. More abstract operators control the order in which
these primitive operators are applied. They are called procedural operators
(Fig. 30). The metarules for such subtasks constitute ordered, conditional steps
in a procedure. In contrast, the metarules for primitive subtasks are alternative
methods for accomplishing one thing--placing a certain kind of link in the SSM
graph. A typical procedural operator is PURSUE-HYPOTHESIS. Its two
metarules invoke TEST-HYPOTHESIS and REFINE-HYPOTHESIS in se-
quence. Procedural operators represent preference between primitive
operators. For example, to accomplish a top-down, breadth-first search of the

56 W.J. Clancey

Establish-Hyppt hesls-Space
/ %

view as / ~ vlew as subtypes ,ro-y
Group-and-Differentiate ~ Explore-and-Refine

top-down
~ r ~ ~ @ ~ ¢ ~ ¢ refinement
Hypotheses Hypotheses

~ s

Hypothesis Hypothesis

Fig. 30. Procedural subtasks order the application of primitive operators (GROUP, DIFFEREN-
TIATE, TEST, REFINE) or other procedural subtasks GROUP-AND-DIFFERENTIATE, EX-
PLORE-AND-REFINE). Arrows indicate preference relations represented by the order of

metarules for a given subtask.

disease taxonomy in NEOMYCIN, we want to test a hypothesis before refining
it. If we refined hypotheses first, we would test the most specific disease first
and lose the benefit of pruning the search at a higher level in the disease
taxonomy.

GROUP and DIFFERENTIATE are not implemented as explicit subtasks
in NEOMYCIN; our analysis (Table 1 and Fig. 30) shows that these are two
distinct operators. Thus, one benefit of this analysis is making clear how
subtask decomposition can be done in a principled way. Specifically, the
dimensional analysis shows how to coherently group metarules into subtasks
that accomplish one kind of operation (by edge type and whether they are
primitive). It was a surprise to realize that the GROUP-AND-DIFFEREN-
TIATE metarules fell into two disjoint groups, which constituted two distinct
subtasks that might have been explicitly labeled, analogous to TEST and
REFINE. Metarules for other subtasks, such as FORWARD-REASON and
PROCESS-HARD-DATA, not shown here, can be abstracted and regrouped
in a similar way.

Figure 30 also shows that procedural subtasks themselves can be character-
ized in terms of modeling processes. In particular, we see that "looking up" in
GROUP-AND-DIFFERENTIATE entails a categorical view of the model in
terms of processes; "looking down" corresponds to Szolovits' probabilistic
phase, viewing the model in terms of specific causal and subtype relations.

In practice, these preference relations are enforced by the use of HERA-
CLES' ability to interrupt a subtask and return control to a higher-level
procedural subtask. Preconditions and goals, called end conditions, can be

Model construction operators 57

associated with each subtask; they are in effect inherited as interrupt conditions
by all subtasks on the stack. A true end condition signifies that a subtask
precondition is violated or a subtask goal is achieved; the subtask interpreter
aborts the current subtask and returns control to the highest subtask on the
stack for which no interrupt condition holds. In particular, EXPLORE-AND-
REFINE has an end condition termed "wider differential", which means that a
new hypothesis has been added to the SSM which is not subsumed by any
existing subgraph. This requires return to categorical reasoning (GROUP-
AND-DIFFERENTIATE). This simple mechanism served well in
NEOMYCIN, but as indicated previously such end conditions themselves need
to be objects that can be posted and reasoned about for student modeling and
discourse management (which forced the use of a control blackboard/agenda in
both ODYSSEUS and GUIDON-MANAGE) .

6.2. Manipulating sets of SSM nodes

From a programming-language viewpoint, it is interesting to describe the
subtasks as set-mapping functions. It is surprising at first to realize that there is
just a small group of possible set operations that are performed by the 84
NEOMYCIN metarules. This analysis has value for explanation programs
(summarizing a line of reasoning in terms of subtask focus changes) and
certainly for knowledge acquisition (providing templates for modifying and
acquiring new metarules).

In particular, we find that subtasks have either a single node as a focus
(argument) or a set of nodes of a single type. For example, Fig. 31 shows that
CLARIFY-FINDING maps between a single finding and a list of findings.
Here we are not viewing the subtask in terms of the kinds of links it places in
the SSM, but computationally in terms of function (subtask) arguments. In
effect, CLARIFY-FINDING collects a set of findings and invokes FINDOUT
on each of them. Similarly, FORWARD-REASON sorts its arguments, map-
ping from a set of input findings to ordered invocations of PROCESS-
FINDING. DIFFERENTIATE maps from a set of hypotheses (the roots of
disjoint SSM graphs) to a discriminating finding. In effect, each subtask is
focusing the operation of the subtasks it invokes by collecting, ordering, and
filtering arguments that are passed on. In each case, we find a relation in the
premise of a metarule that takes the focus as a given term and seeks possible
bindings from the general domain model in order to carry out these collection,
ordering, and filtering manipulations (Fig. 20).

As we have seen (Figs. 4, 6, and 8), there is a striking pattern by which each
new metarule (not just each new subtask) tends to require a new relation by
which nodes in the SSM can be collected, sorted, or filtered. This is an
important result for the design of knowledge acquisition and learning pro-
grams: It means that changes to the theory (the relational language in which
the domain model is expressed) are tied to new metarules that use that

58 W.J. Clancey

Identify-Problem {Findings}
~ aqk...

Forward-
Reason

Differentiate {Hypotheses}

"-4
Hypothesis

Test

Finding

Findout

Fig. 31, Subtasks viewed as functions manipulating types of SSM nodes (boldface arrows indicate a
selection or filtering process).

distinction in order to selectively apply an existing operator to a set of SSM
nodes. We can expect the types of nodes, links, procedural operators, and even
most of the primitive operators to be relatively stable. Acquiring a new kind of
knowledge (a new relation)--at least in our experience in the development of
NEOMYCIN--general ly involves acquiring a new metarule for an existing
operator. More commonly, we acquire only new domain propositions, which
themselves can change the program's behavior; the strategy is unchanged
because the relational language and metarules remain the same.

An example of set-mapping analysis applied to the initial specification of an
expert system, very much in the spirit of the approach advocated here, is
provided by Alexander et al. [2]; for example, for a meeting-planning program,
the SELECT-ARBITRATOR operator is defined as

Meeting x Purpose--~ Arbitrator,

a notation with the advantage of representing the intermediate relations (i.e.,
Purpose) that will qualify the operator's focus (Meeting) in order to select an
output variable (Arbitrator). In this notation, we might write:

TEST-HYPOTHESIS:

Diagnostic-hypothesis × Causal-effects

--~ Conjectured-f inding.

Model construction operators 59

Ontological analysis provides a formal specification for subtasks and metarules;
the subtask/metarule language in turn provides a stylized procedural im-
plementation for Alexander et al.'s knowledge-level specifications. In related
work, Hartley [43] shows how Sowa's conceptual structures, using a case-frame
representation of "actors", can be used to represent diagnostic operators that
manipulate sets of symptoms, tests, etc.

Another direct application of set-mapping analysis is for collapsing a line-of-
reasoning explanation. By examining subtasks in terms of set-mapping rela-
tions, the explanation program can detect potentially confusing focus shifts.
For example, in Figs. 9-11 we observe a complicated shift from data-directed
to hypothesis-directed reasoning. Rather than traipsing through the networks
link-by-link, the explanation program could say, "Besides meningitis, papille-
dema might be caused by an intracranial mass lesion. Before jumping to that
conclusion, I need to gather additional evidence that there is increased
intracranial pressure." The possibility of composing TEST-HYPOTHESIS-
(Meningitis) with TEST-HYPOTHESIS(Increased-Intracranial-Pressure) in
the first sentence lies in the analysis of the focus mapping:

TH(H1--+ F1) --+ PF(F1--+ H2) --+ TH(H2-+ F2).

Thus, explanation patterns need not be specified in terms of particular subtask
sequences, but in terms of sequences of loci (H1 to F1 to H2 to F2). The
number of such combinations that lead to clearer explanations have not been
fully explored in NEOMYCIN; surely the example shown here will occur in
many programs.

The set-mapping view of Fig. 31 has the advantage of showing how the
diagnostic work of NEOMYCIN gets done, in terms of mapping from findings
to hypotheses. The figure provides a simple dimensional analysis as well; for
example, we discover that no subtask maps from sets to sets. Unfortunately,
this figure is a white lie; it is an abstraction that leaves out the domain rules.
For example, TEST-HYPOTHESIS does not literally invoke a subtask with a
finding argument. It invokes APPLYRULES with a list of domain rules as an
argument. Can a literal description of the subtasks provide additional interest-
ing information?

Table 2 shows literal relationships betwen subtask foci. A given subtask
accepts the first column (indicated by o--) as a focus and calls a subtask with a
focus indicated by the destination column (indicated by _+).~0 Possibilities that
are logically already covered by preceding cells are indicated by x. Subtasks
that map from a list of rules only invoke APPLYRULE!, so this category is
omitted. Mappings to a list of rules ({R}) are rare, but other missing
associations are commented in italics.

lo In the column headings, F corresponds to finding, H to hypothesis , R to rule and sets of these,
which are the domain and range of the subtasks listed on the left. The table is designed to
enumera t e every possible d o m a i n - r a n g e combinat ion.

60 W . J . C l a n c e y

T a b l e 2

L i t e r a l r e l a t i o n s h i p s b e t w e e n s u b t a s k foc i a n d m e t a r u l e a c t i o n s .

F o r w a r d - R e a s o n >
G e n e r a t e - Q u e s t i o n s

(indirectly via rules) o > X X tt

??? analog of .Differentiate o > X X X
X X X ~ 0 " - >

G e n e r a t e - Q u e s t i o n s o . > X X X

??? analog of Est-Hyp-Spac~ o . i"> X X X

(indirectly via rules)+ o > X X
indlrectl via rules~ X X (. 21 • o >

P r o c e s s - F i n d i n g o ~ > ' X t x
A p p l y - E v i d e n c e - R u l e s

P r o c e s s - F i n d i n g o . > X X

E l a b o r a t e - D a t u m o- . > X X

F i n d o u t o > X X

C l a r i f y - F i n d i n g [
E l a b o r a t e - D a t u m
F i n d - R e l e v a n t - T e s t s
F i n d o u t - T a b l e
G e t - T e s t - A s s o c i a t e - R e s u l t s
P r o c e s s - F i n d i n ~

E x p l o r e - & - R e f i n e o >
G r o u p
F o r w a r d - R e a s o n
P r o c e s s - H a r d - D a t a

???

??? like Generate-Quest ions

(i.ndirect/y via .(u]es)

D i f f e r e n t i a t e

E s t a b l i s h - H y p o t h e s i s - S p a c e
???

T e s t - H y p o t h e s i s
P r o c e s s - H y p o t h e s i s

??? expecta t ions?

P r o c e s s - H y p o t h e s i s
A s k - f o r - H a r d - D a t a

R e f i n e - N o d e
R e f i n e - C o m p l e x - N o d e

P r o c e s s - H y p o t h e s i s
P u r s u e - H y p o t h e s i s

A E ~ r u l e !
???

A p ~ r u l e !
???

???

???

o . - ~->.__

o >

.31m:
r . l l l r J

0 l- "" >

O . >

0 >

O i - >

4

0 t- >

O ! : - ->

o- -

X X
X X
X X
X X

X X
X X
X J ' ~

x x
x k
X X

,, x) x

x x Lx__j
x x

x x x
x .

3LJ
I X X

X X

~ X

t

0 - ~ . - >

o-- , >

x

x

f
, l

o-.-, -+-->

Several "missing" associations are accomplished indirectly (e.g., FOR-
WARD-REASON accomplishes {F}--~ {H} indirectly, via the composition of
PROCESS-FINDING [{F}-+ R] and APPLYRULE! [R--~ {H}]). Other miss-
ing associations seem logically possible but have not been accounted for in
NEOMYCIN's metarules. For example, we could add a metarule to GEN-
ERATE-QUESTIONS (a set of heuristics for improving an SSM which is too
incomplete for the program to determine what to do next) by adding a

Model construction operators 61

mapping from {F}---> H similar to the DIFFERENTIATE metarule. Detecting
such gaps is precisely the value of a dimensional analysis. This analysis also
provides another perspective for detecting composite subtasks (e.g., ELABO-
RATE-DATUM has metarules with different destination arguments (both {F}
and F). Finally, this analysis provides a mathematical basis for relating
operators from different programs. For example, what is {F} ~ F called in
MDX? In CADUCEUS? Does ABEL have an operator corresponding to
{H}--->F? Consider how filling in such a table could focus a workshop
discussion.

Finally, it may seem odd that rules are mentioned here at all. Why not
describe the subtasks in terms of findings and hypotheses alone? The reason is
that this is a literal description of the argument types of the subtasks. We are
describing the computation each subtask actually carries out, not what it
logically (or cumulatively) accomplishes through its subtask invocations. This is
important because we want to map the subtasks, as computer programs, onto
the SSM graph. We want to know precisely where the code is for each
operator. Furthermore, in so far as rules are links in the general domain
model, subtasks with rule arguments are referring to the general model and its
reflection in the SSM. From this we realize that there are operators that
examine and determine the logical applicability of the general model
(APPLYRULE!), and not just operators that examine and change the SSM
directly.

6.3. Satisfying constraints on SSM form and purpose

In order to argue about the completeness of a given set of subtasks and
metarules, we must go beyond consideration of structural changes to the SSM.
We must consider the purpose of the SSM and redescribe the subtasks
functionally in terms of how they satisfy the program's overall goals.

Part of this analysis was provided in Section 3; viewing the SSM as a model
of some system, we can list the constraints on the form of this model for it to
be adequate for the task at hand. Specifically, for infectious-disease diagnosis
and therapy we want to minimize the number of drugs, so we attempt to
consolidate the diagnosis in terms of a single-disease process (single-fault). We
can refer to therapeutic actions available to determine whether diagnoses need
to be more specific in order to select a single action.

Other constraints follow from the form of the general model. Supporting a
disease hypothesis requires supporting its ancestors in the disease taxonomy,
which are essentially frames that collect properties common to each subtype
(e.g., every disease process under infectious process causes a fever, however
they may specify the type of fever or conditions that mask or prevent its
occurrence). It is the structure of the disease taxonomy that leads to the
particular group, discriminate, explore, refine, and test metarules in

62 W.J. Clancey

®

(EVIDENCEFOR ?x H)

model

DENCEFOR A ?x)

not explained

(ASKED B)

not noticed (~B

Fig. 32. Domain model relations corresponding to SSM nodes and links. Findings can be in the
model, known but not explained, or available but not noticed by the program.

NEOMYCIN. Figure 32 summarizes how these constraints are related to the
nodes and links of the SSM.

Three types of nodes are shown:

• findings/hypotheses that are part of SSM subgraphs (the "mode l") ;
• known abnormal findings that have not been explained (i.e., not linked to

any process subgraph); and
• findings in the case record that have not been noticed by the program.

Only the link between hypothesis Y and finding F is established here; the
arrows and (ASKED B) indicate unsatisfied constraints. For example, if it can
be established that F is evidence for H, all the hypotheses will appear in one
graph, which is desirable. Thus, the propositions shown here are not the
constraints themselves (e.g., to have one graph), but links found to be missing
when the constraints are applied to a given SSM. For example, the constraint
that all abnormal case data should be discovered by the program might be
written,

(VF (AND (KNOWN F) (A B N O R M A L F))
(ASKED F)) .

(ASKED B) represents a particular SSM node that is missing. The figure also

Model construction operators 63

shows two propositions that must be satisfied by any "final diagnosis": it must
be a subgraph root of the SSM (DIFFERENTIAL H) and it must be treatable.

In the program GUIDON-DEBUG, these constraints are applied to the final
SSM to generate a list of missing nodes and links. Heuristics order and
minimize the number of hypothesized nodes and links. In particular, the
hypothesis node that is the root of the subgraph containing the largest number
of abnormal finding nodes is chosen to anchor the analysis. If we call that node
Hroot, then (EVIDENCEFOR F i Hroot) links are only generated for known F~
that are not in this subgraph. (EVIDENCEFOR ?x H) propositions are also
generated for any leading hypothesis H that is not directly supported by a
finding it causes. Table 3 summarizes these constraints and the corresponding
SSM propositions they detect to be missing. The constraints are expressed in
terms of gaps or inconsistencies, which in order to be satisfied specify bindings
for propositions that must also be satisfied.

Probably the most surprising result is that GUIDON-DEBUG discovers
findings in the case record (shown as B in the figures) that were not vol-

Table 3
Violated SSM constraints and corresponding unsatisfied propositions.

SSM CONSTRAINT VIOLATION SSM PROPOSITION
UNSATISFIED

(AND (KNOWN B) (ASKED B)
(ABNORMAL B)
(NOT (REQUESTED B))

a known abnormal finding B was not
requested
(AND (DIFFERENTIAL '~ (CH'IL'DC)F ~ Y)

(NOT (TREATABLE Y))
a subgraph root Y (one of the leading
hypotheses) is not a tre, atable diagnosis
(AND (STRONGLY-BELIEVED H) (DIFFERENTIAL H)

(NOT (CONSIDERED H))
a hypothesis H with certainty greater than
400 was never put in the SSM
V$F (KNOWN $F) => (EVIDENCEFOR ?x H)
(AND (DIFFERENTIAL H)

(NOT (CAUSED-BY $F H))
a subgraph root H is not directly supported
by any known finding
(AND (BEST-HYP H) (EVIDENCEFOR F H)

(KNOWN F)
(ABNORMAL F)
(NOT (EXPLAINED F H))

the best hypothesis H does not explain a
known finding F (special case:
F is explained uniquely by hypothesis H1,

.~_ L_.~._.t H)
VSH (DIFFERENTIAL $H) => (EVIDENCEFOR A ?x)
(AND (ABNORMAL A)

(PRESENT A)
(NOT (EXPLAINED A$H))

a known abnormal finding A is not explained
by any subgraph root H

64 W.J. Clancey

unteered or requested during the consultation. Without this constraint-satisfac-
tion perspective, we would not have thought to systematically analyze
NEOMYCIN's diagnoses in this way. Indeed, by our previous perspective, the
name of the diagnosis at the top of the SSM was all that was printed by
NEOMYCIN; if this was correct from the expert's perspective, we said that the
program had the right answer and moved on to the next case.

The propositions shown in Fig. 32 and Table 3 can be systematically related
to subtasks that place such nodes or links in the SSM. These relations are
summarized in Table 4.

Working backwards from violated constraints to generate a list of unsatisfied
propositions (Table 3), GUIDON-DEBUG invokes the explanation program
to determine why the corresponding subtask(s) did not succeed or why it was
not applied (Table 4). For example, FINDOUT(B) might have been invoked,
but B might never have been asked because a FINDOUT metarule with a
different action applied. If FINDOUT(B) was never invoked, then the expla-
nation program checks metarules that have FINDOUT in their action and
determines under what conditions binding B would be passed to the action and
why those conditions did not apply. In general, this can be a huge search
problem because we are looking for gaps in the domain model. That is, we not
only want to know why a given metarule failed, but what changes to the
domain model would have allowed it to succeed with the appropriate bindings.
Heuristics indicating what domain relations are likely to be wrong or incom-
plete are especially useful here. Figure 33 illustrates an example of this analysis
for a case in which NEOMYCIN failed to discover that the patient has a
cranial nerve dysfunction.

GUIDON-DEBUG finds that Metarule611 never invoked FINDOUT/
CRANERVE because the subtask FIND-RELEVANT-TESTS was never in-
voked with the focus CRANERVE ($FINDING). The question then becomes,

Table 4
SSM propositions and subtasks that satisfy them.

SSM PROPOSITION UNSATISFIED
(ASKED B)

(CHILDOF ?x Y)

(DIFFERENTIAL H)

(EVIDENCEFOR .9:(H)

(EVIDENCEFOR F H)

(EVIDENCEFOR A ?x)

SUBTASK{FOCUS) FAILED
FINDOUT(B)

REFINE-NODE(Y)

PROCESS -HYPOTHESIS(H)

TEST-HYPOTHESIS(H)
PROCES S-t ,"YPOTHESIS (H)
TEST-HYPOTHESIS(H)
PROCESS-FINDING(F)
PROCESS-FINDING(H)
PROCESS-HNDING(A)

Model construction operators 65

l l i l i t toni aL; i ue,~,-m m un mu,2.'L~! ~ I l l ! ~ | V;1 "..~k wJm u ~ . ! IP.tlm

ASK-FOR-H~RD-DATA

Task: FIND-RELEVANT-TESTS

If: (AND (SOURCEOF $FINDING $TEST)
(NOT (DONTASKP CNTXT $TEST)))

Then: (DO-ALL (TASK FINDOUT SFINDING)
(TASK G~F-TEST-AND-RESULTS $FINDING)

(TASK FORWAI~REASON))

Fig. 33. GUIDON-DEBUG attempting to explain "Why wasn't CRANERVE asked during the
consultation?"

"Why wasn't FIND-RELEVANT-TESTS(CRANERVE) invoked?" Looking
at the history, the program finds that Metarule609 was tried with $HYP bound
to INCREASED-INTRACRANIAL-PRESSURE but the first clause of defini-
tional Rule9434 could not be satisfied; in particular, (EVIDENCEFOR?
CRANERVE INCREASED-INTRACRANIAL-PRESSURE $RULE $CF) is
unsatisfiable. Examining Rule9434 further, the program discovers that
(HARD-DATUM? CRANERVE) will never be true (because CRANERVE is
circumstantial evidence, not a direct observation of internal workings of the

66 W.J. Clancey

CNS). Generalizing, the program says, "Metarule609 will always fail (to bind
SF to CRANERVE) (independent of subtask focus) because (HARD-
DATUM? CRANERVE) cannot be satisfied." There are several possibilities:
CRANERVE is hard-data, but this is not represented correctly in the domain
model. Or perhaps Metarule609/Rule9434 should be modified. After noting
these, GUIDON-DEBUG goes on to find other reasons why FINDOUT/
CRANERVE was not invoked.

Observe that this method of generating explanations is much more general
than the approach used in MYCIN, where every type of question requires a
specialized function (e.g., "Why not conclude X?", "Why ask F?"). In
G U I D O N - D E B U G all inquiries are mapped onto one question and its comple-
ment: "Why (not) do subtask X?" Possible subtasks include ask, conclude,
hypothesize, test, refine, etc. In effect, the design of MYCIN's inference
engine was redundantly represented in the explanation system. Because all
backward-chaining in NEOMYCIN is deliberately controlled, all questions can
be tracked back to metarule actions that apply rules and ask for case
• • 1 ! mformatlon. Furthermore, explanations are in terms of inference subtasks
(e.g., inquiring about a test which is the source of hard data relevant to a
hypothesis), not just in terms of specific domain rules. However, we found in
our investigation of strategic explanations that the specific domain rule,
stripped of all its procedural and screening clauses required in MYCIN, often
provides a cogent explanation (see the domain-specific hints in Fig. 12).

In summary, GUIDON-DEBUG detects problem solving failures and tracks
them back to gaps in domain knowledge. The approach is similar to that used
in apprenticeship and explanation-based learning [51, 66, 83]. However, there
are some basic differences:

• Goal regression involves directly interpreting the inference procedure itself,
rather than a representation redundantly encoded within the learning
program.

• The operationality criterion is described in terms of the form of an adequate
solution--constraints a good diagnostic model should satisfy--rather than
in terms of computational efficiency. Thus, the SSM provides a coherent
way of specifying what are sometimes called "operationality criteria",
means for determining the usefulness of new concepts. (Much research in
explanation-based learning focuses on deriving a relation that is implicit in
the domain model; the goal of learning is to make the program able to
solve a problem that was previously too time consuming.)

~ The interpretation of domain and metarules is still implicit in code. In particular the way in
which APPLYRULE! leads to invoking F INDOUT and C O N C L U D E is implicit because this is
done by the EMYCIN interpreter when domain rules are applied. But any task that leads to
applying rules goes through A P P L Y R U L E k so this logic need only be coded once in the
explanation program and is therefore tolerable.

Model construction operators 67

• Learning is based on explaining problem solving failures, as detected by the
program itself, not in explaining why a supplied example is correct. That
is, the method involves determining what needs to be learned in order to
more adequately solve problems, not just to increase problem solving
speed. Thus, this method bridges a gap between explanation-based learn-
ing and cognitive models of failure-driven learning [80].

• The problem solving procedure uses a schema model of the world (the
domain relations) which constitutes an incomplete theory, in contrast with
the axiomatic theories of domains like calculus.

Finally, Fig. 32 and Tables 3 and 4 suggest that we might generate the
subtasks and metarules from a list of constraints they must satisfy. For many
subtasks, the relation is obvious. For example, every metarule for TEST-
HYPOTHESIS has a proposition of the form

(EVIDENCEFOR $FINDING H)

in its premise, where H is the focus of the subtask; the only reason there are
multiple metarules is to order the domain rules passed on to the APPLY-
RULE? subtask. Although we have not had reason to do this, inspection of
other subtasks indicates that the metarules might be generated from the
domain relations and preferential constraints (e.g., test before refining) in the
same manner code is generated in XPLAIN.

Our analysis shows that a syntactic description of the form of an SSM
provides a very powerful means for building knowledge acquisition and
explanation programs, and possibly deriving the inference procedure itself.
However, it is important to realize that not all inference procedure constraints
reduce to structural properties of the general model, the SSM, or the relation
between the SSM and action plans. Other constraints relate to the environment
in which problem solving itself will occur. For example, questions are general-
ized by FINDOUT in order to shorten the duration of the consultation; if data
were available online this metarule might be unnecessary. Furthermore, the
pruning effect of asking about surgery first, for example, relies on the fact that
most patients have not undergone surgery. If most patients in the population
being diagnosed had neurosurgery, we would actually save a question (about
surgery) by being specific.

This is an important result: The metarules are written with respect to a
particular case population. Probabilistic assumptions about the prevalence of
findings are implicitly factored into the subsumption relations. To relate
subtasks and metarules from different programs, we will need to make explicit
these environmental assumptions in the domain model and refine the metarules
to take environmental relations into account. Specifically, for the program to
be reusable in different environments (and not just applied to different cases)
we need to distinguish between processes that all systems being diagnosed

68 W.J. Clancey

share (commonalities in the human body), environmental processes that affect
the case population, and processes in the immediate problem solving environ-
ment that affect the inference process itself (e.g., urgency, availability of data).
Again, the process-modeling perspective provides a useful framework for
describing the generality of the knowledge base, its components, and how it
might fail.

We should not underestimate the role that social considerations play in the
definition of an appropriate inference procedure. In particular, it is now
obvious that teaching a student about medical diagnosis involves teaching not
only the disease knowledge and diagnostic process, but relating these to the
environment in which problem solving occurs. In NEOMYCIN, we have
viewed reasoning as essentially something that goes on in the head, omitting
the social perspective that makes everything in the knowledge base reasonable
and appropriate. In short, justification of knowledge should not be viewed
narrowly in terms of causal relations, but also in terms of the purpose of the
model and the circumstances under which it will be applied. Because social
considerations are involved, there is no definitive, optimal design for the
subtasks and metarules. The adequacy of a given set of metarules cannot be
proved from objective properties of structure-function models or causality. The
metarules embody social values and these will vary depending on the social
circumstances. We can generate the primitive operators from mathematical
properties of model graphs, but preference relations for applying primitive
operators will depend on assumptions about the world.

6.4. Does N E O M Y C I N understand what the subtasks mean?

Social and environmental considerations aside, do NEOMYCIN's metarules
constitute a solution to our original problem of representing strategic knowl-
edge? The question arises when we recall our original criticism of MYCIN's
rules: clause ordering implicitly coded a top-down refinement strategy. Now we
have a collection of strategy words like "explore and refine" and
"differentiate". But still we use words like "look up" and "depth-first" to
describe NEOMYCIN's behavior, and these words do not appear anywhere in
the program. Have we actually represented the "look up before you look
down" strategy? What is the difference between the metarules for EXPLORE-
AND-REFINE and a definition of what the subtask name means?

To begin, notice that the definitions of procedural subtasks, such as ESTAB-
LISH-HYPOTHESIS-SPACE (EHS), cannot be equated with compositions of
primitive subtasks. Descriptions such as "top-down refinement" concern how

reasoning will appear to an observer; they are at a different level than the
primitive operations that modify the SSM. Procedural concepts describe how
the program's behavior will appear over time as it interprets a domain model
with a certain global structure, in a particular problem solving environment ("it

Model construction operators 69

looks up before it looks down"). Such concepts cannot be replaced by local,
moment-by-moment operations (such as TEST-HYPOTHESIS(x), REFINE-
HYPOTHESIS(y)). Of course, this does not mean that we cannot control the
program in a way to produce behavior that looks this way; for this is obviously
what the EHS metarules do.

The concepts used for describing what a subtask like EHS does are inherent-
ly abstractions of a sequence of program behaviors. If you look at a sequence of
data requests, a sequence of hypotheses tested, a sequence of links put in the
SSM, etc., you will find a pattern that describes what repeated, regular calls to
such subprocedures are accomplishing: They are looking up, they are doing
top-down refinement, they are pruning unnecessary questions. Such accounts
are not reducible to internal structures, states, or mechanisms. Top-down
refinement is not captured by any particular set of subprocedures statically
described, but is a description of the pattern of changes made to the SSM, an
abstraction taking the frequency and relations between sequences of subtasks
into account.

The relationship between a historical account and the inference mechanism
does not appear to be intuitive. The main idea is that strategic descriptions
account for patterns in behavior by naming and grammatically relating them. In
essence, NEOMYCIN's abstract subtasks and metarules constitute a grammar.
This is precisely how the subtasks are used in ODYSSEUS for explaining a
student's sequence of patient data requests (each specific request can be viewed
as a word; the whole problem solving session is composed of phrases that may
or may not be related at the level of the most abstract subtasks).

If we do not understand this relation between an observer's description of
historical trends and the mechanism of the program, we might search for
formalisms that are not possible or have a misunderstanding about the nature
of the formalisms we design. For example, we described GUIDON in terms of
strategic abstractions such as "review frequently", and "opportunistically
introduce new material". We say that such terms are "operationalized" [68]
when we implement a program with such properties. However, we do not find
the words "review" or "opportunistic" in the discourse procedures themselves.
Concepts like "review" are temporal abstractions of sequences of program
behavior. Reviewing is something we can say the program is doing at a
particular time, but that is just relative to what it did before. A single
procedure could be used to present a domain rule the first time it is en-
countered (e.g., as a quiz) and to present it again later, as a "review". Again,
historical accounts characterize structural and temporal patterns in surface
behavior; they need not necessarily correspond to mechanisms that invoke
them.

Is this a shortcoming in our procedural languages? It is if we want ODYS-
SEUS to be able to reflect on a student's or expert's behavior and notice new
patterns not captured by the current set of subtasks and metarules. The blocks

70 W.J. Clancey

world provides an example of how difficult this might be. The strategy of
stacking blocks from the bottom up might be encoded by the rule:

IF (AND (CANDIDATE-GOAL (ON X Y))
(CANDIDATE-GOAL (ON Y Z)))

THEN (PREFER-GOAL (ON Y Z) OVER (ON X Y)).

Simply applying this rule multiple times will result in stacking blocks bottom
up. But where are the concepts "bottom", "stack", or "bottom-up"? They
need not be used in the mechanism that produces the desired behavior. In
order for an agent that observes the program (perhaps the program itself) to
say that "the blocks are being stacked bottom-up" (and understand what this
means when we say it), the agent must track the spatial relations between blocks
and the temporal relations between stacking operations. The words "bottom
up"-- jus t like the words "look up" or "group"--may be tied to rules like this,
just as subtask names label the metarules, but they stand for concepts that are
not represented.

Turned around, a program that can write the blocks stacking rule (or
NEOMYCIN's procedural subtasks) must be able to represent and abstract
patterns from changes in the world or SSM over time. Similarly, in order to
convince yourself that NEOMYCIN's metarules for EXPLORE-AND-
REFINE accomplish breadth-first search, you cannot simply look at the
metarules, you must envision the effects of running the metarules over time.
Specifically, writing a program that can acquire subtasks and metarules like
those in NEOMYCIN- -by watching a person or a program solving similar
problems--requires moving from a description of how the program will appear
to an observer to internal operations whose recurrent execution will produce
these behavioral effects.

Indeed, this analysis leads us to realize that most automatic programming
systems are not reasoning about "top-down refinement" and similar concepts
in the way required for recognizing these patterns; they merely generate code
from templates associated with undefined labels like TOP-DOWN-REFINE-
MENT or EXPLORE-AND-REFINE. We see this for example in Mostow's
operationalization of heuristics for playing Hearts. "Avoid taking points" is
represented by templates like

AVOID = (LAMBDA (E S) (ACHIEVE (NOT (DURING S E))))

which Mostow translates as "avoid an event throughout a scenario means try
not to let it occur during the scenario". But "try not" suggests both a
preference and a frequency. In recognizing this pattern, we will admit that
some number of points is acceptable (though perhaps demonstrably non-
optimal). After some interval, we will say that the player is not trying.
Recognizing the pattern of avoiding Hearts--being able to use the concepts the
way Mostow does while watching other players--requires being able to

Model construction operators 71

abstract from non-optimal behavior over time, a capability that is not built into
Mostow's generation routines. In short, the Heart's operationalization program
does not have the same understanding of Heart's playing that a person has, just
as NEOMYCIN does not have the same understanding of top-down refinement
that a person has. This distinction between representations required for
generation and recognition is crucial for any knowledge acquisition or student
modeling system that does not receive a well-formed specification, but must
abstract it from a sequence of observed behaviors.

But the problem is even more difficult than this if a program is not merely to
recognize a grammatical performance, but must learn the grammar itself.
Besides characterizing temporal properties in sequences of system behavior, a
strategic explanation must also tease apart the interactions between the
inference procedure, the domain model, and the environment. For example,
suppose that NEOMYCIN is observed to ask two follow-up questions every
time it receives a new finding (e.g., "What is the headache's duration?, What is
its location?"). We cannot tell from the program's outward behavior whether
the CLARIFY-FINDING metarules are deliberately generating two questions
or whether the domain model always contains two propositions of the form
(FOLLOW-UP-QUESTION F SY), for every finding F. This example illus-
trates that strategic explanations are characterizing the product of the inference
procedure's interaction with a domain model. A given behavior sequence can
be abstracted in any number of domain model/inference procedure combina-
tions. A similar example might show that the program always generalizes its
inquiries when the user starts the consultation by supplying volunteered
information (which perhaps the program interprets to be a sign of the user's
urgency). But if the environment is always the same, we will not discover that
generalizing inquiries is conditional in this way.

In summary, the meaning of subtask names constitutes a knowledge-level
specification of NEOMYCIN's reasoning, derived from patterns we observed
in physician behavior. The metarules "operationalize" strategies, but do not
define them. Furthermore, we cannot objectively prove that an inference
procedure is correct because every strategic theory is relative to the frame of
reference of an observer. These conclusions require a reevaluation of how
learning by being told and learning by watching are related. In particular, we
must consider the shift in representations required for moment-by-moment
action versus reflecting on behavior over time (abstracting behavior
sequences).

To put this to immediate application, we might focus on automating failure
analysis in programs like NEOMYCIN or the Heart's player, given the benefit
of a representation with distinct domain model and inference procedure
components. For example, to test the generality of the inference procedure, we
could vary the case population, the domain model, and the problem solving
environment (e.g., can avoiding points be achieved better with knowledge of

72 W.J. Clancey

opponent strategies?). This suggests that we should attempt to record our
assumptions about case population, model content, and environment as bound-
ary conditions against which the program could verify the appropriateness of its
inference procedure in specific cases, as well as when it is reapplied by a
knowledge acquisition tool to new domains. The process-model perspective
suggests that boundary testing be organized by a matrix of systems, modeling
methods, and communication environments.

7. Types of process representations

In this section we are concerned with the recurrent types of networks used
for modeling systems. In contrast with the usual research emphasis on the
details of causal modeling or inheritance in hierarchies, we want to focus here
on recurrent, macrostructures of relational networks. A high-level perspective
reveals that there are just a few types of relational network representations for
processes, such as classification hierarchies, state-transition networks, and
functional composition hierarchies. This observation provides the license for
defining AI programming in terms of qualitative modeling. A typology of
process representations also provides a direct basis for teaching knowledge
engineering techniques. This perspective has been generally ignored, partly
because it is so obvious and partly because we are immersed in the details of
specific representation techniques.

We have seen that inference procedures are expressed in terms of domain
relations, by which nodes and links are placed in the SSM. The generality of
inference procedures therefore depends on the generality of the relations we
use for specifying the domain model and the SSM. Certainly subtype and
causal relations are basic. What other generalizations can be made about how
hierarchies and causal networks are used to represent processes in expert
systems?

7.1. Types of hierarchies used for modeling processes

In NEOMYCIN, disease processes are represented by a subtype hierarchy
(Fig. 14). Each node is intended to be a description of the complete system
being diagnosed. For example, ACUTE-BACTERIAL-MENINGITIS and
INFECTIOUS-PROCESS can both be used to describe a process occurring in
the CNS; the first supplies more details about the temporal, spatial, and causal
characteristics of the process (i.e., it is an infectious process that has been
occurring for a relatively short time, located in the meninges of the brain, and
bacterial agents are producing structural changes there). Each node is essential-
ly an encapsulation of a historical process, something that began in the past
and is still affecting the patient. That is, each process concept in the hierarchy

Model construction operators 73

is essentially a causal story (e.g., bacterial infectious processes begin with
bacteria entering the patient's body and moving to some location where they
proliferate because normal control by white blood cells is suppressed). Figure
34 shows that NEOMYCIN's disease taxomony can be viewed as just one kind
of process hierarchy, termed an interactive-historical abnormal process hierar-
chy. An abnormal process hierarchy can also model the stages in a process, as
in CASTER, in which top-level nodes correspond to stages in the sand casting
process. NEOMYCIN's diagnostic inference procedure is represented by a
compositional hierarchy of functions, often called a procedural net [79]. In
BUGGY [14] inference processes are represented by a network of mutually
exclusive variations of composed functions; thus functional composition can be
broken down further.

An additional classification could be provided for types of transitional
networks (e.g., causal networks [10] and discourse state networks [27]). The
distinction between classification and simulation models can also be related to
the "bug library" versus "generative" distinction in student modeling programs
[251.

The point of this diagram is not to show a complete classification of existing
methods. Rather it reveals the kind of organization that is now possible and
how this perspective is fruitful for relating representations used in AI pro-

Types of Hierarchical Relational Nets

Subtype Compositional

Process~tmdure Stru~ura~un~ional

/
Abnormal

C h r o n ~ o r i c a l Processes

(stage f a i l u r e S p ~ v
Devalo e process
(Congential; or Environment (Psychogenic; (Infection

mis-assembly) (toxicity, adaptation & Cancer)
trauma, failure)

heat-stress)

Fig. 34. Types of hierarchical networks used for representing processes.

74 14/. J. Clancey

grams. For example, the distinction between an abnormal process taxonomy
organized into chronological stages of a normally-operating system (as in
CASTER) and a hierarchy organized according to the kinds of historical
interactions it can have with its environment (as in NEOMYCIN) is the kind of
macrostructure--well-removed from implementation issues involving rules,
OOP, etc.--that serves to orient a knowledge engineer early in the design
phase for a new knowledge base. We can take existing programs and classify
them in this way, according to the types of hierarchies in the domain model.
We can build a knowledge acquisition tool around this classification, using it to
index a library of expert system examples, representational templates, and
inference procedures.

Indeed, this perspective provides the solution to a riddle that plagued the
initial presentation of heuristic classification [24]. If NEOMYCIN is supposed
to be selecting solutions from a pre-enumerated list, how can we describe its
inference procedure in terms of constructing something? It is now clear that
every diagnostic program must construct a model, in the sense of finding
evidence that a process is occurring, linking findings to new hypotheses, and
contrasting alternative explanations (formulated as competing subgraphs). In
the simplest programs this might involve just a weighting scheme by which a
list of diagnoses are matched against evidence and rank ordered. However,
even this process involves constructing a list of diagnoses and ordering them--
a primitive kind of SSM, but constructed from the general model and copied
over into a situation-specific record nevertheless.

To understand the difference between programs like NEOMYCIN and
ABEL we must look at what nodes in the SSM can represent. In a program
using heuristic classification exclusively, nodes in some sense represent the
entire system being modeled; they are processes in NEOMYCIN, system
names in a PC advisor, etc. In ABEL, nodes stand for states, structures, or
subprocesses and need to be assembled into system descriptions in order for
there to be a model of a process (a story recounting how the current state of
affairs began and how the manifestations were produced). In essence, ABEL is
doing more than selecting, supporting, comparing, and refining off-the-shelf
process descriptions; it must assemble a new process design. NEOMYCIN and
CASNET use a hybrid approach, which does not involve designing new system
models, termed causal classification [24]. Internal states and causal relations
between substances are considered, but only to implicate the predefined
processes in the disease hierarchy. That is, system models are selected from
named descriptions (the disease hierarchy). In contrast, ABEL assembles a
network of interactions on multiple levels of detail. Taken as a whole, the
network ABEL constructs constitutes a new system description (albeit made
out of predefined components).

This is a substantial clarification of a distinction that proves difficult without
the process-modeling perspective. In particular, we need to look at what SSM

Model construction operators 75

nodes stand for and how they are related in order to distinguish different
modeling methods. This just underscores the obvious: In describing expert
systems we are describing methods for modeling systems using relational
networks.

7.2. The structure of blackboards

In our analysis of HASP, we observed that the relations between SSM nodes
is not explicit. Figure 35 shows what such an analysis looks like, using
NEOMYCIN's SSM as an example (refer to Fig. 15). Disease taxonomy
relations appear on the left branch as subtype links between abnormal pro-
cesses. Structural descriptions, such as Intracranial-mass-lesion may appear as
well, with their subtypes above them (e.g., Intracranial-tumor). These abnor-
mal structures are linked by bold arrows to the abnormal processes that they
cause (e.g., Increased-intracranial-pressure). There is a simple characteristic

Explanation:
(causes &
subtypes)

m ,

Support:
(Effects &

types)

process

/ jcr .
processes and structural effects

abno rm/
process /-,..

abnormal
structure

/Oeno,e 1
/ specialization / / or partof /

~ d e n o t e s |
~ cause J

abnormal structure

Fig. 35. Process-model relational structure of NEOMYCIN's SSM.

76 W.J. Clancey

form (if the domain model is so organized) of abnormal structure causing
abnormal process, etc. Again, it did not occur to us to describe the SSM in this
way until we realized that as a model of a system being diagnosed, it must be
relating structural and process descriptions. It is not just an "inference net" or a
"dependency graph". For the program to be building up a coherent model,
there must be systematic causal, temporal, and spatial relations between its
inferences.

Figure 35 also makes explicit (and justifies) the pattern we claimed before,
by which higher nodes in the SSM explain lower nodes: Higher nodes are the
causes and subtypes of lower nodes-- they specify what it is happening in more
detail. In contrast, lower nodes support higher nodes--they constitute evi-
dence for effects and substance/process categories. This is not just a "causal
network". It is an oriented graph with a form that can be interpreted like a
proof.

7.3. The process classification~assembly spectrum

The idea of "causal classification" used in NEOMYCIN and CASNET
suggests that we should not look for black and white distinctions between
process-modeling methods. Rather, it would be fruitful to align different
programs on a spectrum. Figure 36 summarizes the programs we have been
studying. Protean [45] and DART [37] are added as examples of programs that
design new system descriptions out of primitive structure-function relations.
ABEL is viewed as less general because it does not have specific representa-
tions for spatial and temporal modeling; however, in some respects its capabili-
ty to reason about quantities of substances exceeds the other programs.
CADUCEUS lacks the ability to summarize or decompose quantitative effects,
but its ability to integrate orthogonal process hierarchies places it beyond
NEOMYCIN.

Figure 36 reminds us how far this analysis has taken us from simplistic views
of "shallow" versus "deep" reasoning. As stated in the introduction of this
paper, expert systems are more appropriately and fruitfully described in terms
of how relational networks are used for modeling processes. Hierarchies can be
used to represent abnormal processes (e.g., diseases in NEOMYCIN), func-
tional composition, etc. Network nodes represent internal states, structures,
functions, or processes. Some programs have internal descriptions of entire
system models, others assemble components into new system models. This
analysis leads us to say that all expert systems do qualitative reasoning.

Furthermore, the same analysis used to distinguish between historical trends
and mechanisms of the inference procedure (Section 6.4) shows us that
abnormal process classifications cannot be replaced by or reduced to structure-
function simulation models. For example, many disease descriptions constitute
the product o f recurrent interactions between the system being diagnosed and its

Model construction operators 77

Selecting single
process/system

description
(MYCIN)

Classification

Netwc~rk
Representation

Simple hierarchy
or linear paths
in causal net

Construction

Combining Orthogonal
processes hierarchies and

without interactive causal networks
analysis

(Caduceus)

' r

Combining Causal networks
interacting processes on multiple

that cancel or add levels of detail
on detailed level

(ABEL)

Designing Structure-
a new process/system function

out of components simulation
in space and time (one or multi-level)

(HASP, Protean, DART)

Fig. 36. Spectrum of methods for modeling processes.

environment. The structural damage a physician sees in tennis elbow could not
be predicted from a blueprint of the human body; indeed, the patterns of
abnormal structures and processes that will occur change with social habits and
are thus inevitably open. Not only are classification models not an inferior, lazy
way of modeling, they are necessary and irreplaceable (see [29] for further
discussion). Disease taxonomies are not just "knowledge hierarchies" or
"frames" or "concept classes". Again, until we look and study how processes
are modeled and the different kinds of processes that can occur in different
domains, we cannot adequately make claims about the generality or superiority
of modeling methods.

In summary, the levels we have found to be useful for studying qualitative
modeling are:

(1) env i ronmen t - - ta sk constraints and assumptions:
• how the model will be used (form or level of detail required for taking

action),
• case population and world data assumptions (biases),
• interactional data and communication constraints (aspects of the

inference process);

78 W.J. Clancey

(2) qualitative calculus--system-model representation:
• conceptual primitives (a typed-set manipulation view of classes, in-

stances, attributes),
• relational networks (a graph construction view of hierarchies, transi-

tion networks),
• process models (a modeling view of causal, temporal, spatial, and

subtype descriptions of states, substances, structures, and processes);
(3) implementation: programming language: (e.g., frames, rules, objects,

knowledge sources, agenda, metarules).

Recalling Fig. 29, we are emphasizing once again that comparisons of
modeling tools must be placed in the context of use (the environment), which
determines model content and constrains the inference process.

Table 5 contrasts this with Brachman's analysis [6]. His linguistic, concep-
tual, epistemological, and logical levels provide one way of describing a quali-
tative calculus. Our system-model perspective constrains the linguistic and
conceptual levels by specifying what concepts and expressions represent,
including context-of-use concerns. Furthermore, we view networks of atoms
and pointers--more generally, graphs--as more abstract than programming
implementations in particular knowledge representation languages, and give
them epistemological status. That is, useful epistemological distinctions include
not only relations, but macrostructures constructed by the systematic replication

Table 5
Restatement of system-model
networks".

perspective in terms of Brachman's [6] "levels of semantic

Level Brachman [6] System-model distinctions

Linguistic Arbitrary concepts,
words, expressions.

Conceptual

Epistemological

Logical

Implementational

Semantic or
conceptual relations
(cases), primitive
objects and actions.

Concept types,
conceptual subpieces,
inheritance and
structuring relations.

Propositions, predicates,
logical operators.

Networks of atoms and
pointers.

A model of some system
for some purpose, in
some environment.

Specifically, causal,
spatial, temporal, etc.
relations between
structures, states,
processes, etc.

Same, except includes
types of relational
networks.

Same, except includes
set and graph operators

More specifically, the
programming languages
that people use
(e.g., EMYCIN).

Model construction operators 79

of relations (e.g., hierarchies and transition networks). These macrostructures
are manifested at the conceptual level as recurring conceptual networks (e.g.,
types of abnormal process hierarchies). We view the logical level as including
set and graph operators, following Sowa's approach of integrating proposition-
al, set, and graph notations. Finally, we describe the implementation level in
terms of programming languages (specifically relegating "rules" versus
"frames" arguments to this level).

8. Task-specific knowledge acquisition tools

The system-modeling perspective provides a good basis for developing
knowledge acquisition tools. To illustrate this, we will consider examples from
some leading programs, showing how these programs can be generalized and
more easily related to each other if we express strategic knowledge abstractly.
Restating the reported methods should not be viewed as criticism, so much as
building on previous work, in the same way that NEOMYCIN would not have
existed without TEIRESIAS. Furthermore, researchers emphasize different
aspects of systems modeling, exemplified by the trivial treatment of causal
representations in NEOMYCIN.

We will show how domain principles in XPLAIN [87] contain implicit
system-modeling inference rules. Analysis of KNACK/WRINGER [52, 53]
will show how object instantiation is handled by abstract control rules (and how
much of this was handled by EMYCIN's inference engine). Finally, we will
relate Generic Tasks [15-17] and role-limiting methods [63] to the terminology
used in this paper, and examine the problem of defining a useful level of
abstraction.

8.1. XPLAIN: abstracting domain principles

Like NEOMYCIN, XPLAIN was developed to improve the explanation
program of a medical program. The work complements NEOMYCIN by
emphasizing how procedures can be written by an automatic-programming
system from a domain model and set of prototype methods. Figure 37 gives a
well-known example from the program.

The prototype method does not fit the definition of abstract control knowl-
edge used in NEOMYCIN because it mentions the term "drug dose". "Find-
ing" might refer to any domain from car diagnosis to legal reasoning. How-
ever, the domain suggested by "drug dose" is much narrower. While the
system being treated is not specified (it could be a sick house plant), practically
speaking this prototype method will only be useful for medical diagnosis. This
example illustrates that there is no sharp line between "domain-specific" and
"abstract"; it is just a judgement that we make based on the systems we know

80 W.J. Clancey

GOAL: Anticipate Drug Toxicity

DOMAIN RATIONALE:

Finding I l Increased Drug I

Dangerous Deviation I

PROTOTYPE METHOD:
If the Finding exists
then: reduce the drug dose
else: maintain the drug dose

Fig. 37. Example of a domain principle from XPLAIN.

about. The final part of this section will consider principles for selecting a
useful level of abstraction.

A second observation is that the domain rationale does not express the
process-model relations between its terms. Figure 38 illustrates one way of
formulating this domain principle in a NEOMYCIN-like metarule. Rein-
stantiating this rule in terms of our example, drug dosage is a quantitatively-
variable action that causes an undesirable effect (a dangerous deviation) in the
system being treated, proportional to the amount of the drug. In addition,
another cause ($FINDING) of this effect is currently present. Therefore, to
avoid increasing this undesirable effect further, the amount of the drug should
be reduced.

Obviously, there are many other ways of writing this rule. The example is
intended to illustrate how abstraction can bring out process-modeling relations
(e.g., proportional cause) that are implicit in the domain rationale and
prototype method. Although it is not worked out here in detail, notice also
how the metarule is written in terms of modifying an SSM of a system-
modification plan, namely reducing the amount of the quantitatively-variable

TASK: ANTICIPATE-PLAN-SIDE-EFFECT
FOCUS: $PLAN-ACTION

IF: (AND (QUANTITATIVELY-VARIABLE $PLAN-ACTION)
(CAUSES $PLAN-ACTION $EFFECT)
(PROPORTIONAL-CAUSE SPLAN-ACTION $EFFECT)
(NOT (DESIRABLE $EFFECT))
(CAUSES SFINDING SEFFECT)
(SAME CNTXT $FINDING))

THEN: (TASK REDUCE-AMOUNT $PLAN-ACTION)

Fig. 38. Example of a domain principle from XPLAIN.

Model construction operators 81

action (called "therapy" in medicine). Moving from the domain principle of
Fig. 37 to the abstract metarule of Fig. 38 exemplifies the abstraction process of
dropping domain-specific terms and expressing the inference procedure in
terms of a process model and some action that depends upon it. A knowledge
engineer with this vocabulary will have a great advantage in analyzing other
problems. With a metarule like this in the toolkit (contrasted with the domain
principle in Fig. 37), the next program should be much easier to build. In
particular, the idea of a quantitatively-variable system-control action is very
basic to system modeling and should be taught as part of knowledge engineer-
ing methodology.

8.2. KNACK: distinguishing system models and object instantiation

KNACK is a knowledge acquisition program for a class of expert systems
that generate reports. KNACK acquires an adequate domain model by inter-
acting with the knowledge engineer to generalize sample reports. Figure 39
illustrates this, revealing how a knowledge acquisition program that develops a
domain model from cases is essentially the inverse of the inference procedure,
which generates an SSM (e.g., a sample report) from a general model (recall
Fig. 18). Applying our modeling orientation, we can describe KNACK's task
in terms of operators for completing a sample report, abstracting it, and
checking the generalization for completeness and consistency. Other operators,
not shown here, complete and abstract the domain model that constitutes the
subject material of the report. Once again, a listing of these operators would
be of value for a wide variety of knowledge acquisition programs that reason
about cases. For example, how do KNACK's operators relate to those used in
apprenticeship learning? Research is not reported this way, therefore it is
difficult to tell from the literature.

Each expert system developed by KNACK is called a WRINGER. Of the
seven WRINGERs constructed to date, we will consider here the three
WRINGERs that generate environmental reports. Figure 40 shows that there
are actually two general domain models in each WRINGER, a model of an
electromechanical system and a model of a report. This is not untypical. Recall

Sample abstraction , . Generalized
Report (G @ operators Report

completion completeness
operators & consistency

operators

Fig. 39. K N A C K constructs a general model of a report f rom a situation-specific model.

8,2 W.J. Cltltlce):

ELECTROMECHANICAL-
ENVIRONMENTAL SYSTEM

-'~ TEXT (REPORT)

Fig. 40. A WRINGER contains models of two kinds of systems.

that SACON has general models of some physical structure (e.g., an airplane
wing) and of computer programs (i.e., possible configurations of structural
analysis programs) [24]. GRUNDY has general models of people and of books.
MYCIN has general models of patients, diseases, and therapies. Indeed, every
engineering problem (broadly including medicine) will involve relating models
of different systems, in which the environment or human actions constitute
systems (as shown by Fig. 21). Of particular interest here is that a report is a
static system; it has no process characteristics. Nevertheless, a report has
structure, and in KNACK types of texts are modeled by a taxonomy of chapter
and section relations, a qualitative model.

Klinker et al. [53] give a good description of the electromechanical-environ-
mental system in system-modeling terms.

A (X) system performs a set of functions and
comprises a set of interrelated components.

An environment produces a set of conditions under
which a {X) system must function, each of which may
affect system components via a set of media.

The effect of a condition on system components may be
modified by some provisions, each of which c a n . . , be
affected by a set of conditions via a set of media.

With domain-specific terms replaced by variables (e.g., conditions, media), it
is clear that the authors intend to abstract their domain model beyond the
problem at hand. The result is a very suggestive, general perspective that
improves our understanding of the nature of the system being modeled, in
terms of what is known about its parts, functions, and its operation in some
environment. This is precisely the kind of coherent, system-model perspective
we found missing in XPLAIN, which of course predates this research by almost
a decade.

KNACK generates domain-specific control rules for specific WRINGER
expert systems (Fig. 41), which can be viewed as instantiations of its underlying
abstract systems model (like the relationship between PROTEGE and OPAL
[70]). Because the abstract systems model is implicit in KNACK's OPS5
rules-for-writing-rules and its graphics editor for acquiring a domain model, the
capability shown by NEOMYCIN for explanation, student modeling, strategic

Model construction operators 83

IF

THEN

the goal is to determine information, and
the current report part is chapter 1, section 2

create the subgoal to determine the NAME
of a NUCLEAR ENVIRONMENT, and

create the subgoal to determine the NAME
of an ENCLOSURE, and

create the subgoal to determine the NAME
of an APERTURE, and

create the subgoal to determine the
MATERIAL of an ENCLOSURE, and

create the subgoal to determine the
THICKNESS of an ENCLOSURE.

Fig. 41. Domain-dependent strategy in a WRINGER expert system, generated by KNACK.

tutoring, and explanation-based learning cannot be realized as easily. There is
nothing inherently wrong with compiling an abstract inference procedure into
domain-specific rules (just as MYCIN's rules might be recovered by compiling
NEOMYCIN's metarules with respect to the given domain model). However,
an operator-process model analysis (Sections 6 and 7) requires a more struc-
tured representation than either KNACK or published papers about it provide.

How might we use abstract subtasks and metarules to represent the system-
model and control strategy that KNACK uses to generate the rule shown in
Fig. 417 This is a kind of reverse engineering, since the papers show the
compiled rules, not the general models and inference procedure from which
they were generated. We want to replace domain terms such as "nuclear
environment" by variables and explicit domain relations between the subgoals
in the five action statements. We want to define a subtask for modifying an
SSM, which here represents a text. The specific operator corresponding to the
rule given in Fig. 41 should acquire initial information about a report part and
set up the corresponding text in the report. Figure 42 shows how this would be
done in a surprisingly simple way, transferring most of the structure in the
W R I N G E R rule to the domain model and exploiting the object-instantiation
primitives of NEOMYCIN (inherited from EMYCIN).

The metarule shown in Fig. 42 begins with a report part (e.g., CH1S2) and
for every subtopic (e.g., NUCLEAR-ENVIRONMENT) invokes a subtask
that sets up an instance corresponding to the subtopic in the SSM. In
EMYCIN, the instantiation procedure (coded in LISP) uses general informa-
tion about object relations to prompt the user about the existence of instances,
as well as to acquire initial information about them. Figure 40 shows these
relations as part of the general model, precisely as they are expressed in
EMYCIN/HERACLES. For example, an APERTURE object is associated
with enclosures, so an instance of that must be set up first. Initial information
about the enclosure name, material, and thickness is requested at this time.

84 W.J. Clancey

Subtasks and Metarules

SUBTASK: DETERMINE-INFORMATION
FOCUS: $REPORTPART
TASKTYPE: ITERATIVE
LOCALVARS: ($TOPIC)

IF (SECTIONTOPIC $REPORTPART $TOPIC)
THEN (TASK CREATE-CONTEXT $TOPIC)

Domain Facts

<< represent report structure as a classification>>
C H l S 2

PARENT: CHAPTER 1
CHILDREN: (CH1S2SS1 CH1S2SS2 CH1S2SS3)
SECTIONTOPIC: (NUCLEAR-ENVIRONMENT APERTURE)

<<represent the general system as a tree of contexts>>
E N C L O S U R E
ASSOCWlTH:
OFFSPRING:
PROMPT1ST:
INITIALDATA:

(SYSTEM)
(APERTURE)
("Please list the enclosures of the *")
(ENCLOSURE-NAME MATERIAL THICKNESS)

A P E R T U R E
ASSOCWlTH: (ENCLOSURE)
OFFSPRING: (APERTURE-PROTECTION)
PROM PTt ST: ("Please list the apertures of the *")
INITIALDATA: (APERTURE-NAME)

I I

Fig. 42. HERACLES version of KNACK/WRINGER DETERMINE-INFORMATION strategy.

The prompts shown here are those used by the WRINGER. This tree of
instances, which is part of the SSM, corresponds to an EMYCIN context tree.

Further comparisons reveal that general object-instantiation operations are
collected and abstracted in EMYCIN's interpreter and context-tree mecha-
nism. Figure 43 shows a KNACK-generated domain-specific object-instantia-

IF the goal is to integrate a strategy result, and
the result is a value for the NAME of an ENCLOSURE, and
a SYSTEM with some NAME is known

THEN create a concept ENCLOSURE with a NAME characteristic,
and instantiate it with that value,

create a link that the SYSTEM COMPRISES the ENCLOSURE.

<< This is handled by the EMYCIN interpreter
when setting up the ENCL OSURE-I instance >>

E N C L O S U R E - 1
CRE8: ENCLOSURE
UPPOINT: SYSTEM-1
ENCLOSURE-NAME: (S-280C)

Fig. 43. WRINGER rule for connecting an instance to its parent is handled by EMYCIN's
interpreter.

Model construction operators 85

tion rule, which EMYCIN's interpreter handles automatically. In comparing
knowledge acquisition tools, it is important to realize that what is expressed as
a rule in one system (e.g., KNACK) might be part of the interpreter of another
system (e.g., EMYCIN). Indeed, the implementation of HERACLES as a
specialization of the EMYCIN architecture (Appendix A.2) shows that
EMYCIN provides a more general and useful frame language than is often
realized.

Other strategy rules given by Klinker et al. can be abstracted; however, we
are unable to develop a full specification of a WRINGER in terms of SSM
operators. We can see from the KNACK paper that the SSM could be
expressed as a context tree of chapters and sections, generated from a general
model that classifies the structure of reports. The text to be printed is modeled
in this SSM by attributes of chapters and sections, for example, the heading of
a section. Subtasks and metarules will set up the text SSM and finally print out
the text associated with each node.

However, the published strategy rules written by KNACK have clauses
whose relation we cannot easily infer. For example, one rule states:

i f . . . a NUCLEAR-ENVIRONMENT with NAME EMP is
known, and an ENCLOSURE with some NAME is known, then
p r in t . . . ~ENCLOSURE.NAME)

What is the role of the first clause? In so far as we cannot infer the structure of
the domain model from the published literature, we do not have an adequate
description of KNACK for the work to be replicated or applied to similar
problems. A basic claim of this paper is that the reformulations into HERA-
CLES given here are at a level, using system-modeling language, that provides
more adequate communication of knowledge engineering research.

8.3. How abstract should control knowledge be?

Abstracting inference procedures has allowed us to compare control
strategies from different programs, express domain knowledge more concisely,
and make control common to many programs (e.g., instance creation) separate
and available for reuse. The role of knowledge is viewed uniformly in terms of
system models (e.g., a SECTIONTOPIC of a TEXT) and operators for
constructing an SSM (e.g., VALIDATE-INFORMATION, DEFINE-
FRAGMENT).

But abstraction is relative. Are there any guidelines for developing new
subtasks and metarules? Generalization beyond what the examples at hand can
support might produce obscure code that is more difficult to understand and
modify. Common sense suggests that the metarules be specific enough to
facilitate reuse (i.e., the language should be suggestive of other problems for
the same system-modeling task) and general enough to be reusable (i.e.,

86 W.J. Clancey

replace primitive domain terms by variables). The examples in this paper are
intended to support two general claims:

Claim 1. Strategies mentioning domain terms are unnecessary; they can always
be rewritten by introducing "system-model" variables and relations between
domain concepts (i.e., causal, temporal, spatial, and subtype relations).

Claim 2. The resulting abstract inference procedure is a kind of grammar
ordinarily reusable in a variety of domains; it can be interpreted for both
recognition and generation purposes (e.g., consultation, explanation, knowl-
edge acquisition, student modeling).

Figure 44 shows how, for a given task, control knowledge may be specialized
depending on the process characteristics of the system being modeled. Configura-
tion generally views a system in terms of its structures; planning views a system
in terms of its processes. In particular, designing a building or text report is
generally viewed as a problem of configuring structures. Static systems are
generally described in terms of spatial orientation of parts, as opposed to
causal and temporal relations between structural changes. (Of course, civil
engineers will model stress and fatigue from use; service designers will model
dynamic subsystems such as heating and lighting.)

The point of this diagram is that inference operators can be viewed with
respect to a classification of system types, with general configuration operators
(e.g., for instance creation) applying to all systems, but other operators
specialized depending on the relations of the domain model which will be
incorporated in the SSM. A WRINGER text has no causal/temporal relations,
so the inference procedure for configuring a text uses no operators mentioning
them. One can imagine building a future expert system by including and
specializing operators from a library organized according to Fig. 44, with the
description of causal, temporal, and spatial relations in the general model
available as specifications that drive the choice of relational network (Section
7), SSM structure, and inference operators.

In this respect, the content of strategic knowledge is intricately tied to an

,/•esign Configure '~lan
Mechani~cal ~Static System jyste~

Buildings Texts
Fig. 44. Alternative levels of abstraction for task-specific architectures.

Model construction operators 87

ontology of system types, such that learning to be a knowledge engineer
involves learning how configuring a text is different from configuring a stereo
and how constructing a configuration model differs from constructing a diag-
nostic model. Depending on the frequency of problems a particular client
encounters, there might be knowledge acquisition tools for "configuring static
systems" or even one specialized for configuring environmental reports.

Figure 45 shows more specifically how we abstract from given expert systems
to create a family of tools. Using the HERACLES subtask-metarule language,
we developed a program called TOPO for configuring computer networks
(e.g., workstations, servers, local-area network, modem links).The program
models some physical-organizational structure (POS) (e.g., the sites, buildings
and working groups of a regional golf association) and the information
processing required (e.g., membership rolls, due payments, and game
statistics). 12 This model is mapped onto the design for a computer network that
provides the required services, a service network. The configuration inference
procedure, as in HERACLES-DX, is domain-general. Together with the
language for expressing a POS and network configuration, the subtasks and
metarules constitute a task-specific shell, which we call HERACLES-CX.

What kinds of expert systems could be built with HERACLES-CX? The

t TELE" " I
C OMMUN- I

~,~ATION TR~,,,ORT

Fig. 45. Types of system configurations developed from a physical-organizational model.

12 For simplicity, we assume the information-processing model is part of the POS in Fig. 45.
TOPO is intended to be a front-end to XCON; it was developed with Monique Barbanson.

88 W.J. Clancey

figure shows two possibilities: We could adapt the POS model (and inference
operators) to layout other kinds of service networks (e.g., a telecommunication
network). Or we could use the POS model to configure "protection services",
such as insurance policies. The idea is that a model of buildings and site layout
and the nature and location of working groups is useful for both configuration
of a service network and configuration of an insurance policy. Certainly
different information will be required (so the domain-modeling language will
change), but it is plausible that the POS model developed for TOPO will serve
as a good starting point. Indeed, as pointed out in the discussion of MYCIN's
context tree (Section 4.5), we observe that the first reasoning step in many
expert systems is the creation of a POS model. Are there just a few kinds of
POS models (e.g., models of clubs, universities, businesses and subtypes of
these), relative to the kinds of subsystems or processes that require a POS
model in the first step of design (e.g., service networks, protection services)?
This is the kind of recurrent structure we seek to discover and exploit in the
development of knowledge acquisition tools.

Our chief interest at this time in the development of knowledge engineering
is to represent specific domain models and control knowledge so that the
common elements can be recognized and collected into more general tools.
The idea of organizing modeling tools according to the process characteristics
in the system being modeled (Figs. 44 and 45) is further exemplified by a study
of student modeling programs [25]. In order to determine the generality of
student modeling techniques relative to subject material domains, we classify
domains (systems) in two dimensions according to the operators in the object
system (axiomatic as in algebra versus open as in chemistry) and the SSM
inference operators (algorithmic as in subtraction versus heuristic as in medical
diagnosis). Without this kind of framework, it is difficult to appreciate the
contribution of any given expert system (or student modeling program) to the
development of qualitative modeling techniques. In short, a useful level of
abstraction in a research report or program design relates the given program to
a classification of tasks and domains, exemplified here by the descriptions of
XPLAIN, WRINGERs, and TOPO.

8.4. What is the relation between inference operators, Generic Tasks,
and problem solving methods ?

Other researchers have advocated the analysis and decomposition of knowl-
edge bases in terms of general or "generic" components. How do these
analyses compare?

Chandrasekaran's Generic Tasks [16] are generally at the same level as
subtasks in NEOMYCIN. Generic Tasks are procedural operators for modify-
ing the SSM; they can be combined to configure a complete inference
procedure for an expert system. Example operators, labeled by the names of
the reusable code modules, are:

Model construction operators 89

• CSRL: explore-refine classification,
• Hyper: prototype matching and evaluation,
• Pierce: abductive assembly and evaluation of composite hypotheses,
• WWHI: prediction by abstracting state changes,
• Idable: data retrieval and inference.

These operators are generally independent of the overall modeling task. For
example, data retrieval and inference, corresponding to NEOMYCIN's FIND-
OUT and PROCESS-FINDING subtasks, could be used for diagnosis as well
as for design tasks. The important idea is that these operators have been
abstracted from particular expert systems, and they can now be functionally
composed and specialized in new application-specific programs.

In contrast, McDermott [63] describes knowledge acquisition tools at a
higher level, in terms of the overall inference procedure for constructing an
SSM:

• MOLE: cover-and-differentiate diagnosis,
• SALT: propose-and-revise design,
• KNACK: acquire-and-present design,
• SIZZLE: extrapolate-by-analogy design.

By this analysis, we would add the entire HERACLES-DX system as an
example in this list (perhaps with the subdescription "propose-explore-refine,
group-differentiate, broaden-confirm diagnosis"). McDermott calls these role-
limiting methods, referring to the way in which an inference procedure specifies
(and hence restricts) how knowledge is applied in solving a particular problem.
McDermott thus emphasizes that to provide a problem solving method is also
to structure the domain model in terms of roles particular relations and types
of rules will play (cf. discussion of GUIDON-MANAGE and ODYSSEUS in
Section 5). Role-limiting methods, in contrast with Chandrasekaran's Generic
Tasks, tend to be specific to the overall system-modeling task, hence the use of
the words "design" and "diagnosis" in the tool descriptions. Rather than being
functionally composed, they are specialized to create application-specific pro-
grams.

We can now summarize the relation between NEOMYCIN's inference
operators, Generic Tasks, and role-limiting methods as follows:

• A (role-limiting) problem solving method is a procedure composed of
several inference operators that--through their controlled interaction--
form a situation-specific model that satisfies task constraints. For example,
NEOMYCIN's subtasks together implement a variant of MOLE's
COVER-AND-DIFFERENTIATE method.

• Furthermore, a subtree in NEOMYCIN's subtask hierarchy (e.g., EX-
PLORE-AND-REFINE), which appears in multiple problem solving
methods, is packaged and distributed separately in what Chandrasekaran
calls a Generic Task.

90 W.J. Clancey

In conclusion, the model-construction-operator perspective reveals that dif-
ferent researchers have pursued different levels of generality in formalizing
control knowledge: single SSM operators correspond to a NEOMYCIN sub-
task; subprocedures of one or more operators correspond to a Generic Task; a
complete inference procedure corresponds to a role-limiting method. A good
property of Generic Task and role-limiting methods analyses is that they each
adopt a single point of view, compared to lists that mix inference methods with
modeling purposes (e.g., a typical "problem types" list, appearing in an expert
systems tutorial, is "evidence gathering, stepwise refinement, stepwise assem-
bly, design, and monitoring"). However, there is no way of arguing for the
completeness of either the Generic Tasks or role-limiting methods lists or even
comparing two such lists without a dimensional analysis of the primitives that
underlie them, precisely the role of mathematical analysis. In particular, the
set-mapping and SSM constraint descriptions (Section 6) provide a means for
systematically describing and hence generating candidate Generic Tasks and
role-limiting methods (e.g., as in Table 2). We might look for these operators
or operator combinations in existing expert systems to fill out our library or use
them for selecting a new application that will extend the capabilities of an
existing tool.

9. Historical perspective

One of the main ideas of this paper is that expert systems incorporate models
of systems that are mostly nonnumeric in character, and by this technique AI
programming has produced a new modeling method. We have termed this
qualitative modeling; however, representational modeling or relational model-
ing are also appropriate namesJ 3 The important point is that expert systems as
computer programs are using a form of modeling that distinguishes them from
traditional programs.

9.1. Changing views of relational networks

To see more clearly how AI programming has introduced a new modeling
method that is worthy of being named and promoted in itself--independent of
how it has been applied to develop intelligent programs--consider how our

t3 Recalling Fig. 29, processes represented qualitatively include the domain system, inference.
planning, data gathering, and discourse. A great deal of AI research has been concerned with
"formal reasoning" (e.g., geometry, subtraction, theorem proving). From the perspective of
system modeling, formal reasoning is degenerate because model notations are manipulated (e.g., a
child's subtraction problem), but there is no specific system in the world being modeled.
Nevertheless, the inference process is represented qualitatively (e.g., the subtraction process is
represented in BUGGY as a procedural hierarchy [14]). Extensive discussion of formal versus
physical systems modeling and algorithmic versus heuristic inference procedures appears in [25].

Model construction operators 91

views of relational networks have changed in computer programming over the
past two decades:

• Programmers have traditionally used node and link representations to
represent processes; flowcharts are a leading example. In expert systems
the relational network is a representation, an object in itself, that is
selectively interpreted for different purposes. It is not executed or run so
much as read, examined, and modified like a database.

• In early AI research, complex relational networks are used for associating
arbitrary things; semantic nets are a leading example. In expert systems we
find systematic macrostructures (e.g., hierarchies, state-transition nets) relat-
ing states, substances, and processes. It is not just a network where facts
are stored, but rather a representation of a process or system.

• Traditional programs read and print numbers and symbols; FORTRAN
and COBOL are leading languages for this. Expert systems create and
manipulate linked-node graphs (the SSM), whose intermediate structure
often opportun&tically drives the computation. It is not just a data structure
that is created and modified, but a model of structures and processes,
usually on different levels of detail, whose form can be systematically
interpreted for detecting incomplete or inconsistent facts.

Notice the shift from describing a process as something that runs directly
to something that is constructed by the program itself and selectively inter-
preted, perhaps the hallmark of a representation. Notice also that the shift
from semantic networks to the idea of classification (e.g., as developed in
UNITS, KL-ONE, and CYC [57]) is in the direction of not just relating
arbitrary things, but modeling processes (a point emphasized in CYC
research).

A key distinction that has been little recognized is that knowledge bases are
not just complex networks (let alone unorganized pots of rules), but have a
macrostructure that can be viewed in terms of types of graphs, such as types of
transition networks. We have made progress by focusing on what a node
represents (state, substance, process) and what the links mean (cause, spatial
connection, temporal sequence, functional subprocess). Early studies focused
on subtype relations of concepts [7, 95], which unfortunately misses the
process-modeling aspects. These studies tend to view a knowledge base as a
collection of facts that simply exists like a database ("Clyde is a grey
elephant"). In an expert system--or indeed any program that must reason
about the world and take action--descriptions of systems are represented and
employed for some purpose; they are not arbitrary. Finally, the key idea
emphasized in this paper is that the program's reasoning can be usefully
characterized in terms of set and graph operators for manipulating this model,
thus relegating discussions of conceptual structures, rules, frames, blackboards,
etc. to the level of notational style and program implementation.

92 W.J. Clancey

Table 6
Evolving purposes for using graphs to represent systems.

Types of graph representations
of systems Purposes/views

Process classifications
Causal (substance/process) networks
Functional composition networks
Structural composition hierarchies

Object feature classifications
(Entity-relation database)

Semantic networks

A N D / O R subgoal tree
Dataflow diagram

Petri nets
Flowcharts
Influence diagrams
(Decision trees)

Model of a system taken as an
object itself, interpreted and
modified by diverse processes
(links indicate causal,
temporal, spatial, or functional
relations, and inheritance of
these).

Taxonomy of physical
appearance and behavior of
similar objects (links indicate
inheritance of static,
inherent properties).

Description of meaning of
concepts (links indicate
relations between objects
and events).

Derivational description of
facts via inferences and
calculations (links indicate
conditional transformations).

Description of conditions and
operations constituting states
of a process (links indicate
flow of control).

Table 6 provides a particular cut on the historical development of qualitative
modeling, emphasizing what aspects of an object system's behavior or oper-
ation are represented by different types of networks. Notice in particular how
Petri nets, decision trees, and influence diagrams are similar to flowcharts
because they do not describe how a system is put together or how it works, so
much as procedurally specify what happens under particular conditions. In
practice, these networks are often viewed as types of causal-associational
networks. A N D / O R subgoal trees (e.g., Fig. 13) and dataflow diagrams
represent a collection of facts as a stream that is transformed by mathematical
operations or logical syllogisms. The development of relational databases--
particularly its expression in the "entity-relation model" [8]--has paralleled
the development of process modeling in AI and is close in spirit to early
systems like UNITS and KL-ONE. This view emphasizes that collections of
things are organized into a classification hierarchy, and primacy is placed on
representing the relations that define this classification (corresponding to slots
in frame systems). This is certainly an important part of the elephant's hide.

Model construction operators 93

9.2. Decision support and critiquing models

The system-modeling perspective also provides an easy way of contrasting
decision support programs and expert systems. Generally speaking, decision
support programs partially automate the modeling task, leaving the user to
provide a general system model or to determine how an SSM should be applied.
For example, risk analysis involves predicting how a system being modeled will
behave, using heuristics to determine whether undesired events ("risks") will
occur. An assessment step involves determining which system attributes or
environmental inputs are causally related to the risk/undesired event. For
example, a decision support system for designing new detergents might accept
a detergent design as input and use simulation to determine that there is a risk
of excess suds when washing certain kinds of synthetic materials; assessment
could track this back to a particular component of the detergent. Such a
program helps a user test and evaluate designs; more typically an expert system
(as defined by Fig. 21) would generate the initial detergent design or given a
supplied design would go on to say how it might be manufactured.

The critiquing model of consultation (e.g., SOPHIE's hypothesis evaluator
[9], MYCIN's therapy explanation system [18] and similar methods developed
by Langlotz and Shortliffe [56] and Miller and Black [65]) are essentially
decision support tools, accepting an SSM or action plan from the user and
comparing to what is internally generated. Instructional programs often pro-
vide scenarios or cases for developing and exercising general models; they also
provide representations by which the student can describe an SSM, as in
Anderson's geometry program. Notice that in decision support, critiquing, and
instructional tools the idea of modeling is salient because the model itself is an
object of study or elaboration. In consultation programs like MYCIN the
diagnostic model is not presented so much for the user to ponder over and use,
but as a justification of the therapy (indeed, even the idea of an intermediate
SSM is disguised by the goals, viz. "conclude that E.coli is one of the
organisms that therapy should cover for").

A decision support or critiquing approach is valuable for problems in which
it is difficult to automate action planning (e.g., controlling a company) or in
which there are too many situations for the knowledge engineer to anticipate in
the general model, using a fixed set of concepts. For complex design or
planning (control) tasks, the decision support system becomes a kind of
knowledge acquisition program which helps the user develop a general model
and evaluate it by simulating its behavior in different situations. Critiquing has
turned out to be especially valuable for medical diagnosis and therapy, both to
remind physicians about the complexities of the general model and to keep
them engaged and feeling responsible for patient care [56]. The main contribu-
tion of AI to decision support systems is in providing these qualitative
modeling techniques, in contrast with previous probabilistic, nonrepresenta-
tional approaches [39], which limit the way models can be expressed.

94 W.J. (?lance)"

9.3. Grammars, nonlinear modeling, automata theory

Another way of understanding qualitative modeling techniques is to track
them back even further to their origins in the theory of computation and
cybernetics. This is a chapter that AI textbooks consistently omit, and it is
perhaps responsible for the perceived lack of coherence in AI research. The
1970s and 1980s generation brought up as computer programmers trying to
create intelligent machines did not see itself as building on the nonlinear
modeling and systems theory from which AI was born [82].

As an example, consider how control knowledge might be related to Post's
original production formalism from linguistics [49]:

• A blackboard is a data structure for posting alternative parses of some
expression or behavior (indeed, this is precisely what HEARSAY is doing,
posting alternative parses of input sentences, starting of course at the level
of sounds rather than words).

• An inference procedure expressed as subtasks and rewrite (meta)rules is a
higher-order grammar for controlling the parsing/recognition and genera-
tion process (indeed, this is explicit in ODYSSEUS, which uses
NEOMYCIN's subtasks and metarules to parse a sequence of student data
requests).

• The relations for representing processes in the domain, inference, plan-
ning, and communication models (Fig. 29) constitute grammatical (more
precisely, lexical) distinctions for organizing objects in the object system;
for example, "substance" and "follow-up question" constitute grammati-
cal distinctions in a domain model for diagnosis (Fig. 20), and sentences
(propositions) are facts about the domain.

In short, it is easy to view blackboards, inference procedures, and relational
languages as direct extensions of the production rule formalism developed for
formally representing languages. Of particular interest is how the sentences
generated and recognized in expert systems and tutorial programs are not just
utterances in an arbitrary conversation, but are about some system that is being
modeled for some purpose. Grosz's [35] research on task-oriented discourse is
an early natural language effort that adopts this perspective. Indeed, how could
there be a natural language program that carries on purposeful dialogue
without a domain model and inference procedure inside it?

As indicated, ODYSSEUS provides a particularly good example of how an
abstract inference procedure can be viewed as a grammar for the inference
process. Figure 46 shows a sequence of three data requests, listed on the
right-hand side, parsed in terms of subtasks and domain rules, in boxes. The
program indicates alternative reasons why a question might have been asked,
using a bottom-up analysis, then groups them in terms of higher-order subtasks
that could now be applied given the state of the SSM, a top-down analysis. For

'
Do

m
ain

-L
ev

el In
ts~

'eta
~o

¢l (o
fth

eO
dy

ss
a~

 M
od

ele
r)

T/-
~C

HR
ON

/C
-LU

NG
 -IN

 FE
 CT

IO
N

AR
I[R

UL
E3

04
] ~
.

TH
{C

HR
ON

IC
-B

~T
ER

IA
L-S

IN
US

ITI
S~

 ~
I[

R
U

~

TH
[IN

FE
CT

IO
US

-P
RO

CE
SS

] I
-

TH
IC

HR
ON

~3
-E

/~-
IN

FE
CT

 ~
AR

I~
LI

~3
1~

 /

T~
CR

yP
TO

CO
CC

US
] -

,~
,~

RU
LE

24
~ j

TH
ILP

I ~

AR
I[R

UL
E3

62
] -

TH
tIN

TR
AC

RA
NI

AI
 -

M
AS

St
LE

SJ
ON

] AR
IIR

UL
E2

39
},~

TH

IC
ON

TR
AJ

ND
iCA

TE
OI

~

~
TH

IIN
CR

E/~
SE

D-
IN

TR
AC

RA
NI

AL
-P

RE
SS

UR
E] -

AR
IR

UL
E2

6~
'

TH
[A

V.
M

AL
FO

RM
AT

IO
N]

 -
AR

I[R
UL

E2
75

],~
.

~
TH

[SU
BA

RA
CH

NO
ID

-H
EM

OR
RR

AG
E] -

AR
I[R

UL
E2

94
}lJ

TH

tB
RA

IN
-A

NE
UR

YS
M

] -
AR

I[R
U

LE
49

~
~

/

TH
[O

TH
ER

-[C
-P

RE
SS

tJR
E-

CA
US

ES
] -
AR

I[R
UL

E3
03

y

FO
[FO

CA
L S

EI
ZU

RE
 DU

RA
TIO

N]
 -

F'O
(FO

C

FO
[S

EI
ZU

RE
S-

TH
[LP

] ~

AR
I[R

UL
E3

~ -
 T

H[
IN

TR
AC

RA
NI

AL
- M

AS
S.

LE
SI

ON
] A

RI
[R

UL
E2

3g
] ~

.
TH

~C
O

NT
RA

IN
DI

C/
~T

ED
J~

~

T
EA

SE
D-

IN
TR

AC
RA

NI
AL

.PR
ES

SU
RE

}
-

AR
IR

U
LE

26
~ F

O(
Dt

PL
OP

tA
]

F0
~S

U~
'PR

OB
LE

gt~
I J

F
ig

.
46

.
O

D
Y

S
S

E
U

S
 p

ar
se

 o
f

a
st

ud
en

t'
s

da
ta

 r
eq

ue
st

s.

96 W.J. Clancey

example, the student's inquiry about seizures (FINDOUT/Seizures, Q6) might
have been asked to determine whether the disease is caused by an Intracranial-
mass-lesion, Subarachnoid-hemorrhage, and so on. The successful parse indi-
cates that the query is consistent with TEST-HYPOTHESIS/Meningitis, as
part of the process of looking up in GROUP-AND-DIFFERENTIATE. By
the same analysis, the question about fever (FINDOUT/Febrile, Q5) has three
consistent interpretations; we cannot determine from this information alone
whether the student is focusing on Acute-bacterial-meningitis or Infectious-
process, however NEOMYCIN would select Infectious-process first.

This kind of automated protocol analysis is not possible using MYCIN's rules
or even TEIRESIAS because a grammatical analysis requires that the rules not
mention domain terms (analogous to using variables like "noun" and "verb" in
natural language grammars, rather than specific words). The relations serve to
classify the findings and hypotheses, in the same manner that a natural
language lexicon classifies words (e.g., passive verb, demonstrative pronoun),
determining which grammar rules will control their assembly into sentences.
The subtask structure serves as a higher-order representation of the entire
consultative interview, analogous to a grammar characterizing an essay or
particular type of exposition [61]. In fact, the characterization of inference
procedures as grammars plays a major role in criticisms about the adequacy of
expert systems as models of intelligence, based on the idea that grammars are
an observer's description of patterns of behavior and cannot be equated with
the mechanism itself (Section 6) [30]. The explicitness of the grammar and
parse in ODYSSEUS reminds up that expert systems and, more specifically,
cognitive models share the power and limitations of natural language grammars
as mechanisms for generating behavior.

Much more could be said about the origins of AI in nonlinear modeling and
automata theory. The ideas of compartmentalization (near decomposability
[82]), topology, adaptiveness, informational flow, state transition, and
rationality have their modern beginnings in attempts within cybernetics to
model open and nonlinear systems [72, 92]). We can better present qualitative
modeling to scientists and engineers if we return to these origins, explain the
path we have taken, and show how our representational methods solve some of
the early problems. For example, Bertalanffy summarized the difficulty of
representing discontinuities (nonlinearity) in system behavior:

Representation by differential equations is too restricted for a
theory to include biological systems and calculating machines where
discontinuities are ubiquitous.

In our knowledge acquisition tools, we are implicitly claiming that we have
found methods for representing just such a wide variety of systems. Kuipers'
[54] qualitative simulation research is one good example where the relation
between qualitative modeling and differential calculus is made explicit. Similar-

Model construction operators 97

ly, relational modeling techniques can be fruitfully tracked through their use in
describing formal machines (automata), to modeling reasoning processes in
mathematical psychology, to representing states in physical systems such as the
human body.

Connecting qualitative modeling to its origins in cybernetics has recently
taken on new importance with the emergence of new mathematical and
nonrepresentational techniques for modeling complex, dynamic systems [85].
As new methods are found for building intelligent machines there is a danger
that knowledge engineering methods will be tossed aside. We must recognize
that these methods are more general, and have wider applicability, than their
developers first intended. For example, qualitative modeling could be used for
representing neural processes. To identify expert system techniques as just
"one way to model reasoning" is to confuse a modeling method with the
particular theories it has been used to represent. If we place qualitative
modeling in historical perspective, we are more likely to get the ideas
disseminated for general use by scientists and engineers, and better articulate
the tools we will need to advance our understanding of intelligence.

I0. Conclusions

This paper can be viewed as the culmination of an inquiry that began by
studying MYCIN's rules [21], led to generalizing patterns in expert systems
[24], and now involves identifying methods that distinguish AI programming as
a whole. A central claim is that it is productive to view AI programming in
terms of a modeling methodology that represents causal, temporal, and spatial
relations in systems. (Formal reasoning such as geometry problem solving is
ungrounded model manipulation; the numbers, variables, lines and angles
represent situations, but not particular systems in the world.) From this
perspective, control knowledge consists of the procedures for constructing
situation-specific models. Different representations, problem solving architec-
tures, knowledge acquisition tools, specific expert systems, and even different
areas of AI research can then be systematically related by this model construc-
tion perspective, in terms of types of relational networks, process models,
inference operators, system domains, and modeling purposes (tasks).

Our exposition unfolded by studying NEOMYCIN's metarules, attempting
to relate them to representations used in other programs and formalize
principles by which metarules are written. We found that multiple views,
incorporating basic mathematical and programming terminology, are useful for
describing NEOMYCIN's subtasks: graph-manipulation operators, set
operators, grammatical categories. The value of this formalization is ex-
emplified by the GUIDON-DEBUG program, which uses constraints on the
form of the SSM to detect problem solving failures and direct explanation-

98 W.J. Clancey

based learning; the ODYSSEUS program which models diagnostic strategy by
abstracting sequences of data requests; and the GUIDON-MANAGE program
which allows a user to dictate diagnostic strategy and generates plausible
actions (hints) in the same language.

The programming technique that enables these capabilities represents con-
trol knowledge as stylized procedures that order and control metarules, whose
premises use a form of the predicate calculus (see appendices). This representa-
tion reveals that each time we write a new procedure for interpreting a repre-
sentation, we define new relations that classify its constructs. Thus, we find that
classifications and procedures are defined in terms of each other. The repre-
sentation of strategic knowledge that results from stating control knowledge
abstractly, using variables in place of primitive terms, is not domain-indepen-
dent, but domain-general, in the sense that the language or relations can be
made more general than any one system being modeled by using spatial,
temporal, causal, and subtype distinctions (a perspective by which all systems
can be described).

One of the surprises in our investigation is that control knowledge cannot be
derived from the form of the SSM alone, but instead must always contain
assumptions about the world (involving case population and constraints on the
nature of the interaction between program and the world). We found that the
blackboard approach for representing and reasoning about alternative control
regimes provides flexibility for looking ahead and resuming interrupted oper-
ations, that must be handled in an ad hoc way in NEOMYCIN. Similarly, we
found that NEOMYCIN's representation of methods as objects provides a way
of making explicit the relations between SSM elements and inference operators
("knowledge sources") which are often coded in blackboard systems in an ad
hoe manner.

A major step is realizing that model construction recurs at three nested
levels: the domain, inference procedure, and communication with the world.
Specifically, the idea of a blackboard or SSM recurs at each level, which is to
say that each level involves some general model of processes and an inference
procedure for constructing a situation-specific representation (e.g., a model of
a patient's disease, a diagnostic plan, a discourse/explanation process for
communicating with the user). To see this, we need to extend the idea of a
model to include classification descriptions and not just simulations. We then
realize that a key contribution of A I programming is in using relational
networks to represent processes. Representation research develops types of
classifications and state-transition networks that are linked and composed in
taxonomies, causal-associational networks, and structure-function models.

The resulting picture is very general. Its power comes not from telling us
specifically how to develop a good model for some purpose, but how to relate
the diverse research that has attacked specific problems. We can relate
blackboards to metarules, NEOMYCIN to ABEL, heuristic classification to

Model construction operators 99

qualitative process simulation, XPLAIN to KNACK, and Generic Tasks to
role-limiting methods. Put another way, we can now relate representational
constructs, expert systems in a given domain, inference methods, knowledge
acquisition programs, and reasoning strategies, all from a model construction
perspective.

A key observation is that existing programs differ greatly in the grain size by
which inference procedures are described. For example, in SOAR procedures
are described very generally in terms of operator/operand application and
caching; in NEOMYCIN procedures are described in terms of relations
between operands and operators for constructing sets of operands; in BB1
procedures are described in terms of coping with resource limitations for
applying applicable operators or observing available operands. These com-
plementary views are integrated by the model construction perspective. Rather
than continuing to talk past each other (SOAR: matching situations to achieve
goals; NEOMYCIN: calling subprocedures to accomplish tasks; BBI: invoking
knowledge sources to modify the blackboard), we can make progress by
adopting a uniform graph-set-operator language.

In general, we see a remarkable shift from talking about rules in MYCIN to
talking about the structure of graphs and types of models of processes in
NEOMYCIN, made all the more dramatic by the use of the same examples
through the sequence of papers [21, 24]. This study suggests that AI re-
searchers should be wary of describing reasoning in terms of "answering
questions" or "achieving goals". At its heart, reasoning involves forming a
model of some system in the world in order to take action (Fig. 21). This
perspective relates expert systems to AI in the large, systematically relating
knowledge, inference, and planning (Fig. 29). Given any AI program, we can
ask, "What are the systems being modeled?, What are the structure and
process characteristics of this system?, What kind of relational network is used
to represent these structures and processes?, What is the inference procedure
for constructing a situation-specific model?, How is this model employed by
later reasoning phases, evaluated, or conveyed to the user?" Rather than
simply asking about a new problem domain, "Is there real-world knowledge
that allows classification?" we might ask, "Must the system be modeled as
open in its interactions with its environment?, Is there a known etiological
hierarchy?, Are there stages or developmental descriptions involving trends
and frequency of behaviors?, What experience have people had with this
system in rebuilding, modifying, assembling it in different situations?" Thus,
knowledge engineering is a form of systems analysis.

From these observations, we can conjecture where expert systems and
knowledge acquisition research are headed. First, much more attention could
be placed on the recurrent macrostructures in domain models. Hierarchies and
transition networks need to be viewed as objects in their own right and
classified (Fig. 34). Such classifications can then be mapped to a taxonomy of

100 W.J. Clancey

system types, according to whether the system has dynamic properties, whether
a classification of interactive-historical patterns is known, and whether a
behavioral (causal-associational net) or functional simulation is possible and
useful.

Paralleling the approach in software engineering, indeed merging with it
[90], object libraries need to be collected and shared. These objects will
include and be organized by the relational language, types of process model,
system type, inference operators, form of the SSM, constraints on interactions
with the world, and modeling purpose. In this respect, HERACLES-DX,
BB1-ACCORD, KNACK, Generic Tasks, etc. are precisely the systems that
must now be studied and integrated. Automatic programming could play a role
here, specifically if the SSM graph-operator representation is adopted for
relating the diverse approaches.

Researchers might begin by articulating and collecting the constraints that
existing inference procedures place on the form of the SSM (Fig. 32 and Table
3) and a program's interaction with its environment. This would be useful for
both automatic programming and failure analysis (GUIDON-DEBUG). In-
deed, the model construction view is essential for formalizing the process of
evaluating expert systems. Other research areas that could adopt this perspec-
tive include parallel computation (e.g., organize the modules as equivalence
classes of operators, not just "knowledge sources") and learning (e.g., focus on
how new relations are defined by new procedures for interpreting a representa-
tion). Reuse of representations is called repurposing in the multimedia domain;
one could apply repurposing of knowledge representations by knowledge
acquisition programs to the problem of indexing and composing new sequences
of multimedia presentations.

Probably the greatest opportunity lies in integrating numeric simulation and
qualitative modeling. Examples abound of engineering applications in which a
qualitative model is used to aid in the design of a system [48], to generate
scenarios to be simulated (including reasoning about boundary conditions as in
SOPHIE), to make heuristic decisions as embedded models of human agents
(e.g., in a manufacturing plant), and to analyze simulation results (particularly
abstracting and explaining trends in numeric data). Applications to chemistry
[13], biology [45], and genetics [36] are well known, but their contribution to
scientific modeling has been obscured by the emphasis on "expertise". Similar
applications in operations research [33] amply demonstrate how representa-
tional and parametric modeling complement each other.

In conclusion, a historical perspective suggests that we take care to separate
the modeling contributions of AI research from specific theories of intelligence.
In many respects, the techniques of knowledge engineering now have a life of
their own, as they are adopted and developed by scientists and engineers who
have no particular interest in cognitive science or automated reasoning, per se.
Qualitative modeling should be studied, formalized, and presented as a

Model construction operators 101

contribution to computer science and systems analysis. On this basis, links to
software engineering and operations research will be more quickly realized and
taught. Indeed, in many respects this generation of AI research may come to
be viewed not so much for the particular capabilities of the programs that were
developed, but for the generality of the methods, which as computational
formalisms are arguably as novel and wide-sweeping in their impact as New-
ton's calculus.

Appendix A. HERACLES' architecture

The architecture is described here as a general shell, then more specifically in
terms of how it is implemented on top of EMYCIN, followed by details about
the subtask interpreter and the metarule compiler. The full relational language
used in NEOMYCIN's metarules is also categorized.

A. 1. Nesting of shells, application programs, and model-manipulation routines

HERACLES is a framework for encoding a domain model and an inference
procedure. The language is called CTMR, standing for constraint, subtask,
metarule, and relation (Fig. A.1). Out of these constructs, a specific inference
procedure of subtasks and metarules can be written, which will mention
relations by which the domain knowledge will be represented. HERACLES-
DX is the expert system shell that contains the subtasks, metarules, and
relations extracted from NEOMYCIN. CASTER, a rudimentary sand casting
diagnostic system demonstrates the generality of this shell [89]. A new shell
called HERACLES-CX is currently being implemented, with a new set of
subtasks, metarules, and relations for configuration, based on a computer
network layout expert system we are developing. Thus, HERACLES is not an
expert system shell, but a framework for developing shells. As shown in Fig.
A.1, the tutoring, explanation, student modeling, and knowledge acquisition
programs are separate modules that rely only on the CTMR representation,
not on the particular subtasks, metarules, or relations. Additional knowledge
required for any of these programs is expressed in the same CTMR language
(e.g., new relations required by the explanation program classify existing
domain relations).

A.2. Metarules, relations, and subtasks

Originally NEOMYCIN's metarule premises were coded in LISP. In a hybrid
system called MRS/NEOMYCIN [31], we represented metarule premises in
MRS, a logic-programming language that provides a framework for multiple
representations of knowledge and control of reasoning [37]. We also recoded
the interpreter in MRS rules and placed a simple deliberation-action loop at

102 W.J. Clancey

HERACLES

Constraint
Task
Metarule
Relation

Process-Modeling
Language

Heracles-DX

Diagnostic Procedure &
Domain Claulflcatlon Relations

"Task-specific" shell for formulating
a diagnostic expert system

Neomycin

Disease tcxonomy and causal relations

Expert system for medical diagnosis
in the area of headache & CNS problems

Guidon-Manage

Explanation, Student Modeling, Coaching
Heuristics

Intelligent tutoring system for teaching strategic
language formulated In Heracles-DX

Fig. A.1. Nesting of language, task-specific shell, expert system, and communication procedures.

the top. Unfortunately, this slowed down the program by an order of mag-
nitude and made the procedure too obscure to read or maintain. A comprom-
ise design works far better, with the interpreter written in LISP and the
metarules coded in a variant of MRS, which are compiled into LISP. This
provides the well-structured language required for bookkeeping and interpreta-
tion by the explanation, tutoring, and student modeling, knowledge acquisition
programs, without sacrificing runtime efficiency. Figure A.2 shows how an

J D
ef

in
iti

on
al

Re

la
tio

n

R
U

LE
S

~
M

et
ar

ul
ea

ap
ply

D
om

ai
n

R
ul

es

D
om

ai
n

cl
as

si
fic

at
io

n
an

d
Pr

ob
le

m
 s

ta
te

pr

op
os

iti
on

s
co

nc
lud

e a
bo

ut

~
).

u
s

e
d

-
~

~

"
. .

ac
hie

ve
d b

y

m
si

n
T

er

re

qu
es

t

~
"a

pp
ea

r in
" 1

co
nc

lud
e

in
 p

ar
s

us
ed

 by

"'
''"

Do

m
ai

n
Pr

op
os

iti
on

s
(F

in
di

ng
s

an
d

t
~

co
nc

lud
e a

bo
ut

H

yp
ot

he
se

s)

Fi
g.

 A
.2

.
R

ep
re

se
nt

at
io

n
of

 a
n

in
fe

re
nc

e
pr

oc
ed

ur
e

in
 H

E
R

A
C

L
E

S
.

104 W.J. Clancey

inference procedure is represented in HERACLES, which we view to be a
major contribution of this research. HERACLES has three kinds of "concept"
or "parameter" objects and three kinds of "rule" objects. We use the
EMYCIN terms parameters and rules because the system is actually im-
plemented on top of EMYCIN. Parameters are specialized as domain rela-
tions, control subtasks, and domain terms, conditionally inferred and invoked
by definitional rules, metarules, and domain rules. We use "relation" in the
mathematical sense to refer to both predicates and functions. Findings and
hypotheses are two classes of domain term; more informally, they refer to
propositions in the SSM (so informally we say that "the patient has meningitis"
is a hypothesis). Subtasks are accomplished by an interpreter that applies
metarules (described in more detail below). Propositions used by metarules
premises (e.g., (EXPLAINED-BY SF SH)) can be inferred definitionally by
rules or can be inferred by procedural attachment (accessing LISP structures).
These propositions are both static and dynamic. They classify domain proposi-
tions and domain rules, as well as characterize the problem solving state (e.g.,
the contents of the SSM and bookkeeping information about subtask applica-
tion). Additional relations that classify subtasks used by the subtask interpre-
ter, and the interpreters in GUIDON-MANAGE, ODYSSEUS, etc. are not
shown here. Metarule actions apply domain rules, request (from the user) or
assert domain propositions (e.g., Fig. 6), or invoke other subtasks. In particu-
lar, the subtask FINDOUT, recoded and expanded from the original EMYCIN
program, uses all of these methods to infer domain propositions. In HERA-
CLES all domain rules are applied directly by metarules rather than by
uncontrolled backward chaining. Only domain rules mention domain terms
directly; other rules use variables. No rule may mention another rule by name.

To coordinate with the subtasks and metarules, the EMYCIN function
CONCLUDE maintains a list of new finding and hypothesis assertions (part of
NEOMYCIN's blackboard). A much more complicated certainty factor
scheme distinguishes between inherited and direct belief (from rules); the
cumulative CF of a hypothesis is defined to be its direct CF combined with the
cumulative CF of its parent (because it inherits the slots and hence the
evidence of its parent). Finally, EMYCIN primitives for setting up data tables,
creating an instance in the context tree, etc. may be used directly in metarule
actions.

A.3. The subtask interpreter

A HERACLES subtask is a procedure, represented as an ordered and
controlled set of metarules. The control of a task's metarules is specifed by
properties of the subtask:

• The subtask focus, which is the argument of the subtask. Only one focus is
allowed.

Model construction operators 105

• The task's ordered metarules.
• The end condition, which may abort the subtask or any subtask when it

becomes true. Aborting can occur only while the do-during metarules are
being applied. The end condition is tested after each metarule of a subtask
succeeds. A subtask may also be marked to prevent its abortion.

• Ordered rules to be applied before or after the metarules (used only for
bookkeeping).

• The subtask type, which specifies how the metarules are to be applied.
There are two dimensions to the subtask type: simple or iterative, and
try-all or not-try-all.

The combinations of subtask types provide four ways of controlling the
metarules:

• Simple and try-all. The rules are applied once each, in order (equivalent to
a LISP PROG statement). Each time a metarule succeeds, the end
condition is tested.

• Simple and not-try-all. The rules are applied in sequence until one
succeeds or the end condition succeeds (equivalent to a LISP COND
statement).

• Iterative and try-all. All the rules are applied in sequence. If there are one
or more successes, the process is started over. The process stops when all
the rules in the sequence fail or the end condition succeeds (equivalent to
a pure production system).

• Iterative and not-try-all. Same as for iterative and try-all, except that the
process is restarted after a single metarule succeeds (equivalent to a "for"
loop).

In addition, each subtask can have local variables that appear in metarule
premises, allowing a binding to be passed to the action as a subtask focus.

A.4. The metarule compiler

The metarule compiler converts a metarule premise, expressed as a conjunc-
tion of propositions, to a LISP function. Relations concluded by definitional
rules are coded as separate functions. Primitive domain relations are compiled
as direct LISP operations (e.g., GETPROP). The backtracking necessary to
match the variables in the premise, including a capability for finding all
possible matches is compiled as nested iterations and set collection operations.

Table A.1 lists the ways in which primitive domain relations can be
implemented in LISP, with examples.

A miscellaneous category of general relations must be handled specially by
the compiler, including the quadruple relation between a finding, hypothesis,
domain rule, and certainty factor (EVIDENCEFOR) and relations that can be
easily optimized by the compiler (e,g., MEMBER and NULL).

106 W.J. Clancey

Table A. 1
IMPLEMENTATION classification of domain relations.

Implementation Example Interpretation

FLAG NEW-DIFFERENTIAL T or NIL variable
VARIABLE STRONGCOMP.WGHT LISP variable
LIST DIFFERENTIAL LISP list
PROPMARK ASKFIRST T or NIL property
PROPLIST CHILDREN List-valued property
PROPVAL PROMPT Arbitrary property
FUNCTION SAMEP LISP function
METARULE-PREMISE- TAXREFINE? Determined by a
RELATION definitional rule

To write a compiler for MRS-style rules in general is difficult. However,
several features of HERACLES-DX metarules and a few simplifications made
it easy to write the compiler:

• Only one rule concludes about each metarule premise relation. Where
necessary, rules were combined into a single rule with a disjunction.

• Relations are either predicates or functions, rather than being used in both
ways, For example, (CHILDREN $HYP $CHILD) is only used as a
functional generator, never as a predicate to test whether a given candi-
date is a child of a given hypothesis. This was not a deliberate design
choice--all of the 166 relations in HERACLES-DX satisfy this property.

• Functional relations are all single-valued (except EVIDENCEFOR). Con-
sequently, backtracking to find matches for variables in conjunctions can
be expressed as nested f i n d x suchthat or therexists an x suchthat loops;
failure of the inner loop and return to the next outer loop for a new
variable match is equivalent to backtracking.

• Rule conjuncts are ordered manually so that a variable is found (by a
functional relation) before it is tested (by a predicate relation). This is a
natural way to write the rules.

• Inverse relations are defined so that the LISP atom with the property
corresponding to the relation is the first variable in the relation. For
example, the functional relation CHILDREN, as in (CHILDREN $HYP
$CHILD), is used when $HYP is known. Again, this occurred naturally
rather than being a deliberate design choice.

• Redundant clauses are used in disjuncts, rather than being factored out,
i.e.,

(AND (common clauses) (OR dl d 2 . . . dn))

Consequently, a few rules are awkward to read.

In general, the compiler's code is easier to understand than the original LISP
metarules from NEOMYCIN because it does not use constructs like thereis and
never , which require mental gymnastics to logically invert and combine.

Model construction operators 107

Besides the IMPLEMENTATION property, domain relations may have
PREDICATE and MULTIPLEMATCH properties. PREDICATE indicates
that the matched variable need not be saved. MULTIPLEMATCH means that
the rule that defines the relation should be matched as many times as possible.
In essence, the compiler changes

to

(f ind (var) in (list) suchthat . . .)

(fo r (var) in (list) collect (var) w h e n . . .) .

Essentially, the task of the compiler can be viewed in terms of finding a binding
for a variable, testing it, setting it, or simply checking to see if a value exists. In
particular, the majority of metarules use some definitional relation of type
MULTIPLEMATCH, returning a list, which is passed to the metarule's action.
This pattern suggested the set-manipulation way of describing subtasks (Sec-
tion 6).

In conclusion, the use of prefix predicate calculus notation as a specification
language for metarules is convenient and allows efficient compilation.

A.5. Relations used in H E R A C L E S - D X

The relations used in NEOMYCIN and CASTER metarules and definitional
rules are categorized as domain, dynamic belief, dynamic search or focus
bookkeeping, and computational. Inverses (e.g., caused-by) are not listed.
Primitive terms are $PARM, $RULE, $CF, and $CNTXT (an instance of a
domain class). All other terms and relations are defined in these terms.
Indentation indicates hierarchical definition of new terms. For example, a
nonspecific finding is a kind of finding. These relations are generally im-
plemented as LISP structures; the dynamic belief and computational relations
are implemented as LISP functions. The remaining relations are composites of
the others, defined by rules written in MRS.

Relations classifying findings and hypotheses

(FINDING $PARM)
(SOFT-DATA $FINDING)
(HARD-DATA $FINDING)
(NONSPECIFIC $FINDING)
(REDFLAG $FINDING)

(HYPOTHESIS $PARM)
(STATE-CATEGORY $HYP)
(TAXONOMIC $HYP)

(PARENTOF $TAXPARM $PARENT)
(COMPLEX $TAXPARM)

108 W.J. Clancey

(CAUSES $HYP1 $HYP2)
(SUBSUMES $FINDING1 $FINDING2)
(PROCESSQ $FINDING1 $FINDING2)
(CLARIFYQ $FINDING1 $FINDING2)
(SOURCE $FINDING1 $FINDING2)
(SCREENS $FINDING1 $FINDING2)
(PROCESS-FEATURES $HYP $SLOT $VAL $FINDING)

(ALWAYS-SPECIFY $FINDING)
(ASKFIRST $FINDING)
(PROMPT $FINDING $VAL)
(BOOLEAN $PARM)
(MULTIVALUED $PARM)
(TABLE $BLOCKPARM $FINDING)

(ENABLINGQ $HYP $FINDING)
(SUGGESTS $PARM $HYP)
(TRIGGERS $PARM $HYP)

Relations classifying domain rules

(ANTECEDENT-IN $FINDING $RULE)
(APPLICABLE? $RULE $CNTXT $FLG)
(EVlDENCEFOR? $PARM $HYP $RULE $CF)
(COMMONCASERULES $HYP $RULE)
(UNUSUALCASERULES $HYP $RULE)

(PREMISE $RULE $VAL)
(ACTION $RULE $VAL)
(ANTECEDENT $RULE)

(TRIGGER $RULE)
(SCREEN $RULE)

Belief relations

(BELIEF $HYP $CF)
(CUMCF-VALUE $HYP $CF)
(MAX-CONSIDERED-HYP-CUMCF $CF)

(PREVIEW $CNTXT $RULE)

(DEFINITE $CNTXT $PARM)
(DEFIS $CNTXT $PARM $VALUE)
(DEFNOT $CNTXT $PARM $VALUE)
(NOTKNOWN $CNTXT $PARM)
(SAME $CNTXT $PARM $VALUE $CF)
(SAMEP $CNTXT $PARM)

Model construction operators 109

Dynamic search or focus relations

(CONSIDERED $HYP)
(DESCENDENTS-EXPLORED $TAXPARM)
(PARENTS-EXPLORED $TAXPARM)

(APPLIEDTOP $RULE $CNTXT)
(DONTASKP $CNTXT $PARM)
(TRACEDP $CNTXT $PARM)

(SPECIFICS-REQUESTED $FINDING)
(SUBSUMPTION-CONCLUDED $FINDING)
(USERSUPPLIED $FINDING)

(TASK-COMPLETED $TASK)
(TASK-COMPLETED-FOCUS $TASK $FOCUS)

Dynamic relations describing the SSM

(CURFOCUS $HYP)
(DIFFERENTIAL $HYP)
(NEW.DIFFERENTIAL)
(WIDER.DIFFERENTIAL)
(DIFFERENTIAL.COMPACT)

(NEXT-HARD-DATAQ $FINDING)
(NEW.DATA $FINDING)
(PARTPROC.DATA $FINDING)

Computational relations

(ABS $ARG $RESULT)
(CFCOMBINE $CF1 $CF2 $RESULT)
(EQ $ARG1 $ARG2)
(GREATERP $ARG1 $ARG2)
(LESSP $ARG1 $ARG2)
(MINUS $ARG1 $ARG2 $RESULT)
(MINUS $ARG)
(NULL $ARG)
(TIMES $ARG1 $ARG2 $RESULT)

(FIRST-ONE $LIST $RESULT)
(LENGTH $LIST $RESULT)
(MEMBER $MEN $SET)
(SINGLETON? $LIST)

(PREDICATE $RE~

110 W.J. CTancey

(IMPLEMENTATION $REL $VAL)
(MULTIPLEMATCH $REL)

(UNIFY $PATTERN $FACT)

Relations defined by rules (composites)

(ACTIVE.HYP? $HYP)
(ALWAYS-SPECIFY? $FINDING)
(ANTECEDENT.RULES? $PARM $RULE)
(ANY.ANCESTOR? $HYP1 $HYP2)
(BESTCOMPETITOR $CURRENTHYP $BETTERHYP $BHCF)
(BESTHYP $HYP)
(CHILDOF $HYP $CHILD)
(CLARIFY.QUESTIONS $FINDING $PROCPARM)
(DIFF.EXPLAINED $FINDING)
(DIFF.NOTPARENTS-EXPLORED?)
(DIFF.NOTPURSUED?)
(ELIGIBLECHILD)
(ENABLING.QUESTIONS $HYP $RULE)
(EXPLAINEDBY $FINDING $HYP)
(EXPLORE.CHILD? $HYP $H)
(EXPLORE.HYP? $HYP)
(EXPLORE.SIBLING? $OLDFOCUS $HYP)
(NEXTGENERALQ? $FOCUSQ)
(PARTPROC.NOTELABORATED? $FINDING)
(PARTPROC.SUGGESTRULES? $PARM $RULE)
(POP-FINDING $NEWDATA $FINDING)
(POP-HYPOTHESIS $NEWDATA $HYPOTHESIS)
(POP-REDFLAG-FINDING $NEWDATA $FINDING)
(PROCESS-QUESTIONS? $PARM $PROCTYPEPARM)
(REFINABLE? $HYP)
(REFINABLENODE? $OLDFOCUS $FOCUSCHILD)
(REMAINING.QUESTIONS $HYP $RULE)
(SINGLE.TOPCAUSE $FOCUS)
(SOURCEOF $PARM $SOURCE)
(STRONG-COMPETITOR? $CURRENTHYP $BESTCOMP)
(SUBSUMPTION.SUBTRACED $CNTXT $PARM)
(SUBSUMPTION.SUPERFO $CNTXT $PARM)
(SUBSUMPTION.SUPERTRACED $CNTXT $PARM)
(SUBSUMPTION. SUPERUNK $CNTXT $PARM)
(SUGGESTRULES? $PARM $RULE)
(SUPERS.NOTRACED $PARM $SUPERPARM)

Model construction operators 111

(TAXANCESTOR $HYP1 $HYP2)
(TAXREFINE? $HYP)
(TOP.UNCONFIRMED? $ANCESTOR)
(TOPUNCON $ANCESTOR $HYP)
(TRIGGERQ $HYP $RULE)
(TRIGGERS? $FINDING $RULE)
(UNAPPLIED? $RULE)
(UNCLARIFIED-FINDING $NEW.DATA $FINDING)
(UNEXPLOREDDIFF.COMPACT? $HYP)
(UPDATE.DIFF.RULES? $FINDING $RULE)
(WAITINGEVlDRULES? $HYP $RULE)
(WEAK.EVIDENCE.ONLY? $HYP)

Acknowledgement and historical notes

NEOMYCIN was first designed and implemented in November 1980 with
the assistance of Reed Letsinger and the late Timothy Beckett, MD. Conrad
Bock is responsible for the recoding into MRS in 1982 that inspired and
provided the data for this paper. Many of the programs mentioned here were
co-designed and implemented by Stanford students: David Wilkins (ODYS-
SEUS, 1986), Arif Merchant and Diane Hasling (explanation), Bob London
(IMAGE, 1982), Mark Richer (GUIDON-WATCH, 1985), Tim Thompson
(CASTER, 1986), Naomi Rodolitz (GUIDON-MANAGE, 1987), John Sotos
(explanation); they were assisted by system programmers Steven Barnhouse,
David Leserman, Steve Oliphant, and Monique Barbanson. I am indebted to
Bruce Buchanan for providing the research environment at the Stanford
Knowledge Systems Laboratory that made this work possible. NEOMYCIN,
its tutoring and knowledge acquisition adjuncts, and the development of the
qualitative process modeling metaphor exemplifies "The MYCIN
Experiments" [12] that Bruce directed and promoted from 1972 to 1987. John
McDermott, Georg Klinker, Mark Musen, and reviewers made many thought-
ful suggestions for revising this paper.

The programs described here were implemented in InterLisp-D on Xerox
1100 Series machines. Computational resources were provided by the SUMEX-
AIM facility (NIH Grant RR00785), managed by Tom Rindfleisch. This
research was supported in part by ONR and ARI Contract N00014-79C-0302
under the supervision of Marshall Farr and Susan Chipman and by a gift from
the Josiah Macy Jr Foundation, Award B852005 in a funding program for
medical cognitive science championed by John Bruer. Funding is currently
provided by Digital Equipment in a program supervised by John McDermott,
and IRL, via gifts from the Philips-Netherlands and Xerox corporations.

I 12 W.J. Clancey

References

[1] J.S. Aikins, Prototypical knowledge for expert systems, Artif. lntell. 20 (2) (1980) 163-210.
[2] J.H. Alexander, M.J. Freiling, S.J, Shulman, J.L. Staley, S. Rehfuss and M. Messick,

Knowledge level engineering: ontological analysis, in: Proceedings AAAI-86, Philadelphia,
PA (1986) 963-968.

[3] J.R. Anderson, C.F. Boyle and G. Yost, The geometry tutor, in: Proceedings 1JCAI-85, Los
Angeles, CA (1985) 1-7.

[4] G. Bateson, Steps to an Ecology of Mind (Ballentine Books, New York, 1972).
[5] J.S. Bennet, ROGET: a knowledge-based consultant for acquiring the conceptual structure of

an expert system, Report No. HPP-80-7, Computer Science Department, Stanford University,
Stanford, CA (1980).

[6] R.J. Brachman, On the epistemological status of semantic networks, in: N.V. Findler, ed.,
Associative Networks: Representation and Use of Knowledge by Computers (Academic Press,
New York, 1979) 3-50.

[7] R.J. Brachman, What's in a concept: structural foundations for semantic networks, Int. J.
Man-Mach. Stud. 9, 127-152.

[8] M.L. Brodie, J. Mylopoulos and J.W. Schmidt, On Conceptual Modelling, Perspectives from
Artificial Intelligence, Databases, and Programming Languages (Springer, New York, 1984).

[9] J.S. Brown, R.B. Burton and J. de Kleer, Pedagogical, natural language, and knowledge
engineering techniques in Sophie I, II, and III, in: S.D. and J.S. Brown, eds., Intelligent
Tutoring Systems (Academic Press, Orlando, FL, 1982).

[10] J.S. Brown, R.B. Burton and F. Zydbel, A model-driven question-answering system for
mixed-initiative computer-assisted instruction, IEEE Trans. Syst. Man Cybern. 3 (3) (1973)
248-257.

[11] J.S. Brown, A. Collins and G. Harris, Artificial intelligence and learning strategies, in: H.
O'Neill, ed., Learning Strategies (Academic Press, New York, 1977).

[12] B.G. Buchanan and E.H. Shortliffe, Rule-Based Expert Systems: The MYC1N Experiments of
the Heuristic Programming Project (Addison-Wesley, Reading, MA, 1984).

[13] B.G. Buchanan, G. Sutherland and E.A. Feigenbaum, Heuristic Dendral: a program for
generating explanatory hypotheses in organic chemistry, in: B. Meltzer and D. Michie, eds.,
Machine Intelligence (Edinburgh University Press, Edinburgh, Scotland, 1969) 209-254.

[14] R.R. Burton, Diagnosing bugs in a simple procedural skill, in: D. Sleeman and J.S. Brown,
eds., Intelligent Tutoring Systems (Academic Press, New York, 1982) 157-183.

[15] B. Chandrasekaran, Expert systems: matching techniques to tasks, in: W. Reitman, ed., A1
Applications for Business (Ablex, Norwood, NJ, 1984) 116-132.

[16] B. Chandrasekaran, Generic tasks in knowledge-based reasoning: characterizing systems at
the "right" level of complexity, in: Proceedings IEEE Second Conference on Artificial
Intelligence Applications, Miami, FL (1985).

[17] B. Chandrasekaran, Towards a taxonomy of problem solving, in: R. Engelmore, ed.,
Readings from the A1 Magazine 1-5 (AAAI, Menlo Park, CA, 1988) 534-544.

[18] W.J. Clancey, An antibiotic therapy selector which provides for explanations, in: B.G.
Buchanan and E.H. Shortliffe, eds., Rule Based Expert Systems: The MYC1N Experiments of
the Stanford Heuristic Programming Project (Addison-Wesley, Reading, MA, 1984).

[19] W.J. Clancey, Methodology for building an intelligent tutoring system, in: W. Kintsch, J.R.
Miller and P.G. Poison, eds., Method and Tactics in Cognitive Science (Erlbaum, Hillsdale,
NJ, 1981).

[20] W.J. Clancey, The advantages of abstract control knowledge in expert system design, in:
Proceedings" AAA1-83, Washington, DC (1983) 74-78.

[21] W.J. Clancey, The epistemology of a rule-based expert system--a framework for explanation,
Artif. lntell. 20 (1983) 215-251.

[22] W.J. Clancey, Acquiring, representing, and evaluating a competence model of diagnosis, in:
M. Chi, R. Glaser and M. Farr, eds., The Nature of Expertise (Lawrence Erlbaum, Hillsdale,
NJ, 1988) 343-418.

[23] W.J. Clancey, Details of the revised therapy algorithm, in: B.G. Buchanan and E.H.
Shortliffe, eds., Rule-Based Expert Systems: The MYC1N Experiments" of the Heuristic
Programming Project (Addison-Wesley, Reading, MA, 1984).

Model construction operators 113

[24] W.J. Clancey, Heuristic classification, Artif. lntell. 27 (1985) 289-350.
[25] W.J. Clancey, Qualitative student models, in: J.F. Traub, ed., Annual Review of Computer

Science (Annual Review Inc., Paio Alto, CA, 1986) 381-450.
[26] W.J. Clancey, From Guidon to Neomycin and Heracles in twenty short lessons, in: A.

van Lamsweerde, ed., Current Issues in Expert Systems (Academic Press, London, 1987)
79-123.

[27] W.J. Clancey, Knowledge-Based Tutoring: The GUIDON Program (MIT Press, Cambridge,
MA, 1987).

[28] W.J. Clancey, The knowledge engineer as student: metacognitive bases for asking good
questions, in: H. Mandl and A. Lesgold, eds., Learning Issues in Intelligent Tutoring Systems
(Springer, Berlin, 1988).

[29] W.J. Clancey, The Knowledge Level Reinterpreted: Modeling How Systems Interact (Kluwer
Academic Publishers, Boston, MA, 1989) 287-293.

[30] W.J. Clancey, The frame of reference problem in the design of intelligent machines, in: K.
vanLehn and A. Newell, eds., Architectures for Intelligence: The Twenty Second Carnegie
Symposium on Cognition (Erlbaum, Hillsdale, NJ, 1990).

[31] W.J. Clancey and C. Bock, Representing control knowledge as abstract tasks and metarules,
in: L. Bolc and M.J. Coombs, eds., Computer Expert Systems (Springer, Heidelberg, 1988)
1-77.

[32] W.J. Clancey and R. Letsinger, NEOMYCIN: reconfiguring a rule-based expert system for
application to teaching, in: W.J. Clancey and E.H. Shortliffe, eds., Readings in Medical
Artificial Intelligence: The First Decade (Addison-Wesley, Reading, MA, 1981).

[33] G.F. Cooper, NESTOR: a computer-based medical diagnostic aid that integrates causal and
probabilistic knowledge, Report No. 84-48, Department of Computer Science, Stanford
University, Stanford, CA (1984).

[34] R. Davis and D. Lenat, Knowledge-Based Systems in Artificial Intelligence (McGraw-Hill,
New York, 1982).

[35] B.G. Deutsch, The structure of task-oriented dialogs, in: Proceedings IEEE Symposium for
Speech Recognition (1974) 250-253.

[36] P. Friedland, Knowledge-based experiment design in molecular genetics, in: Proceedings
1JCA1-79, Tokyo (1979) 285-287.

[37] M.R. Genesereth, The use of design descriptions in automated diagnosis, Artif. lntell. 24
(1984) 411-436.

[38] F. Gomez and B. Chandrasekaran, Knowledge organization and distribution for medical
diagnosis, in: W.J. Clancey and E.H. Shortliffe, eds., Readings in Medical Artificial In-
telligence (Addison-Wesley, Reading, MA, 1984) 320-338.

[39] A. Gorry, Computer-assisted clinical decision making, in: W.J. Clancey and E.H. Shortliffe,
eds., Readings in Medical Artificial Intelligence: The First Decade (Addison-Wesley, Reading,
MA, 1984) 18-34.

[40] J.G. Greeno, Cognitive objectives of instruction: theory of knowledge for solving problems
and answering questions, in: D. Klahr, ed., Cognition and Instruction (Erlbaum, Hillsdale,
NJ, 1976).

[41] T. Gruber, A method for acquiring strategic knowledge, Knowledge Acquisition 1 (1989)
255-277.

[42] P.E. Hart, Directions for AI in the eighties, SIGART Newslen. 79 (1982).
[43] R.T. Hartley, Representation of precedural knowledge for expert systems, in: Proceedings

Second 1EEE Conference on Artificial Intelligence Applications, Miami, FL (1985).
[44[D. Hasling, W.J. Clancey and G. Rennels, Strategic explanations in consultation, Int. J.

Man-Mach. Stud. 20 (1) (1983) 3-19.
[45] B. Hayes-Roth, B. Buchanan, O. Lichtarge, M. Hewett, R. Altman, J. Brinkley, C.

Cornelius, B. Duncan and O. Jardetzky, Protean: deriving protein structure from constraints,
in: Proceedings AAAI-86, Philadelphia, PA (1986).

[46] B. Hayes-Roth and F. Hayes-Roth, A cognitive model of planning, Cogn. Sci. 3 (1979)
275-310.

[47] B. Hayes-Roth, M. Hewett, M. Vaughan Johnson and A. Garvey, ACCORD; a framework
for a class of design tasks, Report No. 88-19, Knowledge Systems Laboratory, Stanford
University, Stanford, CA (1988).

114 W.J. Clancev

[48] K. Ishii, Knowledge-based design of complex mechanical systems, Civil Engineering Depart-
merit, Stanford University, Stanford, CA (1987).

[49] R.Y. Kain, Automata Theory: Machines and Languages (McGraw-Hill, New York, 19721).
[50] P.D. Karp and D.C. Wilkins, An analysis of the distinction between deep and shallow expert

systems, Int. J. Expert Syst. 2 (1) (1989) 1-32.
[51] R.M. Keller, Deciding what to learn, Tech. Report No. ML-TR-6, Rutgers University, New

Brunswick, NJ (1986).
[52] G. Klinker, KNACK: sample-driven knowledge acquisition for reporting systems, in: S.

Marcus, ed,, Automating Knowledge Acquisition for Expert Systems (Kluwer Academic
Publishers, Boston, MA, 1988) 125-174.

[53] G. Klinker, C. Boyd, S, Genetet and J. McDermott, A KNACK for knowledge acquisition,
in: Proceedings AAA1-87, Seattle, WA (1987).

[54] B.J. Kuipers, The limits of qualitative simulation, in: A. Joshi, ed., Proceedings IJCAl-85,
Los Angeles, CA (1985) 128-136.

[55] C.A. Kulikowski, Artificial intelligence methods and systems for medical consultation, in:
W.J. Clancey and E.H. Shortliffe, eds., Readings in Medical Artificial Intelligence (Addison-
Wesley, Reading, MA, 1984) 72-97.

[56] C.P. Langlotz and E.H. Shortliffe, Adapting a consultation system to critique user plans, Int.
J. Man-Mach. Stud. 19 (1983) 479-496.

[57] D. Lenat, M. Prakash and M. Shepherd, Cyc: Using common sense knowledge to overcome
brittleness and knowledge acquisition bottlenecks, Artif. lntell. Mag. 6 (4) (1986) 65-85.

[58] V.R. Lesser, D.D. Corkill, R,C. Whitehair and J.A. Hernandez, Focus of control through
goal relationships, in: Proceedings HCA1-89, Detroit, MI (1989) 497-503.

[59] B. London and W.J. Clancey, Plan recognition strategies in student modeling: prediction and
description, in: Proceedings AAA1-82, Pittsburgh, PA (1982) 335-338.

[60] W.J. Long, N. Shapur, M.G. Criscitiello and R. Jayes, Development and use of a causal
model for reasoning about heart failure, in: P. Miller, ed., Selected Topics in Medical Artificial
Intelligence (Springer, Berlin, 1988).

[61] W.C. Mann and S.A. Thompson, Rhetorical structure theory: a theory of text organization,
Report No. ISI/RS-87-190, Information Sciences Institute, University of Southern California,
Marina del Rey, CA (1987).

[62] S. Marcus, ed., Automating Knowledge Acquisition for Expert Systems (Kluwer Academic
Publishers, Boston, MA, 1988).

[63] J. McDermott, Preliminary steps toward a taxonomy of problem-solving methods, in: S.
Marcus, ed.. Automating Knowledge Acquisition for Expert Systems (Kluwer Academic
Publishers, Boston, MA, 1988) 225-256.

[64] P. Miller, Strategy selection in medical diagnosis, Report No. AI-TR-153, Artificial In-
telligence Laboratory, MIT, Cambridge, MA (1975).

[65] P. Miller and H. Black, Medical plan-analysis by computer: critiquing the pharmacologic
management of essential hypertension, Comput. Biomed. Res. 17 (1982) 38-54.

[66] T.M. Mitchell, S. Mahadevan and L.I. Steinberg, LEAP: a learning apprentice for VLSI
design, in: Proceedings HCA1-85, Los Angeles, CA (1985) 573-58[).

[67] LD. Moore and W.R. Swartout, A reactive approach to explanation, in: Proceedings
IJCA1-89, Detroit, MI (1989) 1504-1510.

[68] D.J. Mostow, Machine transformation of advice into a heuristic search procedure, in: R.S.
Michalski, J.G. Carbonell and T.M. Mitchell, eds., Machine Learning, An Artificial In-
telligence Approach (Tioga, Palo Alto, CA, 1983) 367-404.

[69] W.R. Murray, Control for intelligent tutoring systems: a comparison of blackboard architec-
tures and discourse management networks, Report No. R-6267, Central Engineering Lab,
FMC.

[70] M.A. Musen, Automated support for building and extending expert models, Mach. Learning
4 (1989) 347-375.

[71] R. Neches, W.R. Swartout and J. Moore, Explainable (and maintainable) expert systems, in:
Proceedings lJCAI-85, Los Angeles, CA (1985) 382-389.

[72] A. Newell and H.A. Simon, Human Problem Solving (Prentice-Hall, Englewood Cliffs, NJ,
1972).

Model construction operators 115

[73] H.P. Nii, Blackboard systems, Artif. Intell. Mag. 7 (3-4) (1986) 40-107.
[74] R.S. Patil, P. Szolovits and W.B. Schwartz, Casual understanding of patient illness in medical

diagnosis, in: W.J. Clancey and E.H. Shortliffe, eds., Readings in Medical Artificial In-
telligence (Addison-Wesley, Reading, MA, 1984) 339-360.

[75] H.E.J. Pople, The development of clinical expertise in the computer, in: P. Szolovits, ed.,
Artificial Intelligence in Medicine (Westview Press, Boulder, CO, 1982) 79-117.

[76] M. Richer and W.J. Clancey, GUIDON-WATCH: a graphic interface for viewing a knowl-
edge-based system, IEEE Comput. Graph. Appl. 5 (11) (1985) 51-64.

[77] N.S. Rodolitz and W.J. Clancey, GUIDON-MANAGE: teaching the process of medical
diagnosis, in: D. Evans and V. Patel, eds., Medical Cognitive Science (Bradford Books,
Cambridge, MA, 1989) 313-348.

[78] A.D. Rubin, Hypothesis formation and evaluation in medical diagnosis, Report No. AI-TR-
316, Artificial Intelligence Laboratory, MIT, Cambridge, MA (1975).

[79] E.D. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artif. lntell. 5 (2) (1974)
115-135.

[80] R.C. Schank, Failure-driven memory, Cogn. Brain Theory 4 (1) (1981), 41-60.
[81] A.H. Schoenfeld, Episodes and executive decisions in mathematical problem solving, Tech.

Report, Mathematics Department, Hamilton College, Clinton, NY (1981).
[82] H.A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, MA, 1969).
[83] R.G. Smith, P.H. Winston, T.M. Mitchell and B.G. Buchanan, Representation and use of

explicit justifications for knowledge base refinement, in: Proceedings 1JCAI-85, Los Angeles,
CA (1985) 673-680.

[84] J. Sowa, Conceptual structures (Addison-Wesley, Reading, MA, 1984).
[85] L. Steels, Cooperation between distributed agents through self-organisation, in: Y. Demazeau

and J.-P. MOiler, eds., Decentralized AI (North-Holland, Amsterdam, 1990).
[86] M. Stefik, Planning with constraints, Report No. STAN-CS-80-784, Computer Science

Department, Stanford University, Stanford, CA (1980).
[87] W,R. Swartout, Explaining and justifying in expert consulting programs, in: Proceedings

IJCA1-81, Vancouver, BC (1981) 815-823.
[88] P. Szolovits and S.G. Pauker, Categorical and probabilistic reasoning in medical diagnosis, in:

W.J. Clancey and E.H. Shortliffe, eds., Readings in Medical Artificial Intelligence (Addison-
Wesley, Reading, MA, 1984) 210-240.

[89] T. Thompson and W.J. Clancey, A qualitative modeling shell for process diagnosis, IEEE
Softw. 3 (2) (1985) 6-15.

[90] A. van Lamsweerde, B. Delcourt, E. Delor, C. Schayes and R. Champagne, Generic lifecycle
support in the ALMA environment, 1EEE Trans. Softw. Eng. 14 (6) (1988) 720-741.

[91] W. van Melle, A domain-independent system that aids in constructing knowledge-based
consultation programs, Ph.D. Dissertation, Computer Science Department, Stanford Uni-
versity, Stanford, CA (1980).

[92] L. von Bertalanffy, General System Theory: Foundations, Development Applications (George
Braziller, New York, 1968).

[93] D.E. Wilkins, W.J. Clancey and B.G. Buchanan, An overview of the ODYSSEUS learning
apprentice, in: T.M. Mitchell, J.G. Carbonell and R.S. Michalski, eds., Machine Learning: A
Guide to Current Research (Academic Press, New York, 1986) 369-373.

[94] D.E. Wilkins, W.J. Clancey and B.G. Buchanan, On using and evaluating differential
modeling in intelligent tutoring and apprentice learning systems, in: J. Psotka, D. Massey and
S. Mutter, eds., Intelligent Tutoring Systems: Lessons Learned (Erlbaum, Hillsdale, N J,
1988).

[95] W.A. Woods, What's in a link: Foundations for semantic networks, in: D.G. Bobrow and A.
Collins, eds., Representation and Understanding (Academic Press, New York, 1975) 35-82.

