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Abstract 

Clancey, W.J., Model construction operators, Artificial Intelligence 53 (1992) 1-115. 

Expert systems can be viewed as programs that construct a model of some system in the 
world so that it can be assembled, repaired, controlled, etc. In contrast with most 
conventional computer programs, these models represent processes and structures by 
relational networks. Control knowledge for constructing such a model can be described as 
operators that construct a graph linking processes and structures causally, temporally, 
spatially, by subtype, etc. From this perspective, we find that the terminology of blackboard 
expert systems is not specific to a particular set of programs, but is rather a valuable 
perspective for understanding what every expert system is doing. 

This paper reviews different ways of describing expert system reasoning, emphasizing the 
use of simple logic, set, and graph notations for making dimensional analyses of modeling 
languages and inference methods. The practical question is, how can we systematically 
develop knowledge acquisition tools that capture general knowledge about types of domains 
and modeling methods? Examples of modeling operators from ABEL, CADUCEUS, 
NEOMYCIN, HASP, and ACCORD demonstrate how diverse expert system approaches 
can be explained and integrated by the model construction perspective. Reworked examples 
from TEIRESIAS, XPLAIN, and KNACK illustrate how to write metarules without using 
domain-specific terms, thus making explicit their model construction nature. Generalizing 
from these observations, we combine the system-model and operator viewpoints to describe 
the representation of processes in AI programs in terms of three nested levels of domain, 
inference, and communication modeling. This synthesis reveals how the use of relational 
networks in computer programs has evolved from programmer descriptions of computation- 
al processes (such as flowcharts and dataflow diagrams) to network representations that are 
constructed and manipulated by the programs themselves. 

I. Introduction 

How can we systematically develop knowledge acquisition tools that capture 
general knowledge about types of domains and problem solving methods? 
Generalizing from existing programs, we seek dimensions for describing types 
of expert systems [15, 24, 63]. One useful approach is to view expert systems as 
programs that construct a model of some system in the world so that it can be 
assembled, repaired, controlled, etc. In contrast with most conventional com- 
puter programs, these models represent processes and structures by relational 
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networks. Control knowledge for constructing relational models can be de- 
scribed as operators that construct a graph linking processes and structures 
causally, temporally, spatially, by subtype, etc. Adopting this perspective, this 
paper synthesizes different ways of describing expert system reasoning, em- 
phasizing the use of simple logic, set, and graph notations for making dimen- 
sional analyses of modeling languages and inference methods. 

This study reveals that the familiar distinction between "shallow" and 
"deep" reasoning is too simplistic [42, 50]. We observe that all expert systems 
are "model-based", and proceed to distinguish between classification models 
and simulation models of processes. For the purpose of designing knowledge 
acquisition tools, expert systems are fruitfully described in terms of how 
relational networks are used for modeling processes. We ask: What system is 
being modeled, for what purpose? Do network nodes represent internal states, 
structures, functions, or processes? Does the program have predefined descrip- 
tions of entire system models? Does it reason about process interactions on 
multiple levels of detail? Can it assemble structural and process components 
into new system models? Strikingly, this model construction perspective reveals 
that the idea of a "blackboard" is not specific to a particular set of programs, 
but is rather a valuable perspective for understanding what every expert system 
is doing. 

Generalizing from these observations, we combine the system-model and 
operator viewpoints to describe the representation of processes in AI programs 
in terms of three nested levels of domain, inference, and communication 
modeling. This synthesis reveals how the use of relational networks in compu- 
ter programs has evolved from programmer descriptions of computational 
processes (such as flowcharts and dataflow diagrams) to network representa- 
tions that are constructed and manipulated by the programs themselves. I 
conclude that qualitative process modeling is a good way of characterizing AI 
programming for scientists and engineers; providing a useful pedagogical 
answer to the question, "What constitutes an AI program?". 

1.1. Origins in knowledge representation research 

An important discovery in the design of expert systems is that representing 
control knowledge separately from a model of  the domain facilitates main- 
tenance of the knowledge base and provides a basis for a shell that can be 
reused for similar problems [5, 20, 71]. Consequentially, a broad collection of 
"generic" expert system shells have been developed. They are called task- 
specific architectures because the control knowledge upon which they are based 
is specialized for different tasks such as diagnosis or design and often different 
domains such as electronics or medicine [16, 24, 47, 62]. The idea that a 
procedure for controlling reasoning, also called strategic knowledge, should be 
represented and made explicit as a body of knowledge in its right has thus 
emerged as a basic topic in the building of expert systems. 
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The original motivation behind this research is that a domain model should, 
if possible, be accessible and interpretable for multiple purposes: in different 
situations within a given expert system (e.g., "metarules and rule schemas" 
[34]), in explanation (e.g., "domain principles" [87]), in tutoring (e.g., 
"strategies and structural relations" [21]). More generally, "what is true" (e.g., 
facts about the world, facts about the representation) is represented separately 
from "what to do" (e.g., inference, communication, and learning procedures). 
This research has progressed by moving from the idea of simply controlling 
rules (as in Davis' conception of metarules) to reasoning about models of the 
domain (as emphasized by Swartout's notion of strategic explanation). In 
NEOMYCIN research, this involved separating out control knowledge implicit 
in MYCIN's domain rules [21]. 

The technique for building expert systems has thus advanced from tools that 
provide an "empty knowledge base" (e.g., EMYCIN [91]) to tools that 
presuppose a particular task. These tools provide a way of organizing knowl- 
edge (a language for representing a domain model) and an inference procedure 
for applying this knowledge. As we collect these tools and attempt to integrate 
them, we need to understand the relation between specific expert systems and 
general ways in which knowledge can be organized and applied. From the 
perspective of knowledge acquisition tools, can we relate "problem types" and 
program designs in a big-switch knowledge acquisition program that could help 
a knowledge engineer choose and apply the appropriate task-specific architec- 
ture? In essence, how can we formalize the part of the knowledge base that 
gets reused so its capabilities and limits can be related to new problems? 

1.2. Generalizing NEOMYCIN 

In HERACLES-DX, a diagnostic shell developed from NEOMYCIN, the 
reusable knowledge consists of an inference procedure represented by 
metarules, organized into subprocedures called subtasks, and a language of 
relations by which domain knowledge is expressed (see appendices). 1 In effect 
this paper is a study of NEOMYCIN's metarules, analogous to the epi- 
stemological study of MYCIN's rules that led us to develop NEOMYCIN [21, 
24]. Our approach is to look for patterns in metarules so we can describe what 
they are doing in more general terms. 

Our first study of NEOMYCIN's metarules led to the heuristic classification 
description of inference structure (the relations among assertions). The analysis 
here focuses on the inference process itself, addressing the following questions: 

• What are guidelines for writing metarules for a new task (e.g., for design) ? 

1 To avoid confusion, I will consistently refer to tasks as the purpose for constructing a model 
(e.g.,  diagnosis, design). Subtasks are H E R A C L E S - D X  subprocedures that construct a model 
(e.g.,  TEST-HYPOTHESIS) .  
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Can we relate NEOMYCIN's metarules for diagnosis to the configuration 
control knowledge in ACCORD [47]? 

• Can we relate the proliferating set of  application shells ? What is the space 
of domains and modeling methods covered by existing programs? Is a 
dimensional analysis possible? How can we organize the modeling 
operators in programs such as NEOMYCIN [321, MDX [38], ABEL [74], 
CADUCEUS [75], and KNACK [53]? 

• Can we relate the diverse terminology used for representing control knowl- 
edge: metarules, blackboards, objects~methods ? For example, why doesn't 
NEOMYCIN use a blackboard? Is ABEL's patient-specific model a 
blackboard? How are blackboard architectures fundamentally different 
from other expert system shells? What do they enable and for what kinds 
of problems are they appropriate? 

• Can general knowledge in different programs be systematically combined in 
one shell? How is a diagnostic procedure for electromechanical problems 
different from a diagnostic procedure for medicine? More generally, why 
is the control knowledge for diagnosis different from that used for design? 
Are there common subproblems? 

• How is an inference procedure for constructing a process model different 
from NEOMYCIN's  heuristic classification method for building a case? 
Heuristic classification is characterized in terms of "taking a model off the 
shelf", but even this involves contrasting alternatives and building a case 
by weighing contrary evidence. Given that any particular line of reasoning 
follows a characteristic abstraction/heuristic-association/specialization 
path, how are these alternative paths constructed, supported, and com- 
pared? 

At the heart of this analysis is an evolving perspective of what constitutes a 
solution in reasoning or, put another way, how we can fruitfully describe and 
compare what inference procedures are doing? The paper begins with a 
chronological exposition: the description of search in MYCIN in terms of 
A N D / O R  trees [12]; search of subtype and causal networks in CASNET [55] 
and CADUCEUS;  and construction of a situation-specific model in ABEL, 
ACCORD,  HASP [73], and NEOMYCIN. The view that inference consists of 
constructing and comparing situation-specific models of processes is then 
applied to describe inference procedures in these programs in terms of 
operators for manipulating graphs that represent processes. These ideas--  
operators, graphs, and processes--interrelate and form the basis for a synthe- 
sis that firmly anchors knowledge engineering contributions to both computer 
science and traditional scientific modeling. 

1.3. The system-model task perspective 

As in the epistemology [21] and heuristic classification [24] papers, the result 
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here is not a new theory of intelligence or new architecture. Rather I abstract 
existing programs so the methods can be more easily taught and better tools 
can be designed. One result is an integrated description of object-oriented 
programming, rule-based programming, logic programming, and blackboard 
architectures. Although it may appear counterintuitive at first and even 
obscuring, a reformulation of past work indicates that we would be right to say 
that every expert system has a blackboard and, from a related perspective, every 
expert system is "model-based". This is true in the same sense that we can say 
that MYCIN does top-down refinement of a disease classification, even though 
such a characterization would have been foreign to the original designers 
(indeed, they might have said that this was an appropriate characterization of 
the "opposition" approach used by researchers developing medical expert 
systems based on frame representations). 

The redescription of NEOMYCIN's metarules in terms of graph manipula- 
tion operators follows the familiar pattern in science of relating empirical 
phenomena (the metarules and control knowledge from diverse expert sys- 
tems) to a formal language (here, simple constructs from logic, set and graph 
theory) [4]. Unfortunately, a formalization phobia has made the very mention 
of mathematical techniques anathema to many researchers. The concrete 
examples provided here demonstrate that "doing logic on networks" [84] does 
not entail something lifeless or useless. Indeed, by such an analysis--which 
abstracts a wide variety of techniques to show a common approach--we find 
that expert systems researchers have perhaps unwittingly made major contribu- 
tions to computer science in the development and use of languages for 
modeling processes. 

Equally important, as we redescribe what expert systems are doing, we make 
a major shift from a one-dimensional programmer's view of rules and frames to 
descriptions on multiple levels, which are appropriate ways of describing any 
expert system: 

• a system in the world being modeled for some purpose (a task), 
• general and situation-specific models of  processes in this system (corre- 

sponding to the knowledge base and a problem solution), 
• relational networks that represent these processes (hierarchies and transi- 

tional graphs), 
• computational methods for constructing these models (inference proce- 

dures), and 
• an implementation of the relational networks and inference procedure in 

some programming language (e.g., frame and rule-based languages). 

This general framework is called the system-model perspective and forms the 
basis, along with the set-graph-operator description of inference procedures, 
for answering the questions posed above. The title of this paper reflects the 
idea that control knowledge can be fruitfully described in terms of operators for 
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constructing models, and this is something that all expert systems do. As will 
become evident, we can use this perspective to define expert systems as a class 
of computer programs that use relational networks for representing processes 
so the system being modeled can be assembled, repaired, controlled, etc. 
Compilers and operating systems are interesting special cases--an important 
realization if we are to efficiently integrate the relational network approach of 
A1 with computer science as a whole. 

1.4. AI  programming as qualitative process modeling 

Successfully synthesizing the work on task-specific architectures and all its 
attendant jargon requires changing common ways of talking about AI program- 
ming in general. In particular, three fundamental changes are called for: 

• view qualitative reasoning as including both classification and simulation 
models of processes (that is, all knowledge bases contain models and all 
expert systems do qualitative reasoning), 

• view AI programming as a methodology for representing processes by 
relational networks (specifically, rule, frame, and blackboard languages are 
methods for encoding and manipulating relational networks), 

• view a domain expert as an informant about some system in the world 
(therefore, knowledge acquisition is primarily concerned with modeling 
some system in the expert's world, in contrast with modeling his mental 
processes). 

These shifts in perspective add up to a view of AI programming as a 
contribution to scientific and engineering modeling in general. In expert 
systems, processes are represented by spatial, temporal, causal, and subtype 
relations among objects and events, in contrast with traditional numeric 
models, which are based on relations among measures. The shift is from linear, 
quantitative measures of substance (mass, energy, length) to nonlinear descrip- 
tions of form (orders, grammars, space/time relations). The distinction be- 
tween numeric programming and relational modeling thus reflects the scientific 
trend of this century and, more specifically, the origin of heuristic program- 
ming in cybernetics and operations research [4, 82, 92]. In effect, we are 
claiming that qualitative modeling (the system-model approach) provides di- 
mensions for systems analysis and design that are lacking in traditional numeric 
modeling. Furthermore, by appeal to mathematical concepts and notation, 
qualitative modeling can be made as rigorous as numeric modeling (a point 
emphasized by Bateson [4]) and need not connote a "soft" science. 

Perhaps the most difficult part of our analysis is to realize that there are 
always different perspectives for describing a representation and never one 
uniquely correct interpretation. Because representations can be used to im- 
plicitly encode relations by position and ordering, such as elements in a list or 
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clauses in a rule, we must often go beyond surface terminology to find the 
relational networks embedded in a set of expert system rules. Therefore, it 
requires some work to extract the process-graph-operator methods in most of 
today's programs. 

We study existing programs because we believe there is a high payoff in 
synthesizing the common methods they are based on. An important claim of 
this paper is that describing knowledge acquisition tools in terms of model 
construction operators facilitates collecting and sharing knowledge bases and 
representational languages. These generalized methods can then be conveyed to 
communities of scientists and engineers for their use, something already 
happening today in a limited way in fields such as civil engineering and 
molecular genetics. 

Identifying the historical roots of qualitative modeling and its contribution to 
the whole of science and engineering provides a substantial basis for teaching 
these methods and making them available to the application communities. This 
is no idle task, given that the very aim of expert systems research is to provide 
useful tools for every community from physicians to geneticists and civil 
engineers. And it is indeed in this connection that the system-modeling 
description is so intuitive and useful. 

1.5. Organization of the paper 

This paper begins by recapitulating the development of NEOMYCIN's 
subtask and metarule language (presented in Appendix A.1), emphasizing the 
nature and importance of abstract control knowledge for multiple use of a 
knowledge base. Domain-specific metarules, such as those in TEIRESIAS, are 
shown to be inadequate for representing model construction operators because 
reasoning strategies are implicit within the metarules and within the domain 
rules they control (Section 2). The idea of a situation-specific model is 
presented as the unifying concept for understanding the inference process 
(Section 3). Examples from ABEL, CADUCEUS,  HASP, and ACCORD 
illustrate the clarifying nature of the model construction perspective for 
describing task-specific architectures; a blackboard is described as a graph that 
represents structures and processes in some system being modeled; MYCIN's 
context tree is shown to be a blackboard (Section 4). The idea of abstract 
control knowledge is then described as a special form of object-oriented 
programming, which reveals the flexibility offered by control blackboards in 
BB1 over NEOMYCIN's subtasks and metarules (Section 5). 

Combining the system-model and blackboard perspectives, we then view the 
representation of processes in AI programs in terms of three nested levels of 
domain, inference, and communication modeling (Section 5). A formal frame- 
work using simple logic, set, and graph notations provides a dimensional 
analysis for describing NEOMYCIN's subtasks and relating model construction 
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operators in different programs (Section 6). Heuristic classification is reconsi- 
dered in this light, revealing the relation between classification and simulation 
models and the macrostructures found in knowledge bases (in the form of 
recurrent variants of hierarchies and transition networks) (Section 7). These 
ideas are then applied to examples from XPLAIN and KNACK, illustrating 
how to write metarules without using domain-specific terms, and thus how to 
describe knowledge acquisition tools in terms of families of tasks and domain 
processes (Section 8). Adopting a historical perspective, we consider how the 
use of relational networks in computer programs has evolved from programmer 
descriptions of computational processes (such as flowcharts and dataflow 
diagrams) to representations or models of processes that are constructed and 
manipulated by the programs themselves (Section 9). Finally, the argument is 
summarized and more general conclusions are drawn (Section 10). 

2. Abstract control knowledge 

To create knowledge acquisition tools, we generalize from the design of 
particular expert systems. We seek leverage by reusing the language for 
representing a model of the domain, as well as by reusing the inference 
procedure that interprets the domain model. This is difficult if the domain 
model and inference procedure are conflated, as they are in MYCIN. We have 
developed two guidelines for bringing about the desired separation: The 
clauses of domain rules must be arbitrarily ordered, and the inference proce- 
dure should not mention domain terms. We say that an inference procedure is 
abstract if it uses variables instead of domain terms [20, 31]. 

In this paper, we use the terms "inference procedure" and "inference 
strategies" and "control knowledge" synonymously. In this section, we review 
the methods and advantages of representing control knowledge as abstract 
metarules in NEOMYCIN. In the next section, we begin the study of these 
metarules, which unifies different ways of talking about control knowledge. 

2.1. From TEIRESIAS to NEOMYCIN 

The idea of abstract control knowledge evolved during the late 1970s from a 
combination of research: 

• Davis' use of metarules in TEIRESIAS for controlling MYCIN's rules, 
• Miller's [64] and Rubin's [78] studies of strategies in medical diagnosis, 
• Greeno's [40] and Schoenfeld's [81] studies of strategies in mathematical 

problem solving, 
• Brown, Collins, and Harris' [11] synthesis of strategic reasoning in alge- 

bra, reading, and electronic diagnosis. 
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The work in medical diagnosis and teaching made clear that there is a 
semantic level to control of reasoning, above the syntactic manipulation of 
rules or formulae. This semantic level is expressed as strategic concepts such as 
focus of attention, discrimination and grouping of problem solving methods, 
hypothesis formation, etc. The development of NEOMYCIN was an attempt 
to represent such strategic concepts, formalizing the work of Miller, Rubin, 
and related studies [19, 22]. However, the step from TEIRESIAS' metarules to 
NEOMYCIN is not direct. The steps in the development of the metarule 
language are illustrated here by an example. 

First, strategic knowledge in NEOMYCIN is conceived not primarily as 
metarules or layers of these as in TEIRESIAS, but as procedures and 
subprocedures. This follows from the observation that knowledge for control- 
ling tutorial dialogues in GUIDON [27] is naturally expressed as ordered, 
conditional steps in a procedure, not as a collection of rules. Furthermore, 
when describing the strategies for a complex problem such as medical diag- 
nosis, we use procedural abstractions such as "differentiate among alternative 
hypotheses", which include subprocedures such as "test a hypothesis" and 
"determine whether a finding is present". From this perspective, metarules are 
the ordered, conditional steps within each subprocedure. 

Second, the diagnostic metarules in TEIRESIAS are domain specific--they 
mention domain terms such as "pelvic-abscess" and "gram-positive rods" (Fig. 
1). This prevents us from using a metarule directly in another application in a 
different domain--the strategy remains implicit. To generalize a domain- 
specific metarule, we remove the domain terms by representing the relations 
between them and write a metarule that uses these relations to control 
reasoning (Fig. 2). We now have a metarule that refers to common and 
unlikely causes of disorders, with statements relating infections and organisms 
made explicit in the domain model. 

The strategy is now expressed not in terms of applying domain rules per se, 
but in terms of "considering a disorder", a step in a diagnostic procedure. 

IF: 1) The infection is PELVIC-ABSCESS, and 

2) There are rules which mention in their 
premise ENTEROBACTERIACEAE, and 

3) There are rules which mention in their 
premise GRAM-POSITIVE RODS, 

THEN: There is suggestive evidence (.4) that 
the former should be done belore the latter. 

Fig. 1. Domain-specific metarule from TEIRESIAS. 
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What Is true: 

(COMMON-CAUSE-OF Enterobactenaceae Pelvic-infections) 
(UNLIKELY-CAUSE-OF G+ rods Pelvic-infections) 

Enterobactedaceae organisms are 
<common causes of> pelvic infections. 
G+ rods are <unlikely causes of> pelvic infections. 

What to do: 

SUBTASK:TEST-HYPOTHESIS 
FOCUS:$DISORDER 

IF: (AND 
(COMMON-CAUSE-OF $DISORDER $HYP1 ) 
(UNLIKELY-CAUSE-OF $DISORDER $HYP2)) 

THEN: (DO-BEFORE 
(TASK TEST-HYPOTHESIS $HYP1 ) 
(TASK TEST-HYPOTHESIS $HYP2 )) 

<Common causes of> a disorder should be considered before 
<unlikely causes of> a disorder. 

Fig. 2. Metarule restated abstractly by replacing domain terms by references to the relations 
between them. 

Furthermore,  in replacing the domain terms by variables, we abstract them 
into types, such as "disorder" and "hypothesis".  The particular choice of 
words is not as important here as the fact that the procedures will have typed 
arguments, as indicated by the choice of variables $HYP1 and $HYP2 (i.e., 
TEST-HYPOTHESIS takes a hypothesis as an argument). Why this is so and 
its importance are not necessarily obvious at first; it is a pattern that is evident 
after abstracting a number of domain-specific control rules. 

We have introduced a classification of domain terms in order to remove them 
from the metarule; this idea will return as a basic theme throughout this paper. 
The metarule uses relations by which the domain model is expressed and 
organized. A particular set of abstract metarules operates upon a knowledge 
base organized in a particular way. Operating on a knowledge base in different 
ways (e.g., for explanation, tutoring, or compilation) requires different proce- 
dures with different relations, and hence a reclassification of expressions in the 
knowledge base. This is a basic property of procedures and has important 
consequences for knowledge acquisition within a given task-specific architec- 
ture, as well as knowledge acquisition of new metarules. 

The third step in developing the idea of abstract control knowledge is the 
realization that if strategies are implicit in the clause order of domain rules, 
then metarules must be able to reorder clauses for flexible control to be 
achieved. In particular, MYCIN's rules are designed to do top-down search of 
a disease taxonomy (Fig. 3). To consider more specific diseases first, one would 
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DOMAIN RULE-513 

IF: 1) The infection is MENINGITIS, 
2) The type of the infection is BACTERIAL, 
3) The patient has undergone SURGERY, 
4) The patient has undergone NEUROSURGERY, 
5) The NEUROSURGERY-TIME was less than 2 months ago, 
6) The patient received a VENTRICULAR-URETERAL-SHUNT 

THEN: There is evidence that the organism which might be causing the 
infection is E.COLI (.8) KLEBSIELLA-PNEUMONIAE (.75). 

Fig. 3. Domain rule from MYCIN: when clause order matters, domain relations and strategic 
knowledge are implicit. 

need to skip over or reorder clauses in almost every rule. Since TEIRESIAS' 
metarules only control the ordering of rules and not clauses, this mechanism is 
at the wrong grain size for expressing strategic reasoning in general. Specifical- 
ly, without rewriting MYCIN's rules, we could not use TEIRESIAS' metarules 
to produce diagnostic search that is not top-down. Indeed, whenever rule 
clauses cannot be arbitrarily reordered without changing the correctness of a 
rule, there must be a relation between domain terms implicit in the rule. This is 
an important heuristic for identifying strategic knowledge in domain rules. 

Figure 4 again illustrates the method of abstraction by which a relation is 
introduced, the SUBTYPE of a disorder. The action of the metarule corre- 
sponds to clauses (1) and (2) of the domain rule. By recursion, Klebsiella and 
E.coli, subtypes of bacterial meningitis, will be tested after bacterial meningi- 
tis. (The subtask PURSUE-HYPOTHESIS tests a hypothesis and then refines 
it, placing its children on the differential.) The resulting domain rule is shown 
in Fig. 5 (for brevity not all of the organisms in the original rule are listed in 
our examples). 

Once again, the remaining clauses cannot be reordered--we want to ask 
about surgery before asking about neurosurgery, a strategy for minimizing the 
number of questions asked during the consultation pruning them at a more 
abstract level. This strategy is expressed in NEOMYCIN as a metarule for the 
subtask FINDOUT (Fig. 6). This metarule is in effect a generalization of the 
many "screening rules" in MYCIN (e.g., "If the patient has not had surgery, 
conclude that the patient has not had neurosurgery, cardiacsurgery, etc."), 
which were one means for removing redundant screening clauses. The advan- 
tage of this representation is that the domain relation between surgery and its 
subtypes is now explicit and only one rule is required. 

Figure 6 also includes a definition for "recent neurosurgery", abstracting the 
specific time reference in the original rule. This definition is referenced by a 
similar F1NDOUT metarule. Such an abstraction is advantageous for explana- 
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What is true: 
(SUBTYPE Meningitis Bacterial-mengilitis ) 
(SUBTYPE Bactedal-mengititis E.coli) 
(SUBTYPE Bactedal-mengititis Klebsiella-pneumoniae) 

Bactedal-mengititis is a kind of meningitis infection. 
Diplococcus-pneumoniae is a kind of bacterial-meningitis. 
E.coli is a kind of bacterial-meningitis. 

(DIFFERENTIAL $HYP) 
There is evidence for the disorder $HYP. 

What to do: 
SUBTASK: EXPLORE-AND-REFINE 
FOCUS: {the differential = the set of believed hypotheses} 

IF: (AND 
(DIFFERENTIAL $HYP) 
(SUBTYPE $HYP $CHILD)) 

THEN: (DO-BEFORE 
(TASK PURSUE-HYPOTHESIS $HYP ) 
(TASK PURSUE-HYPOTHESIS $CHILD)) 

If there is evidence for a disorder, 
consider evidence for the parent before refining the disorder. 

Fig. 4. Rule clause ordering restated abstractly by replacing domain terms by references to the 
relations between them. 

tion to a user. Furthermore, now stated as an explicit constraint, the rule could 
be relaxed by the inference procedure to improve a specific diagnostic model. 

In the final statement of the domain rule we have reworded the shunt 
concept to make explicit that it is the recent structural change that is causally 
significant (Fig. 7). 2 A surprising discovery is that after clause dependencies are 
replaced by domain propositions, abstractions, and definitions, 80% of the 
domain rules (of 176) have just a single clause (remaining multiple clauses 
usually represent conjunctive causal conditions). In fact, there is no uncon- 
trolled backward chaining at all; all domain goals are deliberately pursued by 
metarules. The metarules themselves either make an assertion, request data 
from the user, or apply a domain rule (where again, the assertion, datum, and 
domain rule are all expressed by variables in the metarule). Figure 8 gives a 

-" Certainty factors in MYCIN's rules (e.g., Fig. 3) are artificially high to compensate for the 
effect of multiplying the conclusion's certainty by the minimum certainty from the premise clauses. 
When goals are nested, the multiplicative effect often results in values below the 0.2 threshold at 
the top of the reasoning chain (termed the "cascading certainty factor problem" [27]). MYCIN 
rules were written to take this propagation effect into account; for example, rules for concluding 
the type of the infection use 0.8 as the threshold of minimum positive evidence. NEOMYCIN 
handles inherited belief calculations separately, so the domain rules can use a uniform interpreta- 
tion of the certainty factor scale, another advantage of our representation. 
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REVISED DOMAIN RULE-513 

IF: 3) The patient has undergone surgery, 
4) The patient has undergone neurosurgery 
5) The neurosurgery was less than 2 months ago, 
6) The patient received a VENTRICULAR- 
URETERAL-SHUNT 

THEN: There is evidence that the organism which might 
be causing the infection is E.COLI (.8) 

KLEBSIELLA-PNEUMONIAE (.75). 

Fig. 5. Revised domain rule from MYCIN after implicit hypothesis testing strategy has been 
removed. 

metarule for the subtask TEST-HYPOTHESIS, showing how it indirectly 
applies domain rules (this example should be contrasted with the metarule in 
Fig. 2, which orders hypothesis testing as opposed to data gathering). 

In practice, we do not use the DO-BEFORE construct in NEOMYCIN. 
Instead, the metarule shown in Fig. 8 is written as two ordered metarules 
(corresponding to clauses (1) and (2) and clauses (3) and (4), both invoking 

What Is true: 

(SUBSUMES Surgery Neurosurgery) 
(SUBSUMES Neurosurgery Recent-Neurosurgery) 
(IF (Neurosurgery-time < 2 MONS) Recent-Neurosurgery) 
(SUBSUMES Recent-Neurosurgery Ventricular-ureteral-shunt) 

Neurosurgery is a kind of surgery. 
Recent neurosurgery is a kind of neurosurgery. 
Recent neurosurgery is defined to be surgery within 2 months. 
Having an impleced ventdcular-ureteral-shunt is a kind of 

recent neurosurgery. 

What to do: 

TASK: FINDOUT 
FOCUS: SFINDING 

IF: (AND 
(SUBSUMES $PARENT $FINDING) 
(NOTSAME CNTXT $PARENT )) 

THEN: (CONCLUDE CNTXT $PARENT 'YES TALLY -1000 ) 

if a desired finding is a subtype of a class of findings and 
the class of findings is not present in this case, then 
conclude that the desired finding is not present. 

Fig. 6. Rule clause ordering restated abstractly by replacing domain terms by references to the 
relation between them. 
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NEOMYClN'S DOMAIN RULE-~;I~3 

IF: The patient has recently had an implaced 
ventricular-ureteral-shunt 

THEN: There is evidence that the organism which 
might be causing the infection is E.COLI (.3) 
KLEBSIELLA-PNEUMONIAE (.3). 

Fig. 7. Domain rule from NEOMYCIN with implicit strategies removed. 

APPLYRULES). Thus, there are two kinds of subtasks, those in which the 
metarules constitute steps in a procedure (such as PURSUE-HYPOTHESIS, 
which tests before refining) and those which constitute alternative methods for 
accomplishing a single subtask (such as the metarules for FINDOUT and 
TEST-HYPOTHESIS). 

To summarize, we began with a domain rule having six clauses and replaced 
it by subtype and causal relations and metarules for ordering data acquisition 
and hypothesis testing (Figs. 4, 6, and 8). Further details about NEOMYCIN's 
subtask and metarule language are provided in the appendices and [31]. The 

What Is true: 

(ENABLING-CAUSE Bacterial-meningitis Exposure) 
(CIRCUMSTANTIAL-CAUSE Bacterial-Meningitis Neurcsurgery) 

Exposure to an infectious agent is a necessary condition for 
Bacterial meningitis infection. 

Neurosurgery is a circumstantial, unnecessary condition causing 
Bacterial meningitis infection. 

What to do: 

TASK: TEST-HYPOTHESIS 
FOCUS: $HYPOTHESIS 

IF: (AND 
(ENABLING-CAUSE $HYPOTHESIS $FINDING1 ) 
(EVIDENCE $HYPOTHESIS $FINDING1 $RULES1) 
(CIRCUMSTANTIAL-CAUSE $HYPOTHESIS $FiNDING2) 
(EVIDENCE $HYPOTHESIS $FINDING2 $RULES2)) 

THEN: (DO-BEFORE 
(TASK APPLYRULES SRULES1) 
(TASK APPLYRULES $RULES2)) 

When testing a hypothesis, apply rules that mention findings that 
are enabling causal conditions before applying rules that mention 

circumstantial causal conditions. 

Fig. 8. Metarule that invokes the domain rule interpreter. 
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procedural language includes inherited end conditions, control of the metarules 
by "do-while" and "case-statement" constructions, and primitives for accessing 
a history of subtask invocations. 

2.2. What the relational representation reveals 

Davis describes different ways for controlling reasoning, such as doing 
something after a goal is accomplished. However, the idea of control knowl- 
edge in TEIRESIAS was essentially that of metarules, that is, rules controlling 
other rules. As we introduce terminology such as "finding" and "hypothesis", 
we find that strategies are expressed in the following terms: how to test a 
hypothesis, what to do when a new finding becomes known, how to infer a 
needed finding from an already known finding or believed hypothesis, etc. 
Thus, control knowledge is more specifically about the acquisition of data, the 
relation of data to the solution, the state of the current solution, the contrast- 
ing of solutions, etc. 

Viewing the inference process just in terms of applying rules or making 
assertions misses the abstract patterns that constitute a common, reusable 
problem solving procedure for a task such as diagnosis in different domains 
(e.g., generalizing questions, pursuing common causes, explaining a finding). 
Metarules are just the notational language. Strategic knowledge is the recurrent 
collection of relations, subtasks, and ordering preferences. The possibility of 
this language and reusable body of knowledge was missed in TEIRESIAS 
because metarules were stated in a domain-specific way. 

Stating the premises of metarules (and hence the domain knowledge) in a 
form of the predicate calculus reveals that strategic knowledge has a content 
that can be systematically described and shared between programs. Originally, 
metarule premises in NEOMYCIN were just LISP functions; however, this 
prevented writing a program that could explain why the metarules failed 
(besides requiring a redundant textual description of the metarule itself for 
providing strategic explanations) [44]. The restatement in a relational notation 
reveals how the domain terms are classified into a finding hierarchy (via the 
SUBSUMES relation) and a disease taxonomy (via the SUBTYPE relation). 
Other relations express aspects of causality between findings and diseases, as 
well as definitional and commonsense relations between findings (see Appendix 
A.5 for a complete listing). The idea of heuristic classification emerged from 
this analysis of the types of relations and how they were composed to link 
findings and hypotheses to each other. We extend this analysis in Section 6 to 
view the links as oriented edges in a graph (blackboard). 

Perhaps more surprisingly, we find that writing a new metarule almost 
always requires defining a new domain relation, which further subclassifies the 
distinctions made before. For example, CAUSES becomes ENABLING- 
CAUSE and CIRCUMSTANTIAL-CAUSE. Each new relation effectively 
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creates a subset, intersection, or composition of the domain terms or rules 
defined by previously existing relations. The subtasks can therefore be viewed 
as operating on sets of findings, hypotheses, and domain rules, collecting, 
sorting, and filtering them in order to control how subtasks are accomplished. 
Relations in metarule premises (e.g., SUBSUMES, ENABLING-CAUSE) 
serve as conditions by which domain terms and rules are retrieved from the 
knowledge base, collected, and passed on to subtasks. We therefore find it 
convenient to state the metarules in terms of set operations, for example, 
"select the set of  findings that are enabling causes of the hypothesis; select the 
set of  rules that link these findings to the hypothesis; then apply these rules". A 
dimensional analysis of the subtasks in terms of typed sets makes it possible to 
detect missing metarules, missing subtasks, or subtasks that should be decom- 
posed for clarity (Section 6). 

2.3. Reusability of  abstract control knowledge 

Besides allowing us to relate different architectures--a central concern of 
this paper--abstract metarules also have many practical benefits, including 
knowledge acquisition (GUIDON-DEBUG,  Section 6.3), strategic explanation 
[44], articulation of a relational domain model (Appendix A.5), modeling of 
student strategies [59, 93, 94], and line-of-reasoning strategic hints in a tutoring 
dialogue [77]. These applications are briefly described at appropriate places in 
this paper and summarized in [26]. 

It is interesting to consider how the notion of reusable knowledge changed 
during NEOMYCIN research. The first idea, stemming from MYCIN, was that 
a knowledge representation should be interpretable for explanation as well as 
problem solving. Davis nicely exploited this in the knowledge acquisition 
debugging dialogue of TEIRESIAS. Next, GUIDON illustrated how--with 
the clauses annotated to indicate their purposes--the same set of rules could 
be used in a case-method instructional dialogue. With NEOMYCIN came the 
possibility of literally reusing part of the knowledge base (and not just the 
backward-chaining inference engine) for different problem domains (illustrated 
by the CASTER sandcasting diagnosis system [89]). Thus HERACLES-DX 
became the first task-specific expert system architecture [21, 31]. 

However, a more subtle form of reusability lies within a given problem 
solving session itself, when a given metarule or domain fact gets used in 
different situations. It is no longer necessary for a knowledge engineer to 
redundantly encode strategies in the ordering of domain clauses, essentially 
restating the strategy in terms of every specific situation in which it must be 
used. The design is more elegant and less prone to error (Figs. 4, 6, and 8). 

Furthermore, new domain facts can be added using the relational language 
and they will be applied appropriately by different metarules. If the program is 
told that the patient has neurosurgery, it can use the subsumption relation to 
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conclude that the patient has undergone surgery. Or if the program knows that 
the patient has not undergone any kind of surgery it knows about, it can use 
the closed-world assumption and conclude that the patient has not undergone 
surgery. The knowledge base is easier to construct because the expert need not 
specify every situation in which a given fact or relation should be used. New 
facts and relations can be added in a simple way; their meaning is procedurally 
represented by the abstract metarules, which concisely state how the relations 
will be used. The same generality makes the knowledge base more robust. The 
system is capable of using facts and relations for different purposes, perhaps in 
combinations that would be difficult to anticipate or enumerate. Figures 9, 10, 
and 11 illustrate the compositions that are typical, showing how forward- 
reasoning can lead to a focus change and hence recursive application of the 
TEST-HYPOTHESIS subtask. 

Specifically, question (8) in Fig. 9 is directed at meningitis; after a follow-up 
question about seizures duration, the new information leads the program to 
pursue a different hypothesis, intracranial mass lesion. Thirteen metarules are 
on the line of reasoning between questions (9) and (10), shown in Fig. 10. 
There are two hypothesis-directed inferences (annotated as {1} and {4}) and 
two data-directed inferences ({2} and {3}), which are shown graphically in Fig. 
11. The order in which the links of the general model of Fig. 11 are interpreted 
is not coded into the network; metarules can index and apply these relations in 
either a hypothesis or data-directed way, dependent on the problem solving 
situation. 

NEOMYCIN's  metarules were originally developed to enable a tutoring 
program to converse about diagnostic strategies. Perhaps the most revealing 
incarnation of this capability is in GUIDON-MANAGE,  an instructional 
program in which the student issues commands to NEOMYCIN using the 
subtask language [77]. The instructional intent is to give the student a language 
for talking about the diagnostic process, providing a means for detecting 
missing domain knowledge, as well as a means for learning from observation of 
teachers and fellow students. For example, the student might say, "I know that 
I should test the hypothesis of intracranial pressure; is there an ENABLING- 
CAUSE I should know?". Figure 12 illustrates how the subtask stack from Fig. 
10 is interpreted to generate hints for the student. 

7) What is Susanne's temperature? 
** 105.8 farenheit 
8) Has Susanne experienced seizures recently? 
** YES 
9) What is the duration of Suzanne's seizures? 
** 1 HOUR 
10) Does Susanne have an abnormal fundoscopic exam? 
** NO 

Fig. 9. Sequence of questions from a NEOMYCIN consultation. 
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{ I .  Top of the line of reasoning; we are pursuing meningitis as a generalization of some 
hypothesis triggered by the initial data} 

CONSULT 
MAKE-DIAGNOSIS 

COLLECT-INFO 
ESTABLISH-HYPOTH ESIS-SPACE 

GROUP-AND-DIFFERENTIATE 
TEST-HYPOTHESIS [Meningitis] 
APPLYRULES [Rule060 Rule323] 

APPLYRULE! rRule060] 

{2. After finding out about seizures to apply rule 60, we consider other data-directed 
inferences; the follow up question (#9) about seizures duration is generated; then rule 262, 

marked "antecedent," is applied} 

FORWARD-REASON 
PROCESS-FINDING [Seizures] 
APPLYRULES.ANTE [Rule262] 

APPLYRULE! [Rule262] 

{3. Rule 262 concludes that seizures might also be caused by increased intracranial 
pressure; is that linked to anothing else we have been considering? It might be explained 
itself by an intracranial mass lesion, but more evidence is required before the rule can be 

applied. Test-hypothesis is now invoked recursively; a focus change has occurred} 

FORWARD-REASON 
PROCESS-HYPOTHESIS [Increased-lntracranlaI-Pressure] 

APPLYRULES,ANTE [Rule239] 
APPLYRULE! [Rule239] 

FINDOUT [Increased.lntracranlaI-Pressure] 
TEST-HYPOTHESIS [Increased-lntracranlaI-Pressure] 

APPLYRULES [Rule209 Rule233 Rule373] 
APPLYRULE! [Rule2091 

{4. Rule209 requires information about papilledema; the inquiry is generalized to 
fundoscopic-abnormal, question #10} 

FINDOUT [Papilledema] 
FINDOUT [Fu ndoscopic-Abnormal] 

Fig. 10. NEOMYCIN subtask stack, indicating that thirteen metarules lie between questions (9) 
and (10) (Fig. 9), with a focus change from meningitis to increased intracranial pressure. 

(Numbers in brackets correspond to domain rules in Fig. 11.) 

In this sequence of hints, the program takes the student down a line of 
reasoning, beginning with the most abstract or highest subtask on the stack. In 
generating this subtask stack, G U I D O N - M A N A G E  simulates what 
N E O M Y C I N  would do in the current situation. Because the subtasks are 
stated abstractly and refer to the evolving model of the patient, a separate data 
structure, they can be run at any time in any order. We were surprised that the 
translations of the subtasks, which can be too abstract in consultation explana- 
tions, are appropriately general when provided as hints. As can be seen by 
comparing Figs. 11 and 12, G U I D O N - M A N A G E  uses heuristics for compres- 
sing the sequence, including direct statements of domain rules (rather than 
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INTRACRANIAL-MASS-LESION 

{3} RULE2~9 (trigger) 
INCREASED-INTRACRANIAL-PRESSURE 

{4} RULE209 {2} RULE262 (ante) 
PAPILLEDEMA SEIZURES 

subsuted-by 
FUNDOSCOPIC-ABNORMAL 

MENINGITIS 

{1} RULE060 

Fig. 11. Interpretation of domain relations in specific case, showing mixture of hypothesis-directed 
({1} and {4}) and data-directed reasoning ({2} and {3}). All relations are causal, except for 
subtype relations between papilledema and fundoscopic-abnormal. (Numbers in braces correspond 

to subtask stack fragments in Fig. 10.) 

saying "apply a rule") and special treatment of metarules with CONCLUDE 
actions. The classification of subtasks required to do this interpretation further 
illustrates how new distinctions are typically added to a representation in order 
for it to be applied by a new inference procedure. In this case, the subtasks are 
classified for GUIDON-MANAGE's simulation and hint procedures. 

3. Three views of inference 

To this point, we have described the method of representing control 
knowledge abstractly and illustrated its benefits. We are ready to study 
NEOMYCIN's subtasks and metarules. Our intuition is that the inference 
procedure is not an arbitrary program, but must be based on some logic, which 
could be used for driving the process of writing new metarules and evaluating 
their completeness and correctness. For example, can we provide a student 
with a global orientation that transcends the design of individual subtasks and 
metarules? Viewed as a task-specific knowledge acquisition tool, how is the 
HERACLES-DX model of diagnosis different from that in other programs? 

More basically, how can we describe what an inference procedure is doing? 
Paralleling developments by other researchers, our view of inference has 
evolved through three perspectives: 

• chaining goals and rules, such as a line of reasoning in MYCIN's explana- 
tions, an inferential or means-ends  analysis perspective; 

• traversing causal-associational networks, such as the path from a finding 
to a syndrome in CASNET, a domain relation perspective; 
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Name Age Sex Race 
1)** Susanne 44 FEMALE CAUCASIAN 
2) The chief complaints: 
** HEADACHE 
** PHOTOPHOBIA 
** FEBRILE 

NEXT TASK: CLARIFY-A-FINDING HEADACHE 
3) How long has Susanne had this kind of headache? 
** 6 HOURS 

N~:;~T TASK: TEST-HYPOTHESIS MENINGITIS 
8) Has Susanne experienced seizures recently? 
** YES 

NEXT TASK: CLARIFY-A-FINDING MENINGITIS 
9) What is the duration of Suzanne's seizures? 
** 1 HOUR 

NEXT TASK: HINT 
Determine the implications of a new finding. 

NEXT TASK: HINT 
Try focusing on seizures. 

NEXT TASK: HINT 
Seizures can be caused by increased intracranial pressure. 

NEXT TASK: HINT 
Determine the implications of a new hypothesis. 

NEXT TASK: HINT 
Try focusing on increased intracranial pressure. 

NEXT TASK: HINT 
An intracranial mass lesion can cause increased intracrania] 

NEXT TASK: HINT 
Decide whether Susanne has increased intracranial pressure. 

NEXT TASK: HINT 
Increased intracranial pressure can cause papil ledema. 

NEXT TASK: HINT 
Attempt to conclude about a more general finding. 

NEXT TASK: HINT 
10) Does Susanne have an abnormal fundoscopic exam? 
** NO 

pressure. 

Fig. 12. Excerpt from GUIDON-MANAGE illustrating generation of hints from NEOMYCIN's 
subtask stack (Fig. 10). (Student inputs are in bold font.) 

• C o n s t r u c t i n g  a s i t ua t i on - spec i f i c  m o d e l ,  such  as t h e  p a t i e n t - s p e c i f i c  de -  

s c r i p t i o n  o f  p a t h o p h y s i o l o g i c a l  p r o c e s s e s  in A B E L  a n d  N E O M Y C I N ,  a 

system-modeling perspective. 

T h e s e  p e r s p e c t i v e s  a r e  i l l u s t r a t e d  a n d  d i s c u s s e d  in tu rn .  
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3.I. Chaining goals and rules 

From the early days of MYCIN, we wanted a way to describe a knowledge 
base abstractly, above the level of individual rules, if for no other reason than 
to teach novice knowledge engineers how to make large-scale changes to the 
rule set. Because procedural knowledge is encoded redundantly in rule pre- 
mises, we found that there are characteristic patterns in how goals are related, 
independent of the patient case. For example, whenever a rule for determining 
the type of bacterial meningitis is applied, the program always determines first 
whether the patient has an infection and then whether it is meningitis. This is 
independent of which bacterial meningitis rule is applied first, because they all 
have the same initial clauses. We termed this recurrent pattern the inference 
structure of a knowledge base. Bennett demonstrated the usefulness of the idea 
for structuring initial knowledge acquisition sessions in ROGET [5]. GUIDON 
presents the inference structure of a knowledge base when outlining the main 
goals for approaching a new case [28]. 

Figure 13 shows part of the inference structure of MYCIN corresponding to 
the example discussed in Section 2. For the reasons already discussed, an 
A N D / O R  tree of domain goals and rules--a common way of describing 
rule-based inferenceais  not an adequate description of MYCIN's reasoning. 
Subtype relations are implicit in the terminology and attribute-value relations 
(compare the terms INFECTION, SUBTYPE, and COVERFOR to the 
representation used in Fig. 4). Clause order does not distinguish between 
logical conjunction and procedural relations. In short, the inference procedure 
is implicit, handicapping the debugging, explanation, and instructional pro- 
grams that must reason about it. Another way must be found for describing the 
inference process. 

COVERFOR 

RULE513 

INFECTION SUBTYPE SURGERY NEUROSURGERY 

Fig. 13. Inference structure: the AND/OR tree of rules and goals generated by backward-chaining 
through rules. 
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3.2. Traversing causal-associational networks 

Concurrent with MYCIN's development, other researchers were represent- 
ing disease knowledge separately from the diagnostic procedure. Szolovits and 
Pauker [88] distinguish between categorical and probabilistic strategies for 
integrating evidence. Categorical evidence is used to rule out general processes 
(e.g., a traumatic problem is ruled out because the patient has not fallen 
recently). Probabilistic evidence is used to refine and sort out specific processes 
(e.g., enterobacteriaceae organisms are common causes of bacterial meningitis, 
so they are considered first). Thus, a general inference strategy is described in 
abstract terms, referring to subtype and causal relations among domain pro- 
cesses. 

An even better example is provided by CASNET [55], in which a satisfactory 
diagnostic explanation of an abnormal finding is characterized in terms of a 
path of confirmed nodes on a path from the finding, through intermediate 
pathophysiological states, to syndrome types (which can then be heuristically 
related to therapies). Thus, a general inference strategy is described in terms of 
traversing paths in the knowledge base. 

We adopted this perspective as the first way of describing NEOMYCIN's 
diagnostic strategy (Fig. 14). The figure shows a portion of a disease taxonomy. 
Initial information about a patient triggers an arbitrary hypothesis, such as 
Chronic-meningitis. The subtask ESTABLISH-HYPOTHESIS-SPACE leads 
the program to first look up to more general categories (GROUP-AND- 
DIFFERENTIATE),  then to look down to establish specific causes. Thus, a 
general inference strategy is described in terms of the global, hierarchical 
structure of the knowledge base. 

These examples are valuable for understanding the diagnostic process. The 
task-specific nature of diagnosis cannot be described in terms of applying rules 
or backward-chaining alone. Diagnosis involves considering categories of evi- 
dence, establishing causal-associational paths between findings and disease 
processes, and contrasting alternative paths and subprocesses (subtrees). In 
Fig. 14 we are viewing the knowledge base as a representation of processes that 
can occur in the system being diagnosed and viewing inference in terms of how 
this representation is searched. 

Of particular importance is the idea that diseases are processes. The levels of 
NEOMYC1N's disease taxonomy are annotated in Fig. 14 to indicate how the 
description of the processes gets more specific as we move down the hierarchy. 
Each level adds a particular characteristic to the process description: the 
location, its duration, the agent that caused it (of course, not all subtrees have 
the same levels; trauma does not involve agents). A disease taxonomy can be 
viewed as a classification of abnormal processes, just specific enough to 
distinguish between therapy alternatives (e.g., viral meningitis is not broken 
down because all types are treated the same way). The top-level processes can 
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ANY-DISORDER 

PROCESS 

CONGE~AL XIC 

GROUP & DIFFERENTIATE 
J I (LOOKUp) 

. s m , s  

j OCUS 
J 

DURATION 

ACUTE_MENI / - ~ NGIT SiS ~ 

BACTERIAL 

/ • ~ EXPLORE & REFINE 
/ ~ ~ (LOOK DOWN) 

G~IEG sK,.~-o Gs ~ORGS, ~ CRY 

Fig. 14. Looking up and looking down in diagnostic search: viewing inference as searching the 
domain model. 

be generalized: assembly flaw (congenital), environmental influence (infection, 
toxicity, trauma, psychological overload), and structural degeneration (vascular 
disorder, immunoresponse, muscular disorder). In contrast, in CASTER, an 
expert system built within the same architecture, the top-level abnormal 
processes correspond to what can go wrong during stages in the sand casting 
process (wooden pattern design, sand molding, metal melting, pouring, 
cooling/venting, etc.). 

Both NEOMYCIN and CASTER contain models of physical systems. 
Externally observable manifestations of the system's behavior are explained in 
terms of internal system behavior (e.g., increased intracranial pressure), using 
a state-transition network (not shown here, but discussed in Section 7), and 
then tracked back to faulty structures and malfunctions of subsystems. These 
internal aberrations are then explained in terms of the etiologies, or final 
causes, of the disorder taxonomy, emphasizing processes in which the system 
interacted with its environment, bringing it to its current state. In medicine, 



24 W.J. Clancey 

these etiologies include congenital problems (which may be caused by the 
mother's lifestyle or her environment), psychogenic problems such as emotion- 
al stress, trauma that structurally damages the body, food toxicities, etc. In the 
human body, internal systems regenerate new subsystem structures, so de- 
velopmental and degenerative processes are central. 

Stating inference in terms of searching a representation (the knowledge 
base) makes the structure of the knowledge base a subject of study. What are 
the different ways of organizing an abnormal process classification? How is the 
nature of the system in the world that is being diagnosed reflected in the 
process representations we use? Are there abstract categories for describing 
processes (such as environmental interaction processes) which we can use when 
approaching a new domain, to organize the questions we ask a domain expert 
or the cases we choose? We consider these questions further in Section 7, after 
considering a number of other examples. 

3.3. Constructing a situation-specific model 

Describing inference in terms of searching a domain model is useful, but it 
fails to characterize the purpose of the inference procedure. What is a good 
diagnosis? More generally, how can we relate the inference process to the goals 
an inference process is attempting to accomplish? From the perspective of 
these questions, the idea of looking up and down hierarchies is too superficial. 
Why should we look up before looking down? What underlying constraints 
suggest this procedure? Answers to these questions come from new ways of 
visualizing NEOMYCIN's problem solving process. 

In GUIDON-WATCH, we were trying to find useful ways to visually present 
the program's reasoning, both as a debugging aid and for instructional explana- 
tions [76]. Although it may seem obvious now, it required many months to 
realize that the program's inferences could be shown as graphs linking the 
program's final diagnoses to the findings that support them (Fig. 15). Indeed, 
this representation shows that the program's solution is not the name of a 
disease, such as acute bacterial meningitis--our way of talking about program 
output since the early days of MYCIN--but  rather a causal argument having 
the structure of a proof, called the situation-specific model (SSM). 

Our conception of the situation-specific model combines two ideas from 
previous work. In Patil's ABEL program [74], a causal explanation is repre- 
sented as a five-layered graph containing the particular findings, disorders, and 
their causal or subtype relations that are believed to be present in the 
particular patient being diagnosed. In ABEL this graph is called the patient- 
specific model (PSM) [60]. Although we knew about the PSM idea, we did not 
draw NEOMYCIN's solutions in this way because we did not think of the 
program this way; we thought we had a different kind of program, one without 
a PSM. As will become clear, this single-minded perspective leads expert system 
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I Acute bacterial meninqitis ] [ Increased intracranial pressure 

I Acute meningitis I 
J 80o 

I Meninqitis I 

p n ~ s  I 
7OO I 97O 

Rule 423 

Feb!ile 

Rule 271 

I 
High-grade fever 

Rule 424 

Headache lexion 

Rule 144 Rule 282 

I I 
CNS finding duration Seizures 

(12 hours) 

Fig. 15. Situation-specific model in NEOMYCIN. 

researchers in general to believe that a blackboard depiction of  a program's 
solution is something unique to a particular class of  programs. 

With the PSM idea in mind as an elegant way of describing the diagnostic 
process, we were struck by Anderson's use of a graph to represent a geometry 
proof [3]. Anderson replaces the standard linear two-column table of assertions 
and justifications by a graph linking the theorem to be proved to the inter- 
mediate axioms, theorems, and finally the terminal nodes of given facts. This 
representation, very similar to Fig. 15, helps a student keep track of the 
current state of a proof, revealing gaps, assertions that do not lead anywhere, 
and unused information. Furthermore, the graph reifies the possibility of 
working top-down from the theorem to be proved or bottom-up from the given 
information. The graph shows that a proof is a structure with certain prop- 
erties: It is a connected graph of assertions, with each assertion supported by 
known theorems or given information. 

From the perspective of diagnosis, this proof is not just an arbitrary belief 
dependency graph; it is an object having a particular, preferable structure: 

• There should be just one graph containing all abnormal findings (a 
single-fault assumption). 

• Abnormal findings (terminal nodes) are causally explained by hypotheses 
they are said to support (e.g., headache is explained by a meningitis 
process). 

• Hypotheses and hence explanations are more specific higher in the graph 
(e.g., acute bacterial meningitis is more specific than meningitis) and 
hence more specific characterizations of what is going on in the system 
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being modeled are incorporated in the model (e.g., an infectious process 
explains the fever; acute bacterial meningitis accounts for the fever being 
high and its duration). 

• The root diagnosis (shown at the top) should be specific enough to select 
among competing therapies (e.g., acute bacterial meningitis is not specific 
enough because bacteria respond to different antimicrobial drugs). 

Thus, the particular relations of cause and subsumption are oriented so 
higher nodes cause or are subsumed by lower nodes. The form of the graph as 
a single, connected network, with the root being specific enough to be useful 
for repair of the system being diagnosed, relates to the task-specific nature of 
the inference process: We are attempting to construct a specific enough model 
of what is occurring in a particular physical system so we can account for all 
our observations and be able to modify the system to make its behavior normal 
again. These constraints can be formalized and used for explanation, teaching, 
or to generate the inference procedure itself (Section 6). 

For our purpose in describing inference, the idea of a proof is not as 
important as the idea of a a model graph constrained to have a certain form. 

The form--specified as constraints on the structure of the graph--arises 
because the graph is not an arbitrary network, but is a representation of 
processes occurring in a physical system, constructed for a purpose. (In 
particular, if our purpose were scientific description rather than medical 
therapy, we would want to know what causes viral meningitis and would not 
say that the model is satisfactory when that node is the root.) The idea that the 
graph describes a process (e.g., in the CNS) was not emphasized in ABEL or 
most other programs, and is an important step for realizing what is fundamen- 
tally new in AI programs: Systems are modeled not just in terms of numeric 
measures, rather they are internally described in terms of spatial, causal, and 
temporal relations among objects and events. Simply put- - to  make the 
distinction with traditional numeric programs--expert systems model processes 
qualitatively. 

The key idea for our argument is that this internal description, the SSM, is 
inspected by the program itself during reasoning, and its partial state, viewed 
structurally in global terms (as opposed to looking only for specific assertions), 
is used to drive the inference process. Specifically, we can view NEOMYCIN's 
subtasks as operators that examine and modify links in the SSM (Fig. 16). 
Figure 14 already suggests that inference subtasks are not just arbitrary 
procedures. Rather, subtasks can be viewed as operators that traverse different 

types o f  links or traverse them in a particular order. The more powerful 
perspective we are suggesting here is that these operators are placing nodes 
and links in the SSM, and the process of searching the general model (e.g., the 
disorder taxonomy) is secondary, a matter of finding the processes that might 
be occurring in this case. 
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Fig. 16. Diagnostic subtasks shown as operators for constructing a situation-specific model (arrows 
indicate the order in which nodes were linked; see text). 

Subtasks in Fig. 16 are indicated by abbreviations. The example presented in 
Figs. 9-11 is presented here in terms of constructing a model of processes 
causing the patient's complaints. Information about headache triggered 
Rule424, which led a question about stiff-neck-on-flexion to be asked and 
meningitis to be hypothesized (subtasks PROCESS-FINDING and APPLY- 
RULE!). The subtask GROUP-AND-DIFFERENTIATE looked for support 
for meningitis by considering categorical evidence (for infectious process, a 
more general process description). To use the node and link language more 
explicitly, TEST-HYPOTHESIS grows links downwards, here placing febrile 
and a causal link (Rule 423) below infectious process. Similarly, REFINE- 
HYPOTHESIS grows subtype links upwards, here placing acute meningitis and 
then acute bacterial meningitis in the SSM. 

The idea of inference operators is developed well by Pople [75] in 
CADUCEUS and also in ABEL. However, the more powerful formulation we 
advocate involves a third shift in perspective, namely shifting from talking 
about inference in terms of the knowledge base (as in CADUCEUS) to talking 
about the specific model the program is constructing of the particular system it is 
diagnosing (as in ABEL). PROCESS-HYPOTHESIS makes a connection to 
previously known information, growing a link to the CNS duration (which was 
itself placed in the SSM by PROCESS-FINDING, in abstracting the headache 
duration). Similarly, we see PROCESS-FINDING growing a link to increased 
intracranial pressure, at this point a disconnected, competing explanation of 
what is occurring in this patient. 

The explanatory value of the SSM for characterizing the inference process is 
particularly clear when there are two or more disconnected graphs, as in Fig. 
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16, where the incomplete nature of the solution is evident. Specifically, the 
work to be done is made explicit by the form of the SSM: Can a link be drawn 
between seizures and the acute bacterial meningitis graph? In terms of the 
relations required by the operators, could seizures be caused by acute bacterial 
meningitis? Could increased intracranial pressure cause acute meningitis? Of 
course there are many such questions that might be asked. The important point 
is that looking at such a representation of the inference process suggests 
questions about the general model that could improve the current solution. 

More specifically, it is our knowledge of the form of an adequate solution-- 
the constraints listed previously--that allows us to criticize an SSM. It is our 
knowledge of operators and link types that allows us to translate these gaps 
into general questions. A student looking at Anderson's proof graphs can ask 
similar questions. For example, how could I prove that AB is congruent to 
CD? How could I use the information that angle ABC is equal to angle ABD? 
When we consider how we rely on a situation-specific model for calculations as 
well-defined as subtraction or division, we realize that portraying the diagnosis 
process by a linear sequence of questions, typical of consultation programs, is 
showing just the superficial behavior of the program. 

Probably the biggest surprise is that the subtasks can now be formally 
described in terms of  the particular nodes or links they place in the SSM (with 
more-abstract operators controlling how these primitive operators are applied). 
This is quite a big step from the original implementation of the metarule 
premises as LISP code, with abstract terms like ESTABLISH-HYPOTHESIS- 
SPACE being the only theoretical language for describing what the subtasks 
were doing. This dimensional analysis is presented in Section 6. 

The idea that NEOMYCIN's subtasks are constructing a model may appear 
to be at odds with the claim that it selects a model by classification. Section 7 
resolves this possible confusion by contrasting selection of a process description 
(such as acute bacterial meningitis) with construction of a new process descrip- 
tion that accounts for (or designs) process interactions. 

Once we realized the value of the SSM for detecting the adequacy of the 
program's diagnosis, we began to print it routinely and use it as the starting 
point for knowledge acquisition discussions with our physicians. We also 
developed a program called GUIDON-DEBUG that detects gaps in an SSM 
and reformulates them as questions about missing propositions or rules in the 
knowledge base (Section 6). 

Before reviewing how the system-model-operator perspective applies to 
other programs (Sections 4 and 5), we show how different perspectives on the 
nature of inference are manifested in different research emphases. 

3.4. Drawing the elephant: piecing together different perspectives 

The system-model-operator perspective provides a way of integrating how 
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different researchers have described their programs and their research objec- 
tives. We consider designs for modeling tools, spaces for describing inference 
operators, inference procedures contrasted with inference engines, and ways of 
classifying expert system tasks. 

3.4.1. Modeling tools 
Alternative views about the nature of inference strongly influence our beliefs 

about what a tool might do for us and hence influence the tools that we design. 
Tools can be viewed as using different perspectives for asking questions about a 
representation, ranging from a microlevel of nodes and links to a macrolevel of 
paths and subgraphs: 

• node: terminological consistency (e.g., subsumption in NIKL, where 
should a new concept be placed in a classification?); 

• path: inference nets (e.g., use/conclude browsing in EMYCIN, what rules 
conclude that the organism causing the patient's infection is E.coli?); 

• subgraph: logical dependency (e.g., common to belief maintenance sys- 
tems, includes "what-if" reasoning, backtracking, alternative models/ 
worlds, detecting contradictions, endorsement/justification relations); 

• graph: model construction (e.g., operators for detecting completeness/ 
coverage or adequacy for task/specificity, scenario-generation programs, 
database discovery). 

The system-model perspective suggests that these are not different kinds of 
programs per se, but operations that are conceivably desirable for any expert 
system over the range of its development, maintenance, and use for multiple 
purposes. This analysis suggests that we might gain leverage by integrating tool 
capabilities rather than pursuing them in isolation. For example, consider the 
benefit of relaxing NIKL's classifier to modify ABEL's general model in order 
to improve a particular diagnosis. 

3.4.2. Operator spaces 
Figure 17 illustrates a second way of piecing together alternative views. We 

can understand different program descriptions in terms of the space that 
researchers have used for defining inference operators. Programs like CEN- 
TAUR [1] and CASNET are described in terms of operators for searching the 
domain theory space of subtype and causal relations. 3 In NEOMYCIN, ABEL, 
etc., operators are described with respect to the form of the situation-specific 
model. Other researchers have focused on the problem of deciding what 
operator to apply; for them inference is described in terms of impasses, 

3 CENTAUR is a kind of half-breed between MYCIN and NEOMYCIN. The disease classifica- 
tion is explicit, but strategies are domain-specific (e.g., "after confirming that the patient has an 
infection, determine the specific disease"). 
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Fig. 17. Alternative spaces for defining inference operators. 

agenda, a control blackboard, operator preferences, etc. As Fig. 17 shows, 
these are not three kinds of programs per se or specific to kinds of problems 
(e.g., design contrasted with diagnosis). Rather these are points of flexibility 
open to every program in every problem. By making explicit that these 
different perspectives exist, we can begin to study how they interrelate and 
how specific strategic knowledge in each space relates to the constraints posed 
by the structure of the domain theory, the structure of the situation-specific 
model, or the structure of the environment in which inference must take place 
(e.g., resource limitations that make planning useful). Indeed, the study then 
moves to characterizing types of  structures and how they relate to types of 
systems to be modeled (Section 7). 

3.4.3. Levels of  interpretation 
A third integration is possible by reconsidering how the idea of interpretation 

is used for describing inference. Figure 18 illustrates the view that an inference 
procedure constructs a situation-specific model of some system. 

It may not be obvious at first that this diagram is not specific to diagnosis; 
rather it describes what every expert system does. Specifically, for design 
problems the general model describes particular structures and how they can 
be assembled to produce particular functions or processes. The data includes 
constraints on the cost, manufacturing process, environment of use, etc. The 
SSM is a description of the designed system. In this way, we can characterize 
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Fig. 18. An inference procedure is a program for gathering information about system behavior and 
the environment (data) in order to make assertions about the system producing this behavior 
(diagnosis), the system that could produce this behavior (design and control), or how a system will 

behave (prediction). 

diagnosis as an analytic problem (describing processes in an existing system), 
and describe design as a synthetic problem (designing a new system). For the 
task we call control, the SSM describes how the system should be configured 
(and possibly what the input should be) to produce desired behavior. For 
assembly, the SSM describes a containing system, a manufacturing process, 
that will produce the desired system. A dimensional analysis of these possibili- 
ties relating to input/output relations is provided in [24]. 

Figure 18 suggests that the idea of  an inference engine interpreting a knowl- 
edge base is inadequate for describing inference, particularly for contrasting 
inference procedures for different kinds of tasks. Figure 19 suggests that the 
inference engine idea, exemplified by EMYCIN's backward-chainer, has prob- 
ably evolved from how we view traditional computer programs, which are 
interpreted or compiled by other programs, which itself developed from the 
idea of "programs as data". 

It is intriguing to realize that just as MYCIN's inference procedure is lost 
inside its domain rules, the inference procedure in programs like CASNET is 
lost inside LISP code. Viewed this way, the frame-rule controversy of the 
1970s was partly a matter of competing perspectives: Researchers using frames 
realized the importance of stating domain knowledge as propositions (viewed 
as networks of concepts), separately from the programs that use the knowl- 
edge. Researchers using rules realized the value of stating all knowledge in a 
stylized language so it could be annotated and hence interpreted by different 
programs for multiple purposes. 

The description of inference operators in ABEL and CADUCEUS is a 
major step towards integrating these views, but these operators are still coded 
in a way that is not interpretable in multiple ways for explanation, student 
modeling, etc. The major contribution of NEOMYCIN is to identify the 
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Fig. 19. An inference procedure interprets a task-specific representation; an inference engine is a 

programming-language interpreter. 

inference procedure as something that must be represented in a stylized way, and 
by its formalization can be studied as an object in its own right. As we will see, 
other researchers view strategic knowledge as structured, but have not repre- 
sented all levels in a stylized way. For example, strategic knowledge sources in 
blackboard systems are generally LISP functions or rules with LISP premises 
(Section 4). NEOMYCIN's architecture suggests three tiers: a knowledge base 
expressed as a set of propositions, an inference procedure that references the 
relations of the knowledge base, and an inference engine that applies the 
subtasks and metarules in which the inference procedure is encoded. Procedur- 
al knowledge in XPLAIN is coded as stylized procedures, but the particular 
statements are not objects in their own right, which can be annotated, flexibly 
interpreted, or reordered, an advantage of the metarule formalism (Section 8). 

As indicated in the discussion of GUIDON-MANAGE, it is the ability to 
store facts about inference procedure constructs (subtasks, metarules, premise 
relations) that enables it to be used for multiple purposes. Just as the inference 
procedure relies on the classification of domain terms to interpret the domain 
model, a program like GUIDON-MANAGE relies on the classification of sub- 
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tasks and metarules to generate hints (e.g., subtasks not to mention when gen- 
erating hints include APPLYRULE! and APPLY.ANTECEDENT.RULES). 
Similarly, the compiler that produces LISP code from the predicate calculus 
representation of metarule premises uses a classification of relations that 
describes how they are implemented in the underlying LISP (e.g., SUBSUMES 
is implemented as a property list attached to the first term of the relation; see 
Appendix A.4). Other researchers have emphasized the relation between 
control knowledge and classifications (e.g., [41]); the model construction 
perspective reveals the role relations play in selecting operands of SSM 
operators. 

The idea that an inference procedure in effect asks questions about the terms 
it is manipulating is illustrated by Fig. 20. The inference procedure for 
GUIDON-MANAGE asks questions about subtasks and the metarule com- 
piler asks questions about domain relations. Although the inference engine 
also asks questions about the inference procedure, these are part of the 
language (e.g., the idea of an iterative subtask) and never introduced by the 
knowledge engineer. In contrast, a knowledge engineer can modify existing 
inference procedures, adding new relations by which the knowledge base is 
defined. This distinction is of course just relative, consistent with the idea that 
a programming language (such as the subtask/metarule language) is relatively 
fixed and not modified by its users, a constraint that enables programmers to 
share tools. 

3.4.4. Process modeling 
To summarize, an SSM is a model of processes occurring in some system. 

Many researchers call the SSM a blackboard and emphasize that domain 
knowledge can be organized in terms of changes to the blackboard. In 
NEOMYCIN, we make explicit that these changes are made by inference 
operators, which reference relations by which the domain knowledge is ex- 
pressed and hence structured. Several key ideas come together here that in 
some respects violate common ways of describing expert systems: 

(FOLLOW-~he SFINDING)? 

(CAUSED-B~SIS)? 
Fig. 20. An inference procedure inspects the general model by seeing if particular relations hold 

between the terms it is manipulating (e.g., domain terms, subtasks, metarules). 
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• A knowledge base contains a general model of some system (a description 
of an abnormal process, such as a disease, is a kind of model). 

• An inference procedure constructs a situation-specific model of the par- 
ticular structures and/or processes occurring in a desired or actual system. 

• Both the general and situation-specific models (and indeed the inference 
procedure) can be represented as relational networks. 

• Inference procedures can be described in terms of operators for placing 
nodes and links in the SSM. 

The strong claim here is that all expert systems have an SSM, although 
researchers may not visualize the program's assertions this way (and hence the 
SSM's structure may be unarticulated or nonsystematic, as in MYCIN, Section 
4.5). The advantages of the SSM perspective for tracking the completeness and 
consistency of a program's "solution" suggest that every expert system should 
have a blackboard; that is, the SSM should be routinely displayed to reify the 
program's operation. The SSM can be studied to compare and criticize 
inference procedures (Section 6). The important realization that enables this 
form of analysis is that all expert systems are constructing and using models; all 
expert systems are model-based. This term has been used too restrictively in the 
literature to refer to programs with simulation, as opposed to classification, 
models (Section 7). Indeed, there is strong reason to believe that classification 
models are necessary for modeling open systems and cannot be reduced to 
structure-function simulation models. 

Generalizing a step further, we can characterize the general inference struc- 
ture of expert systems in terms of a sequence that involves constructing a model 
and then using it for some purpose (Fig. 21). 

Broadly speaking, for design we start with a description of desired behavior, 
produce a system design, and possibly an assembly plan. For diagnosis we start 
with actual behavior and identify what system is producing it, often followed by 
a modification (repair) or control plan. Either design or diagnosis might make 
predictions about behavior for testing a design (to see if it meets 
specifications), hypothesizing findings to confirm disorders, or monitoring a 
therapy plan. Of course, the inference process can iterate over these steps, for 

Model of desired (specified) System 
or actual (monitored) l, design or 

system behavior identification 

Assembly, modification, Predicted 
or control plan behavior 

Fig. 21. General inference structure for reasoning about systems. 
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example, moving from a hypothesized design back to inquire about further 
specifications. 

This diagram shows that planning depends on having a model of a system to 
be assembled, modified, or controlled. Indeed, it violates all common sense to 
say that MYCIN could prescribe appropriate therapy without having a model 
of the patient. Furthermore, planning is not something to be viewed in 
isolation, as something done by a particular class of programs, rather it is an 
integral asp,:ct of all expert systems. (Otherwise, there would be no reason for 
constructing the SSM; see Section 9 for a discussion of decision support 
systems, which fit this description.) We might say the model is not the usual 
solution of expert systems, however plans themselves are models of systems 
that will behave in some way, often involving some configuration of processes 
that will interact with the object system (e.g., a therapy plan may include a 
combination of drugs, food, exercise, and later visits to the physician). (See 
[24] for related discussion.) 

This diagram can serve as a template for describing any given expert system. 
The idea behind task-specific architectures is that particular problems can be 
viewed as recurrent specializations of this diagram. This seems clear enough 
given the examples of diagnostic and design architectures to date. For com- 
parison, contrast this diagram with early CAD systems, which did not have the 
capability to construct the electronic or architectural model from input specifi- 
cations and were not fed into automatic manufacturing or construction- 
planning systems. It is the internal SSM and inference operators for construct- 
ing it that enables this cascading of model construction and use in expert 
systems. 

Our next step is to study operators for constructing SSMs, study the 
structure of SSMs, and determine how operators and SSM structure relate. If 
SSM structures recur, then presumably operators will recur. We will then be 
able to characterize a generic system, say a diagnostic expert shell like 
HERACLES-DX,  in terms of the structure of its SSM and the corresponding 
operators of its inference procedure. 

4. Blackboards and operators 

To illustrate the central importance of the system-model-operator perspec- 
tive, we review here several programs with an explicit SSM-operator design. 
This reveals the usefulness of the perspective for describing reasoning, the 
prevalence of the perspective in 1980s' research, and how the subtask/metarule 
formulation adds to previous accounts. We begin with CADUCEUS,  ABEL, 
and ACCORD,  which provide diverse examples of model construction 
operators. We then analyze HASP to show how the traditional blackboard 
architecture alone does not make explicit the structure of the SSM or the 
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operators; blackboards and knowledge sources are shown to have a regular 
structure in process-graph-operator terms. Finally, we use our new-found 
perspective to resolve an old puzzle--what is MYCIN's context tree? 

4.1. CADUCEUS's  model construction operators 

Pople [75] describes diagnosis as a process of constructing a "diagnostic 
task" (an SSM) via operators that combine problem descriptions (disease 
hypotheses and findings) (Fig. 22). The essence of differential diagnosis is 
constructing sets of competing diagnoses, in which each set accounts for the 
symptoms and contains one or more disease descriptions (allowing for multiple 
faults). Thus, each differential diagnosis is an SSM. Diagnosis consists of 
searching the space of alternative SSMs. Thus, Pople emphasizes that given a 
large set of disease classes which can be intricately interrelated (both causally 
and in heterarchies), there are potentially dozens if not hundreds of SSMs 
consistent with a given set of findings. Diagnostic search must be conceived at 
this level, not just in terms of deciding what operator to apply to a given SSM. 
Differential diagnosis is not just a matter of deciding between a flat list of 
disease descriptions, but of combining and comparing subgraphs that represent 
relations between disease processes. Indeed, Pople emphasizes that his synthe- 
sis operators construct a differential diagnosis, viewing a "differential diag- 
nosis" as an object, not merely a name for the process of asking questions. 

Synthesis Operator 01 
Subclasslflcatlon 

Specialization 

Synthesis Operator 02 
Subclasslflcatlon 

Intersectlon 

Synthesis Operator 05 
Comblnatlon 

Fig. 22. Synthesis operators from CADUCEUS by which "multiple task definitions may be 
combined into unified task complexes" (excerpted from [75]). (Arrows indicate causality, vertical 

lines indicate subtype.) 
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The examples in Fig. 22 illustrate how two disease hypotheses P and Q can 
be discovered to be related via subtype (operator 01), via common subclasses 
(operator 02), or via an intermediate disease which is caused by P and is a 
subtype of Q (operator 05). Similar operators include causal specialization, 
intersection, and more complex intermediate connections. These operators 
transform networks of disease hypotheses from competing subgraphs into 
single graphs, constituting a single causal story of processes occurring in the 
patient (by which one disease causes another or is manifested in a particular 
way). Thus, Pople's formulation makes explicit the idea of  operators construct- 
ing graphs; however he does not emphasize that these graphs are models of  
processes. As mentioned previously, the process-model perspective is useful 
because it focuses our attention on how different types of networks can be used 
to represent processes in different ways (e.g., the different forms a disorder 
taxonomy takes in NEOMYCIN and CASTER). 

4.2. ABEL's  model construction operators 

Concurrent with the development of CADUCEUS and NEOMYCIN, Patil 
was formalizing diagnosis in ABEL in terms of operators for constructing a 
patient-specific model (Fig. 23). 

The operator "projection" is what Pople calls "causal specialization". How- 
ever, the other operators are different because they operate on different levels 
of detail. Aggregation and elaboration relate a composite, abstract term (a 
disorder name) to a subgraph that details the causal and component relation- 
ships of this process. Summation and decomposition relate quantities and 

Level N 

composite 

C a U S e S  
o' r rconst i tuant  

focal 

Level N+ 1 

Fig. 23. "The PSM is created by instantiating portions of ABEL's general medical knowledge and 
filling in details from the specific case being considered" [74]. 



38 W.J. Clancey 

sources of substances within a process description at a particular level of detail 
(e.g., A and C might correspond to water loss and sodium loss, both con- 
stituents of Lower-GI-fluid-losses, node B). With this representation, ABEL 
has the capability of reasoning about interactions of processes. For example, 
when one process produces a substance that another consumes, ABEL can 
hypothesize the resultant quantity of the substance. The advantage of ABEL 
over CADUCEUS and NEOMYCIN is therefore its representation of the SSM 
at different levels of detail, by which it can construct descriptions of processes 
that are not pre-enumerated in the knowledge base. CADUCEUS can account 
for processes that co-occur, but process interactions are all preclassified via the 
causal and subtype specialization relations in the knowledge base. ABEL is not 
just dealing with disorder names (corresponding to the P and Q nodes in Fig. 
22), rather it constructs subgraphs that it treats as new process descriptions and 

relates these to each other (corresponding to the line around the nodes at level 
N + 1 of Fig. 23). However, it is also true that ABEL's ability to aggregate and 
elaborate process descriptions is limited by the general model, as well as its 
ability to find higher-level relations among the summations and aggregations it 
has made. 

4.3. A C C O R D ' s  model  construction operators 

Following the development of ABEL, CADUCEUS,  and NEOMYCIN, 
Hayes-Roth reformulated the representation of control knowledge in BB1 in 
order to make explicit the task-specific operators and blackboard structure 
used for configuration problems [47]. The resultant framework is called 
ACCORD; it nicely builds on the work of Sowa [84] to make explicit the 
domain relations used by each operator. 4 Operators are viewed as verbs, with 
the subject and object relations corresponding to types of domain terms. For 
example, the operator YOKE links two subgraphs in the SSM, corresponding 
to a spatial constraint between partial configurations of the system being 
designed (Fig. 24). Operators are abstracted, so control knowledge can be 
written in terms of types of operators. For example, control rules can reason 
about when and where to attempt a POSITION operation. 

The operator language in ACCORD is a state-of-the-art representation, with 
the advantage of reifying inference operators as objects which have properties, 
are abstracted into hierarchies, and can be independently applied. The careful 
choice of names for these operators is also a major contribution to the 
community's goal of accumulating libraries of operator definitions and control 
knowledge. Terms like "yoke", "dock", and "anchor" are general and could 
be usefully applied to temporal as well as spatial aspects of an SSM. For 
example, these operators could be respecialized for combining portions of a 

~BB1-ACCORD is thus analogous to HERACLES-DX.  BB1-ACCORD is a task-specific 
specialization of BB1, and H E R A C L E S - D X  is a specialization of HERACLES.  
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Fig. 24. Operators in ACCORD, abstracted according to the effect each has on the evolving SSM 
(from Hayes-Roth et al. [47]). 

process description in diagnosis (e.g., "position" might be interpreted in terms 
of a place on a time line; "append" would show two temporal sequences to be 
contiguous). Besides the clarity of its design, ACCORD reveals the generality of 
the idea that an SSM is a model of  a system and provides a systematic 
vocabulary for building a library of operators. The limitation of ACCORD's 
design, common to every system we will consider in this paper, is that no 
dimensional analysis is offered to argue that this set of operators is in any sense 
complete. 

4.4. HASP'  s blackboard reconsidered 

Part of the difficulty of synthesizing past research is that it is not just a 
matter of identifying one previous conception as being most correct or useful, 
and then subsuming everyone's work under that. The blackboard model of 
control provides a major foundation for retelling the story of expert systems, 
however an adequate synthesis requires viewing blackboards themselves in a 
new way. For example, it should be clear that ABEL's PSM is a blackboard: It 
is a network that the program uses to post a solution, and it uses the partial 
state of this solution to decide what data to gather and assertions to make next. 
However, it should be equally clear that the idea of multiple levels is useful, 
but not an essential characteristic of a blackboard, as illustrated by 
NEOMYCIN and CADUCEUS. Furthermore, the medical examples suggest 
that we view the blackboard as a representation of some system being modeled, 
not just a data structure. Finally, the idea that the data structure is "common" 
or shared crosses the line from a description of how a model is constructed to a 
programming language view. 

Figure 25 provides a starting point for relating blackboard research to a more 
general conception of qualitative process modeling. The system being modeled 
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Fig. 25. HASP's blackboard (from Nii [73]). 

in HASP consists of ships and submarines in the ocean. The task is to identify 
what system is present, the particular combination of platforms (vessels) and 
their combination into fleet(s). The system being modeled is not a static 
structure, but a set of loosely interacting parts with temporal characteristics 
(the vessels are usually always moving). 

Figure 25 shows how very low-level behavioral characteristics of the system 
(chiefly sounds emitted by propulsion subsystems) are abstracted to identify 
source types and ultimately related to specific vessels. Thus, HASP's problem 
is essentially a design problem, given that the system being identified usually 
has novel configuration and process characteristics (to be contrasted with 
NEOMYCIN's  selection of complete system descriptions such as "Acute- 
bacterial-E.coli-meningitis" from the disease taxonomy). 

HASP's operators are called "knowledge sources". As is evident from their 
names, these operators can be abstracted according to the type of change they 
make in the SSM. "Formers" aggregate descriptions (e.g., a line former 
abstracts segments in the sound data to line patterns). "Predictors" work in the 
opposite direction to elaborate a description in terms of substance or process 
details that should be occurring in the specific system being modeled and thus 
form expectations for hypotheses or findings that should appear in this SSM. In 
short, these are not merely "knowledge sources" modifying "hypothesis ele- 
ments" in a blackboard. They are operators that correlate, form, predict, find, 
etc. process representations in order to construct a space-time model of  a 
system. 

With this system-model-operator perspective in mind, we now realize that 
important characteristics of the model have been left implicit in its blackboard 
implementation. Most importantly, what are the spatial, temporal, causal, and 
subtype relations between the levels? If these are made explicit, it will be 
easier for the program to be modified and enhance its explanation ability. 
Crucial for the objective of developing task-specific frameworks, we want to 
know how the blackboard is structured so we can model similar systems using 
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Fig. 26. "Partial lofargram analytic model" (from Keeler, 1987). 

the same design. This design is relatively clear in ABEL and is a major 
contribution of ACCORD;  in both systems it is the subtype, causal, temporal, 
and component relations between blackboard elements and not the levels per 
se that drive the inference process. 

After reviewing the SSM description of NEOMYCIN [26], Keeler 5 rede- 
scribed HASP in terms of operators constructing a relational network (Fig. 
26). Adopting the language used to describe NEOMYCIN's SSM, Keeler says: 

The process of lofargram analysis is the construction of a proof tree 
relating the acoustic spectrum and sources that could have gener- 
ated these signals . . . .  The target has a three-bladed prop (pro- 
peller-4); what platform could have that component? An auxiliary 
pump, type p, is unique to platform-Z types, and we direct our 
attention from above in searching for a line-a. 

This example shows the generality of the SSM-operator perspective, as well 
as how the blackboard model of control can be reformulated to make explicit 
the model-graph-operator characteristics of inference. 

In summary, we need to move blackboard terminology from the program- 
ming-language level to the process-modeling level. Words like panel, knowledge 
source, events, rules, focus of attention, and scheduler emphasize how a model 
and inference operators are encoded in a programming framework. Missing are 
mathematical concepts--such as relation, operator, graph, link, edge 
direction--and system-modeling operations--such as explain, locate, se- 
quence. Nodes on the blackboard can be described in terms of an ontology of 
substances, processes, states, structures, and events (in the process being 

5 Larry Keeler, Personal communication, NTSC, Orlando, FL (March 1987). 
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modeled)• Finally, a global perspective of the blackboard as a model of a 
system with certain space-time characteristics is essential for arguing about the 
adequacy of a solution and for describing the space of operators represented by 
a given set of "knowledge sources"• Relating the structure of the blackboard as 
a model to inference operators provides a way of systematically designing or 
looking for knowledge sources. 

4.5. M Y C I N ' s  context tree reconsidered 

One of the defining characteristics of EMYCIN's design is the context tree 

[12], a means of organizing dynamic information during a consultation (Fig. 
27). 6 The tree's design, dating from 1972, exhibits many features we associate 
with object-oriented programming today: 

• a hierarchical class structure, with distinction between classes and in- 
stances; 

• dynamic generation of an instance hierarchy, with provision for nonhierar- 
• - 7 chical associations (e.g., infection/organism, organism/recommendation, 

culture/current therapy); 

PERSON 

CULTURE INFECTION F~-C, CMIVENDA~ 

ORGANISM (TYPE of CULTURE) PRIOR CUI:~::~zNI" POSSIBLE 
e.g., bacterial- THERAPY THERAPY THERAPY 

meningtis 

I 
(COVERFOR of CULTURE) 

e.g., E.coli 

Fig. 27. MYCIN's  context tree (circa 1977), with culture "parameters"  shown as infection 
subtypes. 

6 In the original program, TYPE and C O V E R F O R  are parameters of a C U L T U R E  context. 
The values of TYPE are infection categories (e.g., bacterial meningitis). The values of COVER-  
F O R  are subcategories of these (e.g., E.coli bacterial meningitis). As I have said, the community 
of computer  scientists and physicians who designed MYCIN did not talk in terms of disease 
classifications. The representation of the disease classification is distributed across several object 
types and parameters:  INFECTION, "name of  infection"; C ULTUR E,  "type of infection", and 
C U L T U R E ,  "organism that therapy should cover for".  To make explicit these relations, I have 
shown the parameters TYPE and C O V E R F O R  as contexts below INFECTION. 

7 The value of an attribute can be an instance name or list of instance names. For example, 
"current  therapies affecting a culture" is a parameter of a culture context and has current therapy 
instances as values. 
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• inheritance of class and instance properties; 
• methods for filling in slots of instances (EMYCIN's parameters and rules 

for concluding about them); 
• rule primitives for collecting, filtering, sorting sets of instances according 

to arbitrary predicates (e.g., a rule might refer to "the positive cultures 
from sterile sites with gram-negative rod organisms"). 

In effect, the context tree provides a place for posting information about the 
current case. The tree structure shows how objects are related (e.g., the 
organisms observed on a particular culture are grouped as children of that 
culture). Examining Fig. 27, we observe that there are three kinds of relations: 
spatial (organism located in a culture), subtype (kind of infection), and 
componential (drug therapy pari of a recommendation). This systematic rela- 
tional structure reveals that the three parts of the context tree are modeling 
three systems: 

(1) The physical structure and history of the person, including cultures and 
organisms from different parts of the body. 

(2) Pathophysiological processes (in the meninges and blood), that is, the 
disease process causing observed symptoms and positive cultures. 

(3) The therapy plan (a list of drugs, dosages, and methods of adminis- 
tration). 

It is now apparent that MYCIN's context tree corresponds to three situation- 
specific models; that is, it is a blackboard with three panels (Fig. 28). Each 
panel has different relations between the levels (as we observed in HASP, Fig. 
25). The instances or objects--cultures, organisms, disease processes, drugs--  
are copied over from the general model, which describes what instances are 
possible (e.g., names of all sites where cultures can be taken) and how they can 

I 

PERSON 

CULTURE 

ORGANISM 

II III 

INFECTION 

(TYPE of CULTURE) 
e.g., bacterial- 

meningtis 

(COVERFOR of CULTURE) 
e.g., E.coli 

RECOMMENDATI£Xq 

PRIOR I CUF:RENT 
THERAPY THERAPY 

POSSIBLE 
THERAPY 

Fig. 28. MYCIN ' s  context  tree shown as a blackboard with three panels.  
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be related (e.g., what drug combinations are allowed and what organisms they 
are effective against). As discussed in Section 2, some of this information, such 
as the disease hierarchy, is implicit in rules. 

Throughout, I have emphasized that how we visualize program structures 
influences how we talk about them (e.g., the three views of inference). This 
lesson is particularly clear when we replace the hierarchical lines of the context 
tree by boxes--suddenly, MYCIN has a blackboard! A number of observations 
leap out: 

(1) The three panels loosely correspond to three stages in the consultation. 
The PERSON/INFECTION link is accomplished by heuristic classifica- 
tion. The INFECTION/RECOMMENDATION link is accomplished by 
generate and test from a grammatical description of valid drug combina- 
tions [23]. 

(2) The PERSON-CULTURE-ORGANISM panel models the system being 
diagnosed as a whole, setting up its physical and historical structure. 
This pattern is seen also in SACON (in terms of a building and reasons 
for failure analysis) and TOPO, an experiment in using HERACLES for 
configuration of computer networks (organizational structure and phys- 
ical layout of working groups). Examination of other programs suggests 
that the first step in design or diagnosis modeling of a system (e.g., a 
person) is to model the physical structure of the system (its parts and their 
properties) and the historical environment of the system (in the case of 
diagnosis, its creation and where it has been; in the case of design, 
constraint specifications for assembly and future use). 

(3) Therapies are related temporally, shown here as three sections at one 
level in the third panel. Temporal reasoning is very important in 
MYCIN, in order to determine how culture results are affected by 
current and prior therapies (i.e., drugs may mask the effect of an 
infection, obscuring the symptoms, without curing the patient). This 
reasoning mainly concerns the overlap of events (e.g., did a symptom 
occur more than three days after therapy began?). 

(4) Broadly speaking, the operators (implicit in rules, EMYCIN's interpre- 
ter, and the therapy program) describe the patient's physical/historical 
structure (the task "specify", panel I), develop a top-down description 
of the disease process (the task "diagnose", panel II), and construct a 
therapy recommendation (the task "configure", panel III). In effect, 
NEOMYCIN's subtasks and metarules (Section 6) make explicit and 
generalize the operators in panels I and II. 

It is no surprise that it took so long to realize that the context tree 
corresponds to a blackboard. First, the idea of a blackboard was developed 
years after MYCIN was designed; the context tree picture was firmly en- 
trenched. Second, general descriptions of "blackboard systems" appropriately 
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emphasize opportunistic reasoning, which does not occur in MYCIN. If the 
idea of a blackboard as a place for posting a model of a system--an overarch- 
ing theme of this paper--had been emphasized over the use of the blackboard 
for driving the reasoning process, researchers might have more readily seen 
that the context tree is a blackboard. In this respect, it is interesting that both 
EMYCIN and HASP fail to make explicit the relations between objects. This 
lack of attention to structure (the representation of a model) and overemphasis 
on programming (EMYCIN's rule interpreter, HASP's scheduler) played a 
major role in obscuring the commonalities of the designs. Ironically, a third 
obscuring factor is that the reasoning about spatial, temporal, and component 
relations in MYCIN is more complex than the simple "levels" idea in black- 
boards. That is, the blackboard conception alone does not have the complexity 
required for reasoning about the relations among cultures, organisms, infec- 
tions, therapy recommendations, and drugs. 

As stated at the beginning of this section, synthesizing research is not a 
simple matter of mapping onto one existing conception. In identifying the 
blackboard idea as a good orientation, we have moved back and forth between 
showing what it clarifies and what it fails to bring out. Our study of 
NEOMYCIN, HASP, and MYCIN in particular shows that if researchers 
simply dropped their own representations and adopted the blackboard concep- 
tion (of say, BB1), important distinctions would be lost. Specifically, a 
synthesis shows that the relations among objects, levels, and panels need to be 
made explicit in order to make explicit how processes/systems are modeled. 
Furthermore, recurrent structures emerge (i.e., the first panel is similar in 
several programs), which we will want to build into knowledge acquisition tools 
and convey to knowledge engineers as guidelines for designing blackboards. 
These patterns are discussed further in Section 8, when we consider knowledge 
acquisition tools. But first we consider what kinds of processes are modeled in 
programs in general, and then the patterns in NEOMYCIN's subtasks and 
metarules. 

5. AI programming as process modeling 

Having established the value of the blackboard and operator perspective, we 
now consider more broadly how blackboards can be used in an AI program. 
This brings out the different kinds of processes that a program might model 
and what flexibility the blackboard perspective offers over other architectures. 

Not surprisingly, we generally describe a new kind of computer program in 
terms of a programming language. Thus, papers about MYCIN emphasized the 
production rule language and interpreter. Papers about blackboard systems 
emphasized the relation between knowledge sources and schedulers. General- 
ly, the news to report at first is how to get certain performance out of a 
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program or how to code something so it can be easily modified. In this respect, 
object-oriented programming has emerged from AI research as an important 
contribution to computer science, even to the extent that it is sometimes 
identified with intelligent programs in the popular literature. How is the 
blackboard conception related to object-oriented programming? 

As shown by the examples in this paper, programming-language descriptions 
(e.g., HASP's "blackboard events") are inadequate for describing expert 
systems because they combine process-model characteristics with how the 
model is encoded and interpreted as a running program. Programming- 
language descriptions have in fact so disguised the expert system enterprise 
that the underlying model structure and construction operations are even 
denied by researchers in the misleading "shallow" versus "model-based" 
distinction. Nevertheless, programming-language descriptions can be useful for 
comparing alternative views of inference, making explicit the contribution of 
the blackboard perspective. This analysis is particularly valuable for describing 
the methods of AI programming to other computer scientists. 

5.1. An object-oriented view of  inference operators 

Consider the following sequence of programming languages, more or less 
corresponding to the evolution of techniques for encoding inference proce- 
dures: procedural code in a conventional program, inference rules as in 
MYCIN, an object-oriented domain model as in CENTAUR and MDX, an 
object-oriented method hierarchy as in NEOMYCIN, methods viewed as 
operators for constructing an SSM graph as in ABEL, and finally the use of a 
scheduler for controlling methods as in BB1-ACCORD. 

5.1.1. Procedural code 
A traditional computer program combines a general model with an inference 

procedure, coded as conditional statements. Runtime ordering of statements 
must be explicitly coded. Typically, the system being modeled is implicit; 
attributes are represented as variables. 

Representation in C code: 
Boolean FEVER, INFECTION; 
if (FEVER) then INFECTION = TRUE; 

If there is a fever, then there might be an infection. 

5.1.2. Inference rules 
In a typical rule-based system, attributes or relations are distinguished from 

objects, which are signified by variables (e.g., CNTXT in MYCIN). Attributes 
are represented by literals. Facts about the system being modeled are treated 
as global data; they are structured objects (e.g., propositions), not just values 
of variables. Conditional statements are called rules, which can be controlled in 
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a data-directed way, not just linearly executed like program steps. Rules are 
generally written in a language with a restricted syntax amenable to interpreta- 
tion by different programs (translation, explanation, knowledge acquisition, 
student modeling, tutoring). Thus, conditional statements are treated like data. 

Representation in EMYCIN: 
(PATIENT Mary) 

(IF (AND (PATIENT $CNTXT) (FEVER $CNTXT)) 
THEN (INFECTION $CNTXT)) 
If the patient has a fever, then the patient has an infection. 

Uncertainty is represented by second-order relations, e.g., the following is a 
formal representation of EMYCIN's rule predicate, MIGHTBE: 

(IF (AND (BELIEF ($RELATION $CNTXT) $CF) 
(GREATERP $CF -200)) 

THEN (MIGHTBE $RELATION $CNTXT). 

5.1.3. Object-oriented domain model 
In a typical object-oriented system, such as CENTAUR or MDX, domain 

objects are represented in a hierarchy and inference methods are attached to 
them. This approach makes explicit the classification nature of the domain 
knowledge, but often domain relations that could be stated in process-model 
language are stated procedurally. For example, in OCEAN (developed by 
Cimflex-Teknowledge, Inc. as a reformulation of R1 for NCR) structural- 
component relations in a computer system being configured are expressed by 
the " F R O M "  and "TO" relations, indicating the way in which the model is 
interpreted to refine the SSM. Also, methods are often stated using domain 
terms, rather than abstracted, as illustrated by an "if-confirmed" method from 
CENTAUR (using the same infection example). 

Representation in CENTAUR: 
(MORE-SPECIFIC infection (disease meningitis)) 

(IF-CONFIRMED infection 
(DETERMINE disease of infection)) 

5.1.4. Object-oriented method hierarchy 
In NEOMYCIN there is both a domain object hierarchy (the disease 

taxonomy) and a method hierarchy (the subtasks/metarules). The methods do 
not reference domain terms directly; they are abstract. Although this discipline 
could be applied by moving all methods to the most abstract objects in the 
domain hierarchy, as is done in MDX, representing methods in a separate 
object hierarchy makes clear that they are not just associated with abstract 
domain objects (such as "disorder" or "finding"), but they are themselves 
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hierarchically abstracted. Figure 4 illustrates how the infection example is 
handled in NEOMYCIN; see Section 8 for further examples of method 
abstraction in generic systems. 

5.1.5. Methods as SSM-graph manipulation operators 
In HERACLES-DX, the generalization of NEOMYCIN into a diagnostic 

shell, the object hierarchy is viewed as a process classification. The method 
hierarchy is viewed as operators for constructing an SSM. Specifically, the state 
of the program's reasoning is reified as an object in its own right, the SSM, 
with dynamic properties that drive the application of methods (e.g., "an 
unexplained abnormal finding exists in the SSM"). This perspective is in most 
respects adopted in ABEL, CADUCEUS,  and ACCORD. ACCORD's  use of 
abstraction for describing methods is illustrated by Fig. 24. The importanrshift 
is from talking about object-oriented programming in general to talking about 
a particular kind of computer program in which the objects represent pro- 
cesses (and indeed, this applies to both the domain and method object hier- 
archies). 

5.1.6. Agenda~blackboard and scheduler for posting and selecting methods 
In BB1/ACCORD, methods are not executed directly, but an intermediate 

reasoning step involves posting the methods that could be applied on an 
agenda. In other variations, such as Hayes-Roth's model of planning [46] and 
Lesser's HEARSAY variants [58], goals and methods are posted on a control 
blackboard. That is, the inference process itself is represented on an inference 
SSM, paralleling the posting and reasoning about alternative processes in the 
domain system being modeled (sometimes called the "data blackboard"). 

In this sequence we have compared diverse programs like MDX, EMYCIN, 
and BB1/ACCORD, using the idea of object-oriented programming as a 
backbone for understanding the shift from directly executing programming 
statements to representing them as objects with properties. In parallel, what is 
a simple conditional statement in a FORTRAN or C program becomes two or 
more statements: the causal, subtype, temporal or spatial relation of the 
domain model and the operator that places this relation in the SSM. 

Crucially, the program's output is viewed not just as values for variables, but 
a structured representation of processes occurring in some system being 
modeled. This representation takes the form of a list of diseases, called the 
differential in the early NEOMYCIN. It then becomes a graph, relating 
substances, states, and processes, called the SSM. A similar transition occurs in 
moving from a linear agenda, which simply orders operators that can be 
applied (a kind of differential), to a control blackboard in which alternative 
inference processes are described, elaborated, and contrasted. 
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5.2. Advantages of a control blackboard 

We now understand that the advantage of BBl’s architecture over HERA- 
CLES is that it allows control of inference operators to be represented in a 
more general way, directly analogous to the advantage of NEOMYCIN’s 
subtask/metarule representation over rule-clause ordering in MYCIN’s rules. 
In fact, representing alternative inference processes is precisely what ODYS- 
SEUS does (and must do) when modeling a student’s diagnostic strategies. 
Alternative strategic abstractions of a sequence of patient data requests are 
posted as alternative lines of reasoning, that is different explanations for why 
the student requested the information in this order 1931. The same idea is 
exploited in Murray’s [69] BBl-tutor in which alternative instructional plans 
are posted on a blackboard. Figure 29 summarizes how the idea of an SSM can 
thus be generalized for representing processes in the world (the system model 
and plans for assembling, controlling, or modifying this system), processes in 
the program (the inference process), and processes of interaction between the 
program and the world (e.g., discourse or instructional plans). 

The innermost two ellipses in Fig. 29 correspond to the domain or general 
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SSM of Object 
System 

QS~ultloOnsGn 

lBlloaLhmrdlD 

Describes a process 
in the program. 

SSM of Reasoning 
System 

OUmlng 
Blrckborrd) 

- 
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Fig. 29. General view of AI programs showing nested representations of domain, inference, 
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model (the knowledge base) and the inference procedure, which we have been 
discussing in this paper. ~ The SSM we have focussed on is shown at the top left. 
The next layer corresponds to the control or planning blackboard and 
scheduler in programs like BB1. The reasoning process is represented by 
combinations of operators on the planning blackboard, which may be elabo- 
rated into alternative lines of reasoning. In essence, this is where ODYSSEUS 
posts alternative strategic models of a student's reasoning. Stefik's MOLGEN 
[86] provides another good example, in which there are explicit planning 
operators (called metaplanning operators because the object SSM is an ex- 
perimental laboratory plan). Stefik's inference planning operators include 
GUESS-UNDO and LEAST-COMMITMENT. Of course, these are model- 
manipulation operators, too. They manipulate the model or representation of 
the inference process, in contrast with inference operators, which manipulate 
the representation of processes in the system being modeled. 

The outermost layer concerns processes by which the program interacts with 
its environment. For example, in GUIDON and BBl-tutor these are instruc- 
tional discourse processes. Again, there are two layers. The first, here labeled 
"current dialogue", is a representation of the interaction as it has been 
occurring (e.g., the student has just asked for help). The second SSM, here 
labeled "discourse plan", is another planning blackboard; here the program 
posts alternative dialogue interactions it might have with the student (e.g., 
generate a hint, provide a simpler example). Objectifying the discourse process 
in this way facilitates interruption and return to a previous state of the 
dialogue, as well as lookahead (e.g., to determine whether an example can be 
suitably elaborated and related to the current situation or to estimate duration 
of an interaction and take resource limitations into account). A similar pair of 
blackboards could be used for acquiring data from sensors, allowing interrupts 
from multiple sources to be posted and selectively attended to. 

In both GUIDON and NEOMYCIN, which lack planning blackboards, 
these considerations have to be coded in an ad hoc way. For example, after 
GUIDON selects a candidate domain rule to present, it must look ahead to 
determine if the rule can be adequately discussed (perhaps its syntax is too 
complicated). In general, a planning blackboard is useful for determining 
whether operators can successfully apply to a candidate focus operand in the 
object SSM. An analogous problem occurs when an abstract operator selects a 
line of reasoning; a control blackboard provides a systematic way of posting the 
selection criteria so the lower-level operators can refer to it when instantiating 
the plan. For example, GUIDON might select a domain rule for presentation 
because the student forgot to apply it in a previous case. However, the 
discourse procedure for discussing a domain rule is separate from the proce- 

Figure 29 is not a Venn diagram. Outer  processes reason about  and /o r  control inner processes,  
e.g. ,  the inference procedure reasons about  the domain model.  
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dure for selecting what rule to discuss, and thus the selection criteria is not 
available for biasing the presentation method, except through ad hoc use of 
flags and other bookkeeping records. Put another way, levels in a blackboard 
represent support for planning decisions and make selection criteria available 
for subsequent processing--an important theoretical principle in controlling 
reasoning revealed by our analysis. 9 

Similarly, NEOMYCIN's inherited end conditions lead it to interrupt a line 
of reasoning (e.g., pop up from TEST-HYPOTHESIS back to ESTABLISH- 
HYPOTHESIS-SPACE to reconsider what hypothesis to focus on). However, 
it retains no explicit description of the line of reasoning it interrupts (just the 
SSM and a record of the contexts in which subtasks have been applied). In 
general, a planning blackboard enables posting which subtasks have been 
started, but are incomplete, enabling a program to deliberately compare 
alternatives and pick up where it left off, rather than beginning entirely new 
lines of inquiry (which could confuse the student/user). 

In summary, the representation of inference and discourse in NEOMYCIN 
and GUIDON respectively is abstract (using no domain terms) and represented 
via hierarchical operators, enabling these operators to be represented non- 
redundantly and flexibly applied. However, without a control blackboard for 
posting the current, interrupted, and alternative lines of reasoning (operator 
sequences), communication between operators concerning the state of the 
inference process (for constructing a domain SSM and constructing a dialogue 
SSM) must be handled in an ad hoc way. The use of a network representation 
for lines of reasoning in ODYSSEUS and a blackboard for posting alternatives, 
in contrast with IMAGE in which lines of reasoning are represented as a fiat 
agenda, enables the ODYSSEUS student modeling program to contrast differ- 
ent lines of reasoning and argue for completeness of its explanations (e.g., a 
given strategic model encompasses the full sequence of student data requests). 
A similar conclusion concerning explanation dialogue planning is reached by 
Moore and Swartout [67]. 

5.3. The generality of process modeling 

Figure 29 captures a recurrent result in diagnosis, explanation, and cognitive 
modeling research. We need to treat the diagnosis, the dialogue, and the 
inference process as explicit structures. In all cases, the SSM makes explicit the 
model construction nature of the inference process, provides a place for 
posting and reasoning about alternative models, and by an analysis of the form 
of the model allows arguments about its incompleteness or inadequacy for the 
purpose at hand to drive the inference process. 

It is worth mentioning again that I use the term "blackboard" because it makes explicit the 
idea of an SSM. I am not promoting wholesale acceptance of the programming style of a 
"blackboard architecture", which focuses on symbol-level manipulations, illustrated by the analysis 
of HASP (Section 4.4). 
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In each case, a process is treated as a structured object which can be reasoned 
about, rather than being something that is executed or interpreted directly as 
code (e.g., the contrast between metarules that post subtasks on a control 
blackboard versus metarules whose actions directly apply subtasks). Posting 
and reasoning about processes enables parallel execution, suspension/resump- 
tion, and dynamic ordering (contrasted with selection of predefined action 
sequences). This idea is very general and has important implications for 
computer science in general: AI  programming methods enable representations 
of  processes to be constructed and manipulated by different programs (them- 
selves represented as structured processes). Indeed, it should be evident that the 
nesting of domain model, inference process, planning, and communication is 
very general; it could be argued that this covers the gamut of what programs 
must know and do. 

It is worth recalling that we developed this picture by beginning in 
NEOMYCIN with the idea that different processes should be represented 
separately. From this method, we have demonstrated a range of programs with 
new capabilities: modeling a student's diagnostic strategies, generating strategic 
hints, detecting that a solution is incomplete, generating hypotheses about 
missing domain facts. Figure 29 and the process-modeling perspective also 
provide a good starting point for teaching about AI programming. For it 
should be clear that we have stepped beyond expert systems per se to 
encompass the full sweep of AI research concerns, including planning, natural 
language generation, and learning. The value of this perspective is obviously 
not in resolving all open questions, but rather in providing a single architecture 
for integrating work in different areas. 

We have also learned that what makes software reusable by different 
interpreting inference procedures is the ability to classify process constructs in 
different ways. For example, domain relations in NEOMYCIN's metarules are 
classified so the compiler can replace them by LISP code. Other properties of 
domain relations are used by the explanation program (e.g., if one relation 
implies another, it may be sufficient to state just the more specific clause). The 
subtasks are classified in one way for GUIDON-MANAGE's  hint generator 
and classified another way for the explanation and student modeling programs 
(e.g., GUIDON-MANAGE does not suggest subtasks below the level of 
subtasks in the student's menu). IMAGE must know how metarules can be 
reordered or omitted when generating advice from a student model. At a lower 
level, the arguments of subtasks (called loci) are also classified (into finding, 
hypothesis, and domain rule), so the explanation program can determine 
whether a type change has occurred in a line of reasoning (arbitrary variable 
names would not allow this). In short, different interpretation procedures 
require different views of  the model~process being reasoned about. These views 
take the form of new relations by which elements of the model/process are 
classified, hence new structure. These relations appear in conditions for 
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applying operators for constructing an SSM using the model (e.g., the compil- 
er's SSM is the LISP representation of the inference procedure). In essence, 
these relations act as filters by which different elements of the process model 
are preferentially collected and sorted for incorporation in the SSM (cf. the 
description of inference in SOAR). 

We have also discovered a recurrent set of operations that are performed on 
processes: specification, design, assembly, diagnosis, etc. In general, the 
relations among these operations shown inFig. 21, which was presented as a 
description of how a domain model is created and used~ applies equally to the 
inference, planning, and communication processes. For example, the inference 
planning process is a design task; the compiler is an assembly task; the 
knowledge acquisition program includes both diagnosis and repair tasks. Given 
that the representations of all these processes are similar (using compositions of 
hierarchical and state-transition networks), the possibility arises that there are 
common inference procedures. That is, if the relational network representation 
is similar (see Section 7), the diagnostic operators for constructing a patient- 
specific model should share some similarities with the operators for diagnosing 
what has gone wrong in an instructional dialogue. Indeed, everything would 
collapse to the inner two ellipses of model and model-manipulation procedure, 
as shown in Fig. 18, with different representations and inference procedures for 
different types of systems (e.g., CNS versus LISP program) and different tasks. 

This analysis suggests that we should now study the relation between types of 
systems, process model structures, SSM structures, and inference procedures. 
In Section 6 we present a dimensional analysis of NEOMYCIN's subtasks; in 
Section 7 we study the types of relational networks used for representing 
processes. These ideas are then applied in Section 8 to improve our descrip- 
tions of knowledge acquisition tools. 

6. Formal analysis of subtasks and metarules 

Subtasks are essentially functions; here we adopt three different perspectives 
for describing them: 

(1) as operators placing oriented edges in the SSM graph; 
(2) as operators manipulating typed sets (the SSM-graph nodes--findings, 

hypotheses, and domain rules); 
(3) as operators satisfying constraints on the form of an adequate SSM. 

In these three perspectives we view subtasks according to how they change 
the SSM, viewed at the different levels of edge, node, and subgraph. The 
purpose of this section is to show that an inference procedure can be 
systematically described using simple graph, set, and logic distinctions. This 
description provides a convenient means of determining the completeness of a 
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given inference procedure, as well as a common language for comparing and 
collecting libraries of inference operators. 

6.1. Placing oriented edges in the SSM 

Figure 16 suggests that at least some subtasks can be described according to 

the types and directions of the links they place in the SSM. Table 1 describes 

many  of N E O M Y C I N ' s  subtasks in this way. For example,  F I N D O U T  and 
C L A R I F Y  both place an edge between findings, moving downwards from a 

finding to a more  specific finding (e.g., F I N D O U T  grows a link from medica- 

tions to aspirin; C L A R I F Y  grows a link from headache to the headache 's  

duration).  The key on the far left indicates that this is a supporting link, an 

a t tempt  to find evidence for or details about  a more  general process. 

We also see that F I N D O U T  can grow links in the opposite direction, f rom a 

known specific finding to an unknown general finding (e.g., if the patient has 

undergone neurosurgery,  we can conclude that the patient has undergone 
surgery, and hence go on to ask about  cardiacsurgery).  Whether  the focus 

findings are known or not is a secondary consideration; there are systematic 

pat terns  in the metarules,  so they are noted here. 

Notice that the subtasks are described in this table by several dimensions, in 

terms of: 
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NEOMYCIN's subtasks viewed as o 
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• the type of the subtask focus (e.g., hypothesis, indicated by H, is the focus 
type for TEST-HYPOTHESIS), 

• the type of node to which the subtask seeks to grow a link (e.g., 
TEST-HYPOTHESIS seeks to link its focus hypothesis to a finding node), 

• the relation linking these nodes (e.g., "causes" for TEST-HYPOTH- 
ESIS), and 

• the direction in which the graph is being modified (e.g., TEST-HYPOTH- 
ESIS grows a "support link", from a hypothesis node to a finding node 
lower in the graph). 

Further distinctions can be made regarding whether the nodes represent 
known findings (or previously considered hypotheses). Findings are never 
linked directly above hypotheses (column 2) because by definition, a finding is 
an observed system behavior that is caused by or subsumed by an internal 
state, structural change, or process (which are called hypotheses because in 
diagnosis we are attempting to infer the description of the system). For findings 
to be placed above hypotheses, the direction of causality or subtype would 
have to be reversed, and there would not be a consistent interpretation of the 
SSM in terms of support (that a process is occurring from below) and 
explanation (for particular behaviors from above). This underscores the point 
that an SSM is not an arbitrary graph, but is a representation of processes, a 
model that is interpreted for the purpose of the tasks at hand, such as diagnosis 
and repair. 

This table only shows operators for extending a given graph by adding one 
link between findings and hypotheses. Other operators incorporate laboratory 
tests (a kind of finding), relate hypotheses in different subgraphs (such as 
DIFFERENTIATE),  or simply place a node in the SSM (e.g., an unexplained 
new finding). 

It should be apparent that this kind of table provides a dimensional analysis 
that merely listing operators (as in Fig. 22 (CADUCEUS) and Fig. 24 
(ACCORD)) does not provide. The graphic presentation of ABEL's operators 
(Fig. 23) shows the kinds of links the operators grow and their direction, but 
there is no way of seeing quickly what the possible operators are. 

The subtasks listed in Table 1 are primitive operators because they directly 
place links in the SSM. More abstract operators control the order in which 
these primitive operators are applied. They are called procedural operators 
(Fig. 30). The metarules for such subtasks constitute ordered, conditional steps 
in a procedure. In contrast, the metarules for primitive subtasks are alternative 
methods for accomplishing one thing--placing a certain kind of link in the SSM 
graph. A typical procedural operator is PURSUE-HYPOTHESIS. Its two 
metarules invoke TEST-HYPOTHESIS and REFINE-HYPOTHESIS in se- 
quence. Procedural operators represent preference between primitive 
operators. For example, to accomplish a top-down, breadth-first search of the 
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Establish-Hyppt hesls-Space 
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Fig. 30. Procedural subtasks order the application of primitive operators (GROUP, DIFFEREN- 
TIATE, TEST, REFINE) or other procedural subtasks GROUP-AND-DIFFERENTIATE, EX- 
PLORE-AND-REFINE). Arrows indicate preference relations represented by the order of 

metarules for a given subtask. 

disease taxonomy in NEOMYCIN, we want to test a hypothesis before refining 
it. If we refined hypotheses first, we would test the most specific disease first 
and lose the benefit of pruning the search at a higher level in the disease 
taxonomy. 

GROUP and DIFFERENTIATE are not implemented as explicit subtasks 
in NEOMYCIN; our analysis (Table 1 and Fig. 30) shows that these are two 
distinct operators. Thus, one benefit of this analysis is making clear how 
subtask decomposition can be done in a principled way. Specifically, the 
dimensional analysis shows how to coherently group metarules into subtasks 
that accomplish one kind of operation (by edge type and whether they are 
primitive). It was a surprise to realize that the GROUP-AND-DIFFEREN- 
TIATE metarules fell into two disjoint groups, which constituted two distinct 
subtasks that might have been explicitly labeled, analogous to TEST and 
REFINE. Metarules for other subtasks, such as FORWARD-REASON and 
PROCESS-HARD-DATA, not shown here, can be abstracted and regrouped 
in a similar way. 

Figure 30 also shows that procedural subtasks themselves can be character- 
ized in terms of modeling processes. In particular, we see that "looking up" in 
GROUP-AND-DIFFERENTIATE entails a categorical view of the model in 
terms of processes; "looking down" corresponds to Szolovits' probabilistic 
phase, viewing the model in terms of specific causal and subtype relations. 

In practice, these preference relations are enforced by the use of HERA- 
CLES' ability to interrupt a subtask and return control to a higher-level 
procedural subtask. Preconditions and goals, called end conditions, can be 
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associated with each subtask; they are in effect inherited as interrupt conditions 
by all subtasks on the stack. A true end condition signifies that a subtask 
precondition is violated or a subtask goal is achieved; the subtask interpreter 
aborts the current subtask and returns control to the highest subtask on the 
stack for which no interrupt condition holds. In particular, EXPLORE-AND- 
REFINE has an end condition termed "wider differential", which means that a 
new hypothesis has been added to the SSM which is not subsumed by any 
existing subgraph. This requires return to categorical reasoning (GROUP- 
AND-DIFFERENTIATE).  This simple mechanism served well in 
NEOMYCIN, but as indicated previously such end conditions themselves need 
to be objects that can be posted and reasoned about for student modeling and 
discourse management (which forced the use of a control blackboard/agenda in 
both ODYSSEUS and GUIDON-MANAGE) .  

6.2. Manipulating sets of  SSM nodes 

From a programming-language viewpoint, it is interesting to describe the 
subtasks as set-mapping functions. It is surprising at first to realize that there is 
just a small group of possible set operations that are performed by the 84 
NEOMYCIN metarules. This analysis has value for explanation programs 
(summarizing a line of reasoning in terms of subtask focus changes) and 
certainly for knowledge acquisition (providing templates for modifying and 
acquiring new metarules). 

In particular, we find that subtasks have either a single node as a focus 
(argument) or a set of nodes of a single type. For example, Fig. 31 shows that 
CLARIFY-FINDING maps between a single finding and a list of findings. 
Here we are not viewing the subtask in terms of the kinds of links it places in 
the SSM, but computationally in terms of function (subtask) arguments. In 
effect, CLARIFY-FINDING collects a set of findings and invokes FINDOUT 
on each of them. Similarly, FORWARD-REASON sorts its arguments, map- 
ping from a set of input findings to ordered invocations of PROCESS- 
FINDING. DIFFERENTIATE maps from a set of hypotheses (the roots of 
disjoint SSM graphs) to a discriminating finding. In effect, each subtask is 
focusing the operation of  the subtasks it invokes by collecting, ordering, and 
filtering arguments that are passed on. In each case, we find a relation in the 
premise of a metarule that takes the focus as a given term and seeks possible 
bindings from the general domain model in order to carry out these collection, 
ordering, and filtering manipulations (Fig. 20). 

As we have seen (Figs. 4, 6, and 8), there is a striking pattern by which each 
new metarule (not just each new subtask) tends to require a new relation by 
which nodes in the SSM can be collected, sorted, or filtered. This is an 
important result for the design of knowledge acquisition and learning pro- 
grams: It means that changes to the theory (the relational language in which 
the domain model is expressed) are tied to new metarules that use that 
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Fig. 31, Subtasks viewed as functions manipulating types of SSM nodes (boldface arrows indicate a 
selection or filtering process). 

distinction in order to selectively apply an existing operator to a set of SSM 
nodes. We can expect the types of nodes, links, procedural operators, and even 
most of the primitive operators to be relatively stable. Acquiring a new kind of 
knowledge (a new relation)--at least in our experience in the development of 
NEOMYCIN--general ly involves acquiring a new metarule for an existing 
operator. More commonly, we acquire only new domain propositions, which 
themselves can change the program's behavior; the strategy is unchanged 
because the relational language and metarules remain the same. 

An example of set-mapping analysis applied to the initial specification of an 
expert system, very much in the spirit of the approach advocated here, is 
provided by Alexander et al. [2]; for example, for a meeting-planning program, 
the SELECT-ARBITRATOR operator is defined as 

Meeting x Purpose--~ Arbitrator, 

a notation with the advantage of representing the intermediate relations (i.e., 
Purpose) that will qualify the operator's focus (Meeting) in order to select an 
output variable (Arbitrator). In this notation, we might write: 

TEST-HYPOTHESIS: 

Diagnostic-hypothesis × Causal-effects 

--~ Conjectured-f inding. 
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Ontological analysis provides a formal specification for subtasks and metarules; 
the subtask/metarule language in turn provides a stylized procedural im- 
plementation for Alexander et al.'s knowledge-level specifications. In related 
work, Hartley [43] shows how Sowa's conceptual structures, using a case-frame 
representation of "actors", can be used to represent diagnostic operators that 
manipulate sets of symptoms, tests, etc. 

Another direct application of set-mapping analysis is for collapsing a line-of- 
reasoning explanation. By examining subtasks in terms of set-mapping rela- 
tions, the explanation program can detect potentially confusing focus shifts. 
For example, in Figs. 9-11 we observe a complicated shift from data-directed 
to hypothesis-directed reasoning. Rather than traipsing through the networks 
link-by-link, the explanation program could say, "Besides meningitis, papille- 
dema might be caused by an intracranial mass lesion. Before jumping to that 
conclusion, I need to gather additional evidence that there is increased 
intracranial pressure." The possibility of composing TEST-HYPOTHESIS- 
(Meningitis) with TEST-HYPOTHESIS(Increased-Intracranial-Pressure) in 
the first sentence lies in the analysis of the focus mapping: 

TH(H1--+ F1) --+ PF(F1--+ H2) --+ TH(H2-+ F2). 

Thus, explanation patterns need not be specified in terms of particular subtask 
sequences, but in terms of sequences of loci (H1 to F1 to H2 to F2). The 
number of such combinations that lead to clearer explanations have not been 
fully explored in NEOMYCIN; surely the example shown here will occur in 
many programs. 

The set-mapping view of Fig. 31 has the advantage of showing how the 
diagnostic work of NEOMYCIN gets done, in terms of mapping from findings 
to hypotheses. The figure provides a simple dimensional analysis as well; for 
example, we discover that no subtask maps from sets to sets. Unfortunately, 
this figure is a white lie; it is an abstraction that leaves out the domain rules. 
For example, TEST-HYPOTHESIS does not literally invoke a subtask with a 
finding argument. It invokes APPLYRULES with a list of domain rules as an 
argument. Can a literal description of the subtasks provide additional interest- 
ing information? 

Table 2 shows literal relationships betwen subtask foci. A given subtask 
accepts the first column (indicated by o--) as a focus and calls a subtask with a 
focus indicated by the destination column (indicated by _+).~0 Possibilities that 
are logically already covered by preceding cells are indicated by x. Subtasks 
that map from a list of rules only invoke APPLYRULE!, so this category is 
omitted. Mappings to a list of rules ({R}) are rare, but other missing 
associations are commented in italics. 

lo In the  column headings,  F corresponds  to finding, H to hypothesis ,  R to rule and sets of  these,  
which are the  domain  and range of the subtasks listed on the left. The  table is designed to 
enumera t e  every possible d o m a i n - r a n g e  combinat ion.  
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Several "missing" associations are accomplished indirectly (e.g., FOR- 
WARD-REASON accomplishes {F}--~ {H} indirectly, via the composition of 
PROCESS-FINDING [{F}-+ R] and APPLYRULE! [R--~ {H}]). Other miss- 
ing associations seem logically possible but have not been accounted for in 
NEOMYCIN's  metarules. For example, we could add a metarule to GEN- 
ERATE-QUESTIONS (a set of heuristics for improving an SSM which is too 
incomplete for the program to determine what to do next) by adding a 
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mapping from {F}---> H similar to the DIFFERENTIATE metarule. Detecting 
such gaps is precisely the value of  a dimensional analysis. This analysis also 
provides another perspective for detecting composite subtasks (e.g., ELABO- 
RATE-DATUM has metarules with different destination arguments (both {F} 
and F). Finally, this analysis provides a mathematical basis for relating 
operators from different programs. For example, what is {F} ~ F called in 
MDX? In CADUCEUS? Does ABEL have an operator corresponding to 
{H}--->F? Consider how filling in such a table could focus a workshop 
discussion. 

Finally, it may seem odd that rules are mentioned here at all. Why not 
describe the subtasks in terms of findings and hypotheses alone? The reason is 
that this is a literal description of the argument types of the subtasks. We are 
describing the computation each subtask actually carries out, not what it 
logically (or cumulatively) accomplishes through its subtask invocations. This is 
important because we want to map the subtasks, as computer programs, onto 
the SSM graph. We want to know precisely where the code is for each 
operator. Furthermore, in so far as rules are links in the general domain 
model, subtasks with rule arguments are referring to the general model and its 
reflection in the SSM. From this we realize that there are operators that 
examine and determine the logical applicability of the general model 
(APPLYRULE!),  and not just operators that examine and change the SSM 
directly. 

6.3. Satisfying constraints on SSM form and purpose 

In order to argue about the completeness of a given set of subtasks and 
metarules, we must go beyond consideration of structural changes to the SSM. 
We must consider the purpose of the SSM and redescribe the subtasks 
functionally in terms of how they satisfy the program's overall goals. 

Part of this analysis was provided in Section 3; viewing the SSM as a model 
of some system, we can list the constraints on the form of this model for it to 
be adequate for the task at hand. Specifically, for infectious-disease diagnosis 
and therapy we want to minimize the number of drugs, so we attempt to 
consolidate the diagnosis in terms of a single-disease process (single-fault). We 
can refer to therapeutic actions available to determine whether diagnoses need 
to be more specific in order to select a single action. 

Other constraints follow from the form of the general model. Supporting a 
disease hypothesis requires supporting its ancestors in the disease taxonomy, 
which are essentially frames that collect properties common to each subtype 
(e.g., every disease process under infectious process causes a fever, however 
they may specify the type of fever or conditions that mask or prevent its 
occurrence). It is the structure of the disease taxonomy that leads to the 
particular group, discriminate, explore, refine, and test metarules in 
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(EVIDENCEFOR ?x H) 
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(ASKED B) 
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Fig. 32. Domain model relations corresponding to SSM nodes and links. Findings can be in the 
model, known but not explained, or available but not noticed by the program. 

NEOMYCIN.  Figure 32 summarizes how these constraints are related to the 
nodes and links of the SSM. 

Three  types of nodes are shown: 

• findings/hypotheses that are part of SSM subgraphs (the "mode l" ) ;  
• known abnormal findings that have not been explained (i.e., not linked to 

any process subgraph); and 
• findings in the case record that have not been noticed by the program. 

Only the link between hypothesis Y and finding F is established here; the 
arrows and (ASKED B) indicate unsatisfied constraints. For example, if it can 
be established that F is evidence for H, all the hypotheses will appear in one 
graph, which is desirable. Thus, the propositions shown here are not the 
constraints themselves (e.g., to have one graph), but links found to be missing 
when the constraints are applied to a given SSM. For  example, the constraint 
that all abnormal case data should be discovered by the program might be 
written, 

(VF (AND (KNOWN F) ( A B N O R M A L  F)) 
(ASKED F) ) .  

(ASKED B) represents a particular SSM node that is missing. The figure also 
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shows two propositions that must be satisfied by any "final diagnosis": it must 
be a subgraph root of the SSM (DIFFERENTIAL H) and it must be treatable. 

In the program GUIDON-DEBUG,  these constraints are applied to the final 
SSM to generate a list of missing nodes and links. Heuristics order and 
minimize the number of hypothesized nodes and links. In particular, the 
hypothesis node that is the root of the subgraph containing the largest number 
of abnormal finding nodes is chosen to anchor the analysis. If we call that node 
Hroot, then (EVIDENCEFOR F i Hroot ) links are only generated for known F~ 
that are not in this subgraph. (EVIDENCEFOR ?x H) propositions are also 
generated for any leading hypothesis H that is not directly supported by a 
finding it causes. Table 3 summarizes these constraints and the corresponding 
SSM propositions they detect to be missing. The constraints are expressed in 
terms of gaps or inconsistencies, which in order to be satisfied specify bindings 
for propositions that must also be satisfied. 

Probably the most surprising result is that GUIDON-DEBUG discovers 
findings in the case record (shown as B in the figures) that were not vol- 

Table 3 
Violated SSM constraints and corresponding unsatisfied propositions. 

SSM CONSTRAINT VIOLATION SSM PROPOSITION 
UNSATISFIED 

(AND (KNOWN B) (ASKED B) 
(ABNORMAL B) 
(NOT (REQUESTED B)) 

a known abnormal finding B was not 
requested 
(AND (DIFFERENTIAL '~ ....... (CH'IL'DC)F ~ Y) . . . . . . . . .  

(NOT (TREATABLE Y)) 
a subgraph root Y (one of the leading 
hypotheses) is not a tre, atable diagnosis 
(AND (STRONGLY-BELIEVED H) (DIFFERENTIAL H) 

(NOT (CONSIDERED H)) 
a hypothesis H with certainty greater than 
400 was never put in the SSM 
V$F (KNOWN $F) => (EVIDENCEFOR ?x H) 
(AND (DIFFERENTIAL H) 

(NOT (CAUSED-BY $F H)) 
a subgraph root H is not directly supported 
by any known finding 
(AND (BEST-HYP H) (EVIDENCEFOR F H) 

(KNOWN F) 
(ABNORMAL F) 
(NOT (EXPLAINED F H)) 

the best hypothesis H does not explain a 
known finding F (special case: 
F is explained uniquely by hypothesis H1, 

_._~_ L_.~._.t H) 
VSH (DIFFERENTIAL $H) => (EVIDENCEFOR A ?x) 
(AND (ABNORMAL A) 

(PRESENT A) 
(NOT (EXPLAINED A$H)) 

a known abnormal finding A is not explained 
by any subgraph root H 
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unteered or requested during the consultation. Without this constraint-satisfac- 
tion perspective, we would not have thought to systematically analyze 
NEOMYCIN's diagnoses in this way. Indeed, by our previous perspective, the 
name of the diagnosis at the top of the SSM was all that was printed by 
NEOMYCIN; if this was correct from the expert's perspective, we said that the 
program had the right answer and moved on to the next case. 

The propositions shown in Fig. 32 and Table 3 can be systematically related 
to subtasks that place such nodes or links in the SSM. These relations are 
summarized in Table 4. 

Working backwards from violated constraints to generate a list of unsatisfied 
propositions (Table 3), GUIDON-DEBUG invokes the explanation program 
to determine why the corresponding subtask(s) did not succeed or why it was 
not applied (Table 4). For example, FINDOUT(B) might have been invoked, 
but B might never have been asked because a FINDOUT metarule with a 
different action applied. If FINDOUT(B) was never invoked, then the expla- 
nation program checks metarules that have FINDOUT in their action and 
determines under what conditions binding B would be passed to the action and 
why those conditions did not apply. In general, this can be a huge search 
problem because we are looking for gaps in the domain model. That is, we not 
only want to know why a given metarule failed, but what changes to the 
domain model would have allowed it to succeed with the appropriate bindings. 
Heuristics indicating what domain relations are likely to be wrong or incom- 
plete are especially useful here. Figure 33 illustrates an example of this analysis 
for a case in which NEOMYCIN failed to discover that the patient has a 
cranial nerve dysfunction. 

GUIDON-DEBUG finds that Metarule611 never invoked FINDOUT/ 
CRANERVE because the subtask FIND-RELEVANT-TESTS was never in- 
voked with the focus CRANERVE ($FINDING). The question then becomes, 

Table 4 
SSM propositions and subtasks that satisfy them. 

SSM PROPOSITION UNSATISFIED 
(ASKED B) 

(CHILDOF ?x Y) 

(DIFFERENTIAL H) 

(EVIDENCEFOR .9:(H) 

(EVIDENCEFOR F H) 

(EVIDENCEFOR A ?x) 

SUBTASK{FOCUS) FAILED 
FINDOUT(B) 

REFINE-NODE(Y) 

PROCESS -HYPOTHESIS(H) 

TEST-HYPOTHESIS(H) 
PROCES S-t ,"YPOTHESIS (H) 
TEST-HYPOTHESIS(H) 
PROCESS-FINDING(F) 
PROCESS-FINDING(H) .... 
PROCESS-HNDING(A) 
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ASK-FOR-H~RD-DATA 

Task: FIND-RELEVANT-TESTS 

If: (AND (SOURCEOF $FINDING $TEST) 
(NOT (DONTASKP CNTXT $TEST))) 

Then: (DO-ALL (TASK FINDOUT SFINDING) 
(TASK G~F-TEST-AND-RESULTS $FINDING) 

(TASK FORWAI~REASON)) 

Fig. 33. GUIDON-DEBUG attempting to explain "Why wasn't CRANERVE asked during the 
consultation?" 

"Why wasn't FIND-RELEVANT-TESTS(CRANERVE) invoked?" Looking 
at the history, the program finds that Metarule609 was tried with $HYP bound 
to INCREASED-INTRACRANIAL-PRESSURE but the first clause of defini- 
tional Rule9434 could not be satisfied; in particular, (EVIDENCEFOR? 
CRANERVE INCREASED-INTRACRANIAL-PRESSURE $RULE $CF) is 
unsatisfiable. Examining Rule9434 further, the program discovers that 
(HARD-DATUM? CRANERVE)  will never be true (because CRANERVE is 
circumstantial evidence, not a direct observation of internal workings of the 
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CNS). Generalizing, the program says, "Metarule609 will always fail (to bind 
SF to CRANERVE)  (independent of subtask focus) because (HARD- 
DATUM? CRANERVE) cannot be satisfied." There are several possibilities: 
CRANERVE is hard-data, but this is not represented correctly in the domain 
model. Or perhaps Metarule609/Rule9434 should be modified. After noting 
these, GUIDON-DEBUG goes on to find other reasons why FINDOUT/  
CRANERVE was not invoked. 

Observe that this method of generating explanations is much more general 
than the approach used in MYCIN, where every type of question requires a 
specialized function (e.g., "Why not conclude X?", "Why ask F?"). In 
G U I D O N - D E B U G  all inquiries are mapped onto one question and its comple- 
ment: "Why (not) do subtask X?" Possible subtasks include ask, conclude, 
hypothesize, test, refine, etc. In effect, the design of MYCIN's inference 
engine was redundantly represented in the explanation system. Because all 
backward-chaining in NEOMYCIN is deliberately controlled, all questions can 
be tracked back to metarule actions that apply rules and ask for case 
• • 1 !  mformatlon. Furthermore, explanations are in terms of inference subtasks 
(e.g., inquiring about a test which is the source of hard data relevant to a 
hypothesis), not just in terms of specific domain rules. However, we found in 
our investigation of strategic explanations that the specific domain rule, 
stripped of all its procedural and screening clauses required in MYCIN, often 
provides a cogent explanation (see the domain-specific hints in Fig. 12). 

In summary, GUIDON-DEBUG detects problem solving failures and tracks 
them back to gaps in domain knowledge. The approach is similar to that used 
in apprenticeship and explanation-based learning [51, 66, 83]. However, there 
are some basic differences: 

• Goal regression involves directly interpreting the inference procedure itself, 
rather than a representation redundantly encoded within the learning 
program. 

• The operationality criterion is described in terms of  the form of an adequate 
solution--constraints a good diagnostic model should satisfy--rather than 
in terms of computational efficiency. Thus, the SSM provides a coherent 
way of specifying what are sometimes called "operationality criteria", 
means for determining the usefulness of new concepts. (Much research in 
explanation-based learning focuses on deriving a relation that is implicit in 
the domain model; the goal of learning is to make the program able to 
solve a problem that was previously too time consuming.) 

~ The interpretation of domain and metarules is still implicit in code. In particular the way in 
which APPLYRULE!  leads to invoking F INDOUT and C O N C L U D E  is implicit because this is 
done by the EMYCIN interpreter when domain rules are applied. But any task that leads to 
applying rules goes through A P P L Y R U L E k  so this logic need only be coded once in the 
explanation program and is therefore tolerable. 
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• Learning is based on explaining problem solving failures, as detected by the 
program itself, not in explaining why a supplied example is correct. That 
is, the method involves determining what needs to be learned in order to 
more adequately solve problems, not just to increase problem solving 
speed. Thus, this method bridges a gap between explanation-based learn- 
ing and cognitive models of failure-driven learning [80]. 

• The problem solving procedure uses a schema model of  the world (the 
domain relations) which constitutes an incomplete theory, in contrast with 
the axiomatic theories of domains like calculus. 

Finally, Fig. 32 and Tables 3 and 4 suggest that we might generate the 
subtasks and metarules from a list of constraints they must satisfy. For many 
subtasks, the relation is obvious. For example, every metarule for TEST- 
HYPOTHESIS has a proposition of the form 

(EVIDENCEFOR $FINDING H) 

in its premise, where H is the focus of the subtask; the only reason there are 
multiple metarules is to order the domain rules passed on to the APPLY- 
RULE? subtask. Although we have not had reason to do this, inspection of 
other subtasks indicates that the metarules might be generated from the 
domain relations and preferential constraints (e.g., test before refining) in the 
same manner code is generated in XPLAIN. 

Our analysis shows that a syntactic description of the form of an SSM 
provides a very powerful means for building knowledge acquisition and 
explanation programs, and possibly deriving the inference procedure itself. 
However, it is important to realize that not all inference procedure constraints 
reduce to structural properties of the general model, the SSM, or the relation 
between the SSM and action plans. Other constraints relate to the environment 
in which problem solving itself will occur. For example, questions are general- 
ized by FINDOUT in order to shorten the duration of the consultation; if data 
were available online this metarule might be unnecessary. Furthermore, the 
pruning effect of asking about surgery first, for example, relies on the fact that 
most patients have not undergone surgery. If most patients in the population 
being diagnosed had neurosurgery, we would actually save a question (about 
surgery) by being specific. 

This is an important result: The metarules are written with respect to a 
particular case population. Probabilistic assumptions about the prevalence of 
findings are implicitly factored into the subsumption relations. To relate 
subtasks and metarules from different programs, we will need to make explicit 
these environmental assumptions in the domain model and refine the metarules 
to take environmental relations into account. Specifically, for the program to 
be reusable in different environments (and not just applied to different cases) 
we need to distinguish between processes that all systems being diagnosed 
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share (commonalities in the human body), environmental processes that affect 
the case population, and processes in the immediate problem solving environ- 
ment that affect the inference process itself (e.g., urgency, availability of data). 
Again, the process-modeling perspective provides a useful framework for 
describing the generality of the knowledge base, its components, and how it 
might fail. 

We should not underestimate the role that social considerations play in the 
definition of an appropriate inference procedure. In particular, it is now 
obvious that teaching a student about medical diagnosis involves teaching not 
only the disease knowledge and diagnostic process, but relating these to the 
environment in which problem solving occurs. In NEOMYCIN, we have 
viewed reasoning as essentially something that goes on in the head, omitting 
the social perspective that makes everything in the knowledge base reasonable 
and appropriate. In short, justification of knowledge should not be viewed 
narrowly in terms of causal relations, but also in terms of the purpose of the 
model and the circumstances under which it will be applied. Because social 
considerations are involved, there is no definitive, optimal design for the 
subtasks and metarules. The adequacy of a given set of metarules cannot be 
proved from objective properties of structure-function models or causality. The 
metarules embody social values and these will vary depending on the social 
circumstances. We can generate the primitive operators from mathematical 
properties of model graphs, but preference relations for applying primitive 
operators will depend on assumptions about the world. 

6.4. Does N E O M Y C I N  understand what the subtasks mean? 

Social and environmental considerations aside, do NEOMYCIN's metarules 
constitute a solution to our original problem of representing strategic knowl- 
edge? The question arises when we recall our original criticism of MYCIN's 
rules: clause ordering implicitly coded a top-down refinement strategy. Now we 
have a collection of strategy words like "explore and refine" and 
"differentiate". But still we use words like "look up" and "depth-first" to 
describe NEOMYCIN's behavior, and these words do not appear anywhere in 
the program. Have we actually represented the "look up before you look 
down" strategy? What is the difference between the metarules for EXPLORE- 
AND-REFINE and a definition of what the subtask name means? 

To begin, notice that the definitions of procedural subtasks, such as ESTAB- 
LISH-HYPOTHESIS-SPACE (EHS), cannot be equated with compositions of 
primitive subtasks. Descriptions such as "top-down refinement" concern how 

reasoning will appear to an observer; they are at a different level than the 
primitive operations that modify the SSM. Procedural concepts describe how 
the program's behavior will appear over time as it interprets a domain model 
with a certain global structure, in a particular problem solving environment ("it 



Model construction operators 69 

looks up before it looks down"). Such concepts cannot be replaced by local, 
moment-by-moment operations (such as TEST-HYPOTHESIS(x), REFINE- 
HYPOTHESIS(y)). Of course, this does not mean that we cannot control the 
program in a way to produce behavior that looks this way; for this is obviously 
what the EHS metarules do. 

The concepts used for describing what a subtask like EHS does are inherent- 
ly abstractions of a sequence of program behaviors. If you look at a sequence of 
data requests, a sequence of hypotheses tested, a sequence of links put in the 
SSM, etc., you will find a pattern that describes what repeated, regular calls to 
such subprocedures are accomplishing: They are looking up, they are doing 
top-down refinement, they are pruning unnecessary questions. Such accounts 
are not reducible to internal structures, states, or mechanisms. Top-down 
refinement is not captured by any particular set of subprocedures statically 
described, but is a description of the pattern of changes made to the SSM, an 
abstraction taking the frequency and relations between sequences of subtasks 
into account. 

The relationship between a historical account and the inference mechanism 
does not appear to be intuitive. The main idea is that strategic descriptions 
account for patterns in behavior by naming and grammatically relating them. In 
essence, NEOMYCIN's abstract subtasks and metarules constitute a grammar. 
This is precisely how the subtasks are used in ODYSSEUS for explaining a 
student's sequence of patient data requests (each specific request can be viewed 
as a word; the whole problem solving session is composed of phrases that may 
or may not be related at the level of the most abstract subtasks). 

If we do not understand this relation between an observer's description of 
historical trends and the mechanism of the program, we might search for 
formalisms that are not possible or have a misunderstanding about the nature 
of the formalisms we design. For example, we described GUIDON in terms of 
strategic abstractions such as "review frequently", and "opportunistically 
introduce new material". We say that such terms are "operationalized" [68] 
when we implement a program with such properties. However, we do not find 
the words "review" or "opportunistic" in the discourse procedures themselves. 
Concepts like "review" are temporal abstractions of sequences of program 
behavior. Reviewing is something we can say the program is doing at a 
particular time, but that is just relative to what it did before. A single 
procedure could be used to present a domain rule the first time it is en- 
countered (e.g., as a quiz) and to present it again later, as a "review". Again, 
historical accounts characterize structural and temporal patterns in surface 
behavior; they need not necessarily correspond to mechanisms that invoke 
them. 

Is this a shortcoming in our procedural languages? It is if we want ODYS- 
SEUS to be able to reflect on a student's or expert's behavior and notice new 
patterns not captured by the current set of subtasks and metarules. The blocks 
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world provides an example of how difficult this might be. The strategy of 
stacking blocks from the bottom up might be encoded by the rule: 

IF (AND (CANDIDATE-GOAL (ON X Y)) 
(CANDIDATE-GOAL (ON Y Z))) 

THEN (PREFER-GOAL (ON Y Z) OVER (ON X Y)). 

Simply applying this rule multiple times will result in stacking blocks bottom 
up. But where are the concepts "bottom", "stack", or "bottom-up"? They 
need not be used in the mechanism that produces the desired behavior. In 
order for an agent that observes the program (perhaps the program itself) to 
say that "the blocks are being stacked bottom-up" (and understand what this 
means when we say it), the agent must track the spatial relations between blocks 
and the temporal relations between stacking operations. The words "bottom 
up"-- jus t  like the words "look up" or "group"--may be tied to rules like this, 
just as subtask names label the metarules, but they stand for concepts that are 
not represented. 

Turned around, a program that can write the blocks stacking rule (or 
NEOMYCIN's procedural subtasks) must be able to represent and abstract 
patterns from changes in the world or SSM over time. Similarly, in order to 
convince yourself that NEOMYCIN's metarules for EXPLORE-AND- 
REFINE accomplish breadth-first search, you cannot simply look at the 
metarules, you must envision the effects of running the metarules over time. 
Specifically, writing a program that can acquire subtasks and metarules like 
those in NEOMYCIN- -by  watching a person or a program solving similar 
problems--requires moving from a description of how the program will appear 
to an observer to internal operations whose recurrent execution will produce 
these behavioral effects. 

Indeed, this analysis leads us to realize that most automatic programming 
systems are not reasoning about "top-down refinement" and similar concepts 
in the way required for recognizing these patterns; they merely generate code 
from templates associated with undefined labels like TOP-DOWN-REFINE- 
MENT or EXPLORE-AND-REFINE.  We see this for example in Mostow's 
operationalization of heuristics for playing Hearts. "Avoid taking points" is 
represented by templates like 

AVOID = (LAMBDA (E S) (ACHIEVE (NOT (DURING S E)))) 

which Mostow translates as "avoid an event throughout a scenario means try 
not to let it occur during the scenario". But "try not" suggests both a 
preference and a frequency. In recognizing this pattern, we will admit that 
some number of points is acceptable (though perhaps demonstrably non- 
optimal). After some interval, we will say that the player is not trying. 
Recognizing the pattern of avoiding Hearts--being able to use the concepts the 
way Mostow does while watching other players--requires being able to 
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abstract from non-optimal behavior over time, a capability that is not built into 
Mostow's generation routines. In short, the Heart's operationalization program 
does not have the same understanding of Heart's playing that a person has, just 
as NEOMYCIN does not have the same understanding of top-down refinement 
that a person has. This distinction between representations required for 
generation and recognition is crucial for any knowledge acquisition or student 
modeling system that does not receive a well-formed specification, but must 
abstract it from a sequence of observed behaviors. 

But the problem is even more difficult than this if a program is not merely to 
recognize a grammatical performance, but must learn the grammar itself. 
Besides characterizing temporal properties in sequences of system behavior, a 
strategic explanation must also tease apart the interactions between the 
inference procedure, the domain model, and the environment. For example, 
suppose that NEOMYCIN is observed to ask two follow-up questions every 
time it receives a new finding (e.g., "What is the headache's duration?, What is 
its location?"). We cannot tell from the program's outward behavior whether 
the CLARIFY-FINDING metarules are deliberately generating two questions 
or whether the domain model always contains two propositions of the form 
(FOLLOW-UP-QUESTION F SY), for every finding F. This example illus- 
trates that strategic explanations are characterizing the product of the inference 
procedure's interaction with a domain model. A given behavior sequence can 
be abstracted in any number of domain model/inference procedure combina- 
tions. A similar example might show that the program always generalizes its 
inquiries when the user starts the consultation by supplying volunteered 
information (which perhaps the program interprets to be a sign of the user's 
urgency). But if the environment is always the same, we will not discover that 
generalizing inquiries is conditional in this way. 

In summary, the meaning of subtask names constitutes a knowledge-level 
specification of NEOMYCIN's reasoning, derived from patterns we observed 
in physician behavior. The metarules "operationalize" strategies, but do not 
define them. Furthermore, we cannot objectively prove that an inference 
procedure is correct because every strategic theory is relative to the frame of 
reference of an observer. These conclusions require a reevaluation of how 
learning by being told and learning by watching are related. In particular, we 
must consider the shift in representations required for moment-by-moment 
action versus reflecting on behavior over time (abstracting behavior 
sequences). 

To put this to immediate application, we might focus on automating failure 
analysis in programs like NEOMYCIN or the Heart's player, given the benefit 
of a representation with distinct domain model and inference procedure 
components. For example, to test the generality of the inference procedure, we 
could vary the case population, the domain model, and the problem solving 
environment (e.g., can avoiding points be achieved better with knowledge of 
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opponent strategies?). This suggests that we should attempt to record our 
assumptions about case population, model content, and environment as bound- 
ary conditions against which the program could verify the appropriateness of its 
inference procedure in specific cases, as well as when it is reapplied by a 
knowledge acquisition tool to new domains. The process-model perspective 
suggests that boundary testing be organized by a matrix of systems, modeling 
methods, and communication environments. 

7. Types of process representations 

In this section we are concerned with the recurrent types of networks used 
for modeling systems. In contrast with the usual research emphasis on the 
details of causal modeling or inheritance in hierarchies, we want to focus here 
on recurrent, macrostructures of  relational networks. A high-level perspective 
reveals that there are just a few types of relational network representations for 
processes, such as classification hierarchies, state-transition networks, and 
functional composition hierarchies. This observation provides the license for 
defining AI programming in terms of qualitative modeling. A typology of 
process representations also provides a direct basis for teaching knowledge 
engineering techniques. This perspective has been generally ignored, partly 
because it is so obvious and partly because we are immersed in the details of 
specific representation techniques. 

We have seen that inference procedures are expressed in terms of domain 
relations, by which nodes and links are placed in the SSM. The generality of 
inference procedures therefore depends on the generality of the relations we 
use for specifying the domain model and the SSM. Certainly subtype and 
causal relations are basic. What other generalizations can be made about how 
hierarchies and causal networks are used to represent processes in expert 
systems? 

7.1. Types of  hierarchies used for modeling processes 

In NEOMYCIN, disease processes are represented by a subtype hierarchy 
(Fig. 14). Each node is intended to be a description of the complete system 
being diagnosed. For example, ACUTE-BACTERIAL-MENINGITIS and 
INFECTIOUS-PROCESS can both be used to describe a process occurring in 
the CNS; the first supplies more details about the temporal, spatial, and causal 
characteristics of the process (i.e., it is an infectious process that has been 
occurring for a relatively short time, located in the meninges of the brain, and 
bacterial agents are producing structural changes there). Each node is essential- 
ly an encapsulation of a historical process, something that began in the past 
and is still affecting the patient. That is, each process concept in the hierarchy 
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is essentially a causal story (e.g., bacterial infectious processes begin with 
bacteria entering the patient's body and moving to some location where they 
proliferate because normal control by white blood cells is suppressed). Figure 
34 shows that NEOMYCIN's disease taxomony can be viewed as just one kind 
of process hierarchy, termed an interactive-historical abnormal process hierar- 
chy. An abnormal process hierarchy can also model the stages in a process, as 
in CASTER, in which top-level nodes correspond to stages in the sand casting 
process. NEOMYCIN's diagnostic inference procedure is represented by a 
compositional hierarchy of functions, often called a procedural net [79]. In 
BUGGY [14] inference processes are represented by a network of mutually 
exclusive variations of composed functions; thus functional composition can be 
broken down further. 

An additional classification could be provided for types of transitional 
networks (e.g., causal networks [10] and discourse state networks [27]). The 
distinction between classification and simulation models can also be related to 
the "bug library" versus "generative" distinction in student modeling programs 
[251. 

The point of this diagram is not to show a complete classification of existing 
methods. Rather it reveals the kind of organization that is now possible and 
how this perspective is fruitful for relating representations used in AI pro- 

Types of Hierarchical Relational Nets 

Subtype Compositional 

Process~tmdure Stru~ura~un~ional 

/ 
Abnormal 

C h r o n ~ o r i c a l  Processes 

(stage f a i l u r e S p ~  v 
Devalo e process 
(Congential; or Environment (Psychogenic; (Infection 

mis-assembly) (toxicity, adaptation & Cancer) 
trauma, failure) 

heat-stress) 

Fig. 34. Types of hierarchical networks used for representing processes. 
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grams. For example, the distinction between an abnormal process taxonomy 
organized into chronological stages of a normally-operating system (as in 
CASTER) and a hierarchy organized according to the kinds of historical 
interactions it can have with its environment (as in NEOMYCIN) is the kind of 
macrostructure--well-removed from implementation issues involving rules, 
OOP, etc.--that serves to orient a knowledge engineer early in the design 
phase for a new knowledge base. We can take existing programs and classify 
them in this way, according to the types of hierarchies in the domain model. 
We can build a knowledge acquisition tool around this classification, using it to 
index a library of expert system examples, representational templates, and 
inference procedures. 

Indeed, this perspective provides the solution to a riddle that plagued the 
initial presentation of heuristic classification [24]. If NEOMYCIN is supposed 
to be selecting solutions from a pre-enumerated list, how can we describe its 
inference procedure in terms of constructing something? It is now clear that 
every diagnostic program must construct a model, in the sense of finding 
evidence that a process is occurring, linking findings to new hypotheses, and 
contrasting alternative explanations (formulated as competing subgraphs). In 
the simplest programs this might involve just a weighting scheme by which a 
list of diagnoses are matched against evidence and rank ordered. However, 
even this process involves constructing a list of diagnoses and ordering them--  
a primitive kind of SSM, but constructed from the general model and copied 
over into a situation-specific record nevertheless. 

To understand the difference between programs like NEOMYCIN and 
ABEL we must look at what nodes in the SSM can represent. In a program 
using heuristic classification exclusively, nodes in some sense represent the 
entire system being modeled; they are processes in NEOMYCIN, system 
names in a PC advisor, etc. In ABEL, nodes stand for states, structures, or 
subprocesses and need to be assembled into system descriptions in order for 
there to be a model of a process (a story recounting how the current state of 
affairs began and how the manifestations were produced). In essence, ABEL is 
doing more than selecting, supporting, comparing, and refining off-the-shelf 
process descriptions; it must assemble a new process design. NEOMYCIN and 
CASNET use a hybrid approach, which does not involve designing new system 
models, termed causal classification [24]. Internal states and causal relations 
between substances are considered, but only to implicate the predefined 
processes in the disease hierarchy. That is, system models are selected from 
named descriptions (the disease hierarchy). In contrast, ABEL assembles a 
network of interactions on multiple levels of detail. Taken as a whole, the 
network ABEL constructs constitutes a new system description (albeit made 
out of predefined components). 

This is a substantial clarification of a distinction that proves difficult without 
the process-modeling perspective. In particular, we need to look at what SSM 
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nodes stand for and how they are related in order to distinguish different 
modeling methods. This just underscores the obvious: In describing expert 
systems we are describing methods for modeling systems using relational 
networks. 

7.2. The structure of blackboards 

In our analysis of HASP, we observed that the relations between SSM nodes 
is not explicit. Figure 35 shows what such an analysis looks like, using 
NEOMYCIN's  SSM as an example (refer to Fig. 15). Disease taxonomy 
relations appear on the left branch as subtype links between abnormal pro- 
cesses. Structural descriptions, such as Intracranial-mass-lesion may appear as 
well, with their subtypes above them (e.g., Intracranial-tumor). These abnor- 
mal structures are linked by bold arrows to the abnormal processes that they 
cause (e.g., Increased-intracranial-pressure). There is a simple characteristic 

Explanation: 
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Support: 
(Effects & 
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processes and structural effects 
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/Oeno,e  1 
/ specialization / / or partof / 

~ d e n o t e s  | 
~ cause  J 

abnormal structure 

Fig. 35. Process-model relational structure of NEOMYCIN's SSM. 
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form (if the domain model is so organized) of abnormal structure causing 
abnormal process, etc. Again, it did not occur to us to describe the SSM in this 
way until we realized that as a model of a system being diagnosed, it must be 
relating structural and process descriptions. It is not just an "inference net" or a 
"dependency graph". For the program to be building up a coherent model, 
there must be systematic causal, temporal, and spatial relations between its 
inferences. 

Figure 35 also makes explicit (and justifies) the pattern we claimed before, 
by which higher nodes in the SSM explain lower nodes: Higher nodes are the 
causes and subtypes of lower nodes-- they specify what it is happening in more 
detail. In contrast, lower nodes support higher nodes--they constitute evi- 
dence for effects and substance/process categories. This is not just a "causal 
network". It is an oriented graph with a form that can be interpreted like a 
proof. 

7.3. The process classification~assembly spectrum 

The idea of "causal classification" used in NEOMYCIN and CASNET 
suggests that we should not look for black and white distinctions between 
process-modeling methods. Rather, it would be fruitful to align different 
programs on a spectrum. Figure 36 summarizes the programs we have been 
studying. Protean [45] and DART [37] are added as examples of programs that 
design new system descriptions out of primitive structure-function relations. 
ABEL is viewed as less general because it does not have specific representa- 
tions for spatial and temporal modeling; however, in some respects its capabili- 
ty to reason about quantities of substances exceeds the other programs. 
CADUCEUS lacks the ability to summarize or decompose quantitative effects, 
but its ability to integrate orthogonal process hierarchies places it beyond 
NEOMYCIN. 

Figure 36 reminds us how far this analysis has taken us from simplistic views 
of "shallow" versus "deep" reasoning. As stated in the introduction of this 
paper, expert systems are more appropriately and fruitfully described in terms 
of how relational networks are used for modeling processes. Hierarchies can be 
used to represent abnormal processes (e.g., diseases in NEOMYCIN), func- 
tional composition, etc. Network nodes represent internal states, structures, 
functions, or processes. Some programs have internal descriptions of entire 
system models, others assemble components into new system models. This 
analysis leads us to say that all expert systems do qualitative reasoning. 

Furthermore, the same analysis used to distinguish between historical trends 
and mechanisms of the inference procedure (Section 6.4) shows us that 
abnormal process classifications cannot be replaced by or reduced to structure- 
function simulation models. For example, many disease descriptions constitute 
the product o f  recurrent interactions between the system being diagnosed and its 
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Selecting single 
process/system 

description 
(MYCIN) 

Classification 

Netwc~rk 
Representation 

Simple hierarchy 
or linear paths 
in causal net 

Construction 

Combining Orthogonal 
processes hierarchies and 

without interactive causal networks 
analysis 

(Caduceus) 

' r  

Combining Causal networks 
interacting processes on multiple 

that cancel or add levels of detail 
on detailed level 

(ABEL) 

Designing Structure- 
a new process/system function 

out of components simulation 
in space and time (one or multi-level) 

(HASP, Protean, DART) 

Fig. 36. Spectrum of methods for modeling processes. 

environment.  The structural damage a physician sees in tennis elbow could not 
be predicted from a blueprint of the human body; indeed, the patterns of 
abnormal structures and processes that will occur change with social habits and 
are thus inevitably open. Not only are classification models not an inferior, lazy 
way of modeling, they are necessary and irreplaceable (see [29] for further 
discussion). Disease taxonomies are not just "knowledge hierarchies" or 
"frames" or "concept classes". Again, until we look and study how processes 
are modeled and the different kinds of processes that can occur in different 
domains, we cannot adequately make claims about the generality or superiority 
of modeling methods. 

In summary, the levels we have found to be useful for studying qualitative 
modeling are: 

(1) env i ronmen t - - ta sk  constraints and assumptions: 
• how the model will be used (form or level of detail required for taking 

action), 
• case population and world data assumptions (biases), 
• interactional data and communication constraints (aspects of the 

inference process); 
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(2) qualitative calculus--system-model representation: 
• conceptual primitives (a typed-set manipulation view of classes, in- 

stances, attributes), 
• relational networks (a graph construction view of hierarchies, transi- 

tion networks), 
• process models (a modeling view of causal, temporal, spatial, and 

subtype descriptions of states, substances, structures, and processes); 
(3) implementation: programming language: (e.g., frames, rules, objects, 

knowledge sources, agenda, metarules). 

Recalling Fig. 29, we are emphasizing once again that comparisons of 
modeling tools must be placed in the context of use (the environment), which 
determines model content and constrains the inference process. 

Table 5 contrasts this with Brachman's analysis [6]. His linguistic, concep- 
tual, epistemological, and logical levels provide one way of describing a quali- 
tative calculus. Our system-model perspective constrains the linguistic and 
conceptual levels by specifying what concepts and expressions represent, 
including context-of-use concerns. Furthermore, we view networks of atoms 
and pointers--more generally, graphs--as more abstract than programming 
implementations in particular knowledge representation languages, and give 
them epistemological status. That is, useful epistemological distinctions include 
not only relations, but macrostructures constructed by the systematic replication 

Table 5 
Restatement of system-model 
networks". 

perspective in terms of Brachman's [6] "levels of semantic 

Level Brachman [6] System-model distinctions 

Linguistic Arbitrary concepts, 
words, expressions. 

Conceptual 

Epistemological 

Logical 

Implementational 

Semantic or 
conceptual relations 
(cases), primitive 
objects and actions. 

Concept types, 
conceptual subpieces, 
inheritance and 
structuring relations. 

Propositions, predicates, 
logical operators. 

Networks of atoms and 
pointers. 

A model of some system 
for some purpose, in 
some environment. 

Specifically, causal, 
spatial, temporal, etc. 
relations between 
structures, states, 
processes, etc. 

Same, except includes 
types of relational 
networks. 

Same, except includes 
set and graph operators 

More specifically, the 
programming languages 
that people use 
(e.g., EMYCIN). 
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of relations (e.g., hierarchies and transition networks). These macrostructures 
are manifested at the conceptual level as recurring conceptual networks (e.g., 
types of abnormal process hierarchies). We view the logical level as including 
set and graph operators, following Sowa's approach of integrating proposition- 
al, set, and graph notations. Finally, we describe the implementation level in 
terms of programming languages (specifically relegating "rules" versus 
"frames" arguments to this level). 

8. Task-specific knowledge acquisition tools 

The system-modeling perspective provides a good basis for developing 
knowledge acquisition tools. To illustrate this, we will consider examples from 
some leading programs, showing how these programs can be generalized and 
more easily related to each other if we express strategic knowledge abstractly. 
Restating the reported methods should not be viewed as criticism, so much as 
building on previous work, in the same way that NEOMYCIN would not have 
existed without TEIRESIAS. Furthermore, researchers emphasize different 
aspects of systems modeling, exemplified by the trivial treatment of causal 
representations in NEOMYCIN. 

We will show how domain principles in XPLAIN [87] contain implicit 
system-modeling inference rules. Analysis of KNACK/WRINGER [52, 53] 
will show how object instantiation is handled by abstract control rules (and how 
much of this was handled by EMYCIN's inference engine). Finally, we will 
relate Generic Tasks [15-17] and role-limiting methods [63] to the terminology 
used in this paper, and examine the problem of defining a useful level of 
abstraction. 

8.1. XPLAIN: abstracting domain principles 

Like NEOMYCIN, XPLAIN was developed to improve the explanation 
program of a medical program. The work complements NEOMYCIN by 
emphasizing how procedures can be written by an automatic-programming 
system from a domain model and set of prototype methods. Figure 37 gives a 
well-known example from the program. 

The prototype method does not fit the definition of abstract control knowl- 
edge used in NEOMYCIN because it mentions the term "drug dose". "Find- 
ing" might refer to any domain from car diagnosis to legal reasoning. How- 
ever, the domain suggested by "drug dose" is much narrower. While the 
system being treated is not specified (it could be a sick house plant), practically 
speaking this prototype method will only be useful for medical diagnosis. This 
example illustrates that there is no sharp line between "domain-specific" and 
"abstract"; it is just a judgement that we make based on the systems we know 
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GOAL: Anticipate Drug Toxicity 

DOMAIN RATIONALE: 

Finding I l Increased Drug I 

Dangerous Deviation I 

PROTOTYPE METHOD: 
If the Finding exists 
then: reduce the drug dose 
else: maintain the drug dose 

Fig. 37. Example of a domain principle from XPLAIN. 

about. The final part of this section will consider principles for selecting a 
useful level of abstraction. 

A second observation is that the domain rationale does not express the 
process-model relations between its terms. Figure 38 illustrates one way of 
formulating this domain principle in a NEOMYCIN-like metarule. Rein- 
stantiating this rule in terms of our example, drug dosage is a quantitatively- 
variable action that causes an undesirable effect (a dangerous deviation) in the 
system being treated, proportional to the amount of the drug. In addition, 
another cause ($FINDING) of this effect is currently present. Therefore, to 
avoid increasing this undesirable effect further, the amount of the drug should 
be reduced. 

Obviously, there are many other ways of writing this rule. The example is 
intended to illustrate how abstraction can bring out process-modeling relations 
(e.g., proportional cause) that are implicit in the domain rationale and 
prototype method. Although it is not worked out here in detail, notice also 
how the metarule is written in terms of modifying an SSM of a system- 
modification plan, namely reducing the amount of the quantitatively-variable 

TASK: ANTICIPATE-PLAN-SIDE-EFFECT 
FOCUS: $PLAN-ACTION 

IF: (AND (QUANTITATIVELY-VARIABLE $PLAN-ACTION) 
(CAUSES $PLAN-ACTION $EFFECT) 
(PROPORTIONAL-CAUSE SPLAN-ACTION $EFFECT) 
(NOT (DESIRABLE $EFFECT)) 
(CAUSES SFINDING SEFFECT) 
(SAME CNTXT $FINDING)) 

THEN: (TASK REDUCE-AMOUNT $PLAN-ACTION) 

Fig. 38. Example of a domain principle from XPLAIN. 
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action (called "therapy" in medicine). Moving from the domain principle of 
Fig. 37 to the abstract metarule of Fig. 38 exemplifies the abstraction process of 
dropping domain-specific terms and expressing the inference procedure in 
terms of a process model and some action that depends upon it. A knowledge 
engineer with this vocabulary will have a great advantage in analyzing other 
problems. With a metarule like this in the toolkit (contrasted with the domain 
principle in Fig. 37), the next program should be much easier to build. In 
particular, the idea of a quantitatively-variable system-control action is very 
basic to system modeling and should be taught as part of knowledge engineer- 
ing methodology. 

8.2. KNACK: distinguishing system models and object instantiation 

KNACK is a knowledge acquisition program for a class of expert systems 
that generate reports. KNACK acquires an adequate domain model by inter- 
acting with the knowledge engineer to generalize sample reports. Figure 39 
illustrates this, revealing how a knowledge acquisition program that develops a 
domain model from cases is essentially the inverse of the inference procedure, 
which generates an SSM (e.g., a sample report) from a general model (recall 
Fig. 18). Applying our modeling orientation, we can describe KNACK's task 
in terms of operators for completing a sample report, abstracting it, and 
checking the generalization for completeness and consistency. Other operators, 
not shown here, complete and abstract the domain model that constitutes the 
subject material of the report. Once again, a listing of these operators would 
be of value for a wide variety of knowledge acquisition programs that reason 
about cases. For example, how do KNACK's operators relate to those used in 
apprenticeship learning? Research is not reported this way, therefore it is 
difficult to tell from the literature. 

Each expert system developed by KNACK is called a WRINGER. Of the 
seven WRINGERs constructed to date, we will consider here the three 
WRINGERs that generate environmental reports. Figure 40 shows that there 
are actually two general domain models in each WRINGER, a model of an 
electromechanical system and a model of a report. This is not untypical. Recall 

Sample abstraction , .  Generalized 
Report ( G @  operators Report 

completion completeness 
operators & consistency 

operators 

Fig. 39. K N A C K  constructs  a general  model  of  a report  f rom a situation-specific model.  
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ELECTROMECHANICAL- 
ENVIRONMENTAL SYSTEM 

-'~ TEXT (REPORT) 

Fig. 40. A WRINGER contains models of two kinds of systems. 

that SACON has general models of some physical structure (e.g., an airplane 
wing) and of computer programs (i.e., possible configurations of structural 
analysis programs) [24]. GRUNDY has general models of people and of books. 
MYCIN has general models of patients, diseases, and therapies. Indeed, every 
engineering problem (broadly including medicine) will involve relating models 
of different systems, in which the environment or human actions constitute 
systems (as shown by Fig. 21). Of particular interest here is that a report is a 
static system; it has no process characteristics. Nevertheless, a report has 
structure, and in KNACK types of texts are modeled by a taxonomy of chapter 
and section relations, a qualitative model. 

Klinker et al. [53] give a good description of the electromechanical-environ- 
mental system in system-modeling terms. 

A (X) system performs a set of functions and 
comprises a set of interrelated components. 

An environment produces a set of conditions under 
which a {X) system must function, each of which may 
affect system components via a set of media. 

The effect of a condition on system components may be 
modified by some provisions, each of which c a n . . ,  be 
affected by a set of conditions via a set of media. 

With domain-specific terms replaced by variables (e.g., conditions, media), it 
is clear that the authors intend to abstract their domain model beyond the 
problem at hand. The result is a very suggestive, general perspective that 
improves our understanding of the nature of the system being modeled, in 
terms of what is known about its parts, functions, and its operation in some 
environment. This is precisely the kind of coherent, system-model perspective 
we found missing in XPLAIN, which of course predates this research by almost 
a decade. 

KNACK generates domain-specific control rules for specific WRINGER 
expert systems (Fig. 41), which can be viewed as instantiations of its underlying 
abstract systems model (like the relationship between PROTEGE and OPAL 
[70]). Because the abstract systems model is implicit in KNACK's OPS5 
rules-for-writing-rules and its graphics editor for acquiring a domain model, the 
capability shown by NEOMYCIN for explanation, student modeling, strategic 
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IF 

THEN 

the goal is to determine information, and 
the current report part is chapter 1, section 2 

create the subgoal to determine the NAME 
of a NUCLEAR ENVIRONMENT, and 

create the subgoal to determine the NAME 
of an ENCLOSURE, and 

create the subgoal to determine the NAME 
of an APERTURE, and 

create the subgoal to determine the 
MATERIAL of an ENCLOSURE, and 

create the subgoal to determine the 
THICKNESS of an ENCLOSURE. 

Fig. 41. Domain-dependent strategy in a WRINGER expert system, generated by KNACK. 

tutoring, and explanation-based learning cannot be realized as easily. There is 
nothing inherently wrong with compiling an abstract inference procedure into 
domain-specific rules (just as MYCIN's rules might be recovered by compiling 
NEOMYCIN's  metarules with respect to the given domain model). However, 
an operator-process model analysis (Sections 6 and 7) requires a more struc- 
tured representation than either KNACK or published papers about it provide. 

How might we use abstract subtasks and metarules to represent the system- 
model and control strategy that KNACK uses to generate the rule shown in 
Fig. 417 This is a kind of reverse engineering, since the papers show the 
compiled rules, not the general models and inference procedure from which 
they were generated. We want to replace domain terms such as "nuclear 
environment" by variables and explicit domain relations between the subgoals 
in the five action statements. We want to define a subtask for modifying an 
SSM, which here represents a text. The specific operator corresponding to the 
rule given in Fig. 41 should acquire initial information about a report part and 
set up the corresponding text in the report. Figure 42 shows how this would be 
done in a surprisingly simple way, transferring most of the structure in the 
W R I N G E R  rule to the domain model and exploiting the object-instantiation 
primitives of NEOMYCIN (inherited from EMYCIN). 

The metarule shown in Fig. 42 begins with a report part (e.g., CH1S2) and 
for every subtopic (e.g., NUCLEAR-ENVIRONMENT) invokes a subtask 
that sets up an instance corresponding to the subtopic in the SSM. In 
EMYCIN, the instantiation procedure (coded in LISP) uses general informa- 
tion about object relations to prompt the user about the existence of instances, 
as well as to acquire initial information about them. Figure 40 shows these 
relations as part of the general model, precisely as they are expressed in 
EMYCIN/HERACLES.  For example, an APERTURE object is associated 
with enclosures, so an instance of that must be set up first. Initial information 
about the enclosure name, material, and thickness is requested at this time. 
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Subtasks and Metarules 

SUBTASK: DETERMINE-INFORMATION 
FOCUS: $REPORTPART 
TASKTYPE: ITERATIVE 
LOCALVARS: ($TOPIC) 

IF (SECTIONTOPIC $REPORTPART $TOPIC) 
THEN (TASK CREATE-CONTEXT $TOPIC) 

Domain Facts 

<< represent report structure as a classification>> 
C H l S 2  

PARENT: CHAPTER 1 
CHILDREN: (CH1S2SS1 CH1S2SS2 CH1S2SS3) 
SECTIONTOPIC: (NUCLEAR-ENVIRONMENT APERTURE) 

<<represent the general system as a tree of contexts>> 
E N C L O S U R E  
ASSOCWlTH: 
OFFSPRING: 
PROMPT1ST: 
INITIALDATA: 

(SYSTEM) 
(APERTURE) 
("Please list the enclosures of the *") 
(ENCLOSURE-NAME MATERIAL THICKNESS) 

A P E R T U R E  
ASSOCWlTH: (ENCLOSURE) 
OFFSPRING: (APERTURE-PROTECTION) 
PROM PTt ST: ("Please list the apertures of the *") 
INITIALDATA: (APERTURE-NAME) 

I I 

Fig. 42. HERACLES version of KNACK/WRINGER DETERMINE-INFORMATION strategy. 

The prompts shown here are those used by the WRINGER. This tree of 
instances, which is part of the SSM, corresponds to an EMYCIN context tree. 

Further comparisons reveal that general object-instantiation operations are 
collected and abstracted in EMYCIN's interpreter and context-tree mecha- 
nism. Figure 43 shows a KNACK-generated domain-specific object-instantia- 

IF the goal is to integrate a strategy result, and 
the result is a value for the NAME of an ENCLOSURE, and 
a SYSTEM with some NAME is known 

THEN create a concept ENCLOSURE with a NAME characteristic, 
and instantiate it with that value, 

create a link that the SYSTEM COMPRISES the ENCLOSURE. 

<< This is handled by the EMYCIN interpreter 
when setting up the ENCL OSURE-I instance >> 

E N C L O S U R E - 1  
CRE8: ENCLOSURE 
UPPOINT: SYSTEM-1 
ENCLOSURE-NAME: (S-280C) 

Fig. 43. WRINGER rule for connecting an instance to its parent is handled by EMYCIN's 
interpreter. 
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tion rule, which EMYCIN's interpreter handles automatically. In comparing 
knowledge acquisition tools, it is important to realize that what is expressed as 
a rule in one system (e.g., KNACK) might be part of the interpreter of another 
system (e.g., EMYCIN). Indeed, the implementation of HERACLES as a 
specialization of the EMYCIN architecture (Appendix A.2) shows that 
EMYCIN provides a more general and useful frame language than is often 
realized. 

Other strategy rules given by Klinker et al. can be abstracted; however, we 
are unable to develop a full specification of a WRINGER in terms of SSM 
operators. We can see from the KNACK paper that the SSM could be 
expressed as a context tree of chapters and sections, generated from a general 
model that classifies the structure of reports. The text to be printed is modeled 
in this SSM by attributes of chapters and sections, for example, the heading of 
a section. Subtasks and metarules will set up the text SSM and finally print out 
the text associated with each node. 

However, the published strategy rules written by KNACK have clauses 
whose relation we cannot easily infer. For example, one rule states: 

i f . . . a  NUCLEAR-ENVIRONMENT with NAME EMP is 
known, and an ENCLOSURE with some NAME is known, then 
p r in t . . .  ~ENCLOSURE.NAME) . . . .  

What is the role of the first clause? In so far as we cannot infer the structure of 
the domain model from the published literature, we do not have an adequate 
description of KNACK for the work to be replicated or applied to similar 
problems. A basic claim of this paper is that the reformulations into HERA- 
CLES given here are at a level, using system-modeling language, that provides 
more adequate communication of knowledge engineering research. 

8.3. How abstract should control knowledge be? 

Abstracting inference procedures has allowed us to compare control 
strategies from different programs, express domain knowledge more concisely, 
and make control common to many programs (e.g., instance creation) separate 
and available for reuse. The role of knowledge is viewed uniformly in terms of 
system models (e.g., a SECTIONTOPIC of a TEXT) and operators for 
constructing an SSM (e.g., VALIDATE-INFORMATION, DEFINE- 
FRAGMENT).  

But abstraction is relative. Are there any guidelines for developing new 
subtasks and metarules? Generalization beyond what the examples at hand can 
support might produce obscure code that is more difficult to understand and 
modify. Common sense suggests that the metarules be specific enough to 
facilitate reuse (i.e., the language should be suggestive of other problems for 
the same system-modeling task) and general enough to be reusable (i.e., 
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replace primitive domain terms by variables). The examples in this paper are 
intended to support two general claims: 

Claim 1. Strategies mentioning domain terms are unnecessary; they can always 
be rewritten by introducing "system-model" variables and relations between 
domain concepts (i.e., causal, temporal, spatial, and subtype relations). 

Claim 2. The resulting abstract inference procedure is a kind of  grammar 
ordinarily reusable in a variety of  domains; it can be interpreted for both 
recognition and generation purposes (e.g., consultation, explanation, knowl- 
edge acquisition, student modeling). 

Figure 44 shows how, for a given task, control knowledge may be specialized 
depending on the process characteristics of  the system being modeled. Configura- 
tion generally views a system in terms of its structures; planning views a system 
in terms of its processes. In particular, designing a building or text report is 
generally viewed as a problem of configuring structures. Static systems are 
generally described in terms of spatial orientation of parts, as opposed to 
causal and temporal relations between structural changes. (Of course, civil 
engineers will model stress and fatigue from use; service designers will model 
dynamic subsystems such as heating and lighting.) 

The point of this diagram is that inference operators can be viewed with 
respect to a classification of  system types, with general configuration operators 
(e.g., for instance creation) applying to all systems, but other operators 
specialized depending on the relations of the domain model which will be 
incorporated in the SSM. A WRINGER text has no causal/temporal relations, 
so the inference procedure for configuring a text uses no operators mentioning 
them. One can imagine building a future expert system by including and 
specializing operators from a library organized according to Fig. 44, with the 
description of causal, temporal, and spatial relations in the general model 
available as specifications that drive the choice of relational network (Section 
7), SSM structure, and inference operators. 

In this respect, the content of strategic knowledge is intricately tied to an 

,/•esign Configure '~lan 
Mechani~cal ~Static System jyste~ 

Buildings Texts 
Fig. 44. Alternative levels of abstraction for task-specific architectures. 
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ontology of system types, such that learning to be a knowledge engineer 
involves learning how configuring a text is different from configuring a stereo 
and how constructing a configuration model differs from constructing a diag- 
nostic model. Depending on the frequency of problems a particular client 
encounters, there might be knowledge acquisition tools for "configuring static 
systems" or even one specialized for configuring environmental reports. 

Figure 45 shows more specifically how we abstract from given expert systems 
to create a family of tools. Using the HERACLES subtask-metarule language, 
we developed a program called TOPO for configuring computer networks 
(e.g., workstations, servers, local-area network, modem links).The program 
models some physical-organizational structure (POS) (e.g., the sites, buildings 
and working groups of a regional golf association) and the information 
processing required (e.g., membership rolls, due payments, and game 
statistics). 12 This model is mapped onto the design for a computer network that 
provides the required services, a service network. The configuration inference 
procedure, as in HERACLES-DX, is domain-general. Together with the 
language for expressing a POS and network configuration, the subtasks and 
metarules constitute a task-specific shell, which we call HERACLES-CX. 

What kinds of expert systems could be built with HERACLES-CX? The 

t TELE" " I 
C OMMUN- I 

~,~ATION TR~,,,ORT 

Fig. 45. Types of system configurations developed from a physical-organizational model. 

12 For simplicity, we assume the information-processing model is part of the POS in Fig. 45. 
TOPO is intended to be a front-end to XCON; it was developed with Monique Barbanson. 
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figure shows two possibilities: We could adapt the POS model (and inference 
operators) to layout other kinds of service networks (e.g., a telecommunication 
network). Or we could use the POS model to configure "protection services", 
such as insurance policies. The idea is that a model of buildings and site layout 
and the nature and location of working groups is useful for both configuration 
of a service network and configuration of an insurance policy. Certainly 
different information will be required (so the domain-modeling language will 
change), but it is plausible that the POS model developed for TOPO will serve 
as a good starting point. Indeed, as pointed out in the discussion of MYCIN's 
context tree (Section 4.5), we observe that the first reasoning step in many 
expert systems is the creation of  a POS model. Are there just a few kinds of 
POS models (e.g., models of clubs, universities, businesses and subtypes of 
these), relative to the kinds of subsystems or processes that require a POS 
model in the first step of design (e.g., service networks, protection services)? 
This is the kind of recurrent structure we seek to discover and exploit in the 
development of knowledge acquisition tools. 

Our chief interest at this time in the development of knowledge engineering 
is to represent specific domain models and control knowledge so that the 
common elements can be recognized and collected into more general tools. 
The idea of organizing modeling tools according to the process characteristics 
in the system being modeled (Figs. 44 and 45) is further exemplified by a study 
of student modeling programs [25]. In order to determine the generality of 
student modeling techniques relative to subject material domains, we classify 
domains (systems) in two dimensions according to the operators in the object 
system (axiomatic as in algebra versus open as in chemistry) and the SSM 
inference operators (algorithmic as in subtraction versus heuristic as in medical 
diagnosis). Without this kind of framework, it is difficult to appreciate the 
contribution of any given expert system (or student modeling program) to the 
development of qualitative modeling techniques. In short, a useful level of 
abstraction in a research report or program design relates the given program to 
a classification of tasks and domains, exemplified here by the descriptions of 
XPLAIN, WRINGERs,  and TOPO. 

8.4. What is the relation between inference operators, Generic Tasks, 
and problem solving methods ? 

Other researchers have advocated the analysis and decomposition of knowl- 
edge bases in terms of general or "generic" components. How do these 
analyses compare? 

Chandrasekaran's Generic Tasks [16] are generally at the same level as 
subtasks in NEOMYCIN. Generic Tasks are procedural operators for modify- 
ing the SSM; they can be combined to configure a complete inference 
procedure for an expert system. Example operators, labeled by the names of 
the reusable code modules, are: 
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• CSRL: explore-refine classification, 
• Hyper: prototype matching and evaluation, 
• Pierce: abductive assembly and evaluation of composite hypotheses, 
• WWHI: prediction by abstracting state changes, 
• Idable: data retrieval and inference. 

These operators are generally independent of the overall modeling task. For 
example, data retrieval and inference, corresponding to NEOMYCIN's FIND- 
OUT and PROCESS-FINDING subtasks, could be used for diagnosis as well 
as for design tasks. The important idea is that these operators have been 
abstracted from particular expert systems, and they can now be functionally 
composed and specialized in new application-specific programs. 

In contrast, McDermott [63] describes knowledge acquisition tools at a 
higher level, in terms of the overall inference procedure for constructing an 
SSM: 

• MOLE: cover-and-differentiate diagnosis, 
• SALT: propose-and-revise design, 
• KNACK: acquire-and-present design, 
• SIZZLE: extrapolate-by-analogy design. 

By this analysis, we would add the entire HERACLES-DX system as an 
example in this list (perhaps with the subdescription "propose-explore-refine, 
group-differentiate, broaden-confirm diagnosis"). McDermott calls these role- 
limiting methods, referring to the way in which an inference procedure specifies 
(and hence restricts) how knowledge is applied in solving a particular problem. 
McDermott thus emphasizes that to provide a problem solving method is also 
to structure the domain model in terms of roles particular relations and types 
of rules will play (cf. discussion of GUIDON-MANAGE and ODYSSEUS in 
Section 5). Role-limiting methods, in contrast with Chandrasekaran's Generic 
Tasks, tend to be specific to the overall system-modeling task, hence the use of 
the words "design" and "diagnosis" in the tool descriptions. Rather than being 
functionally composed, they are specialized to create application-specific pro- 
grams. 

We can now summarize the relation between NEOMYCIN's inference 
operators, Generic Tasks, and role-limiting methods as follows: 

• A (role-limiting) problem solving method is a procedure composed of 
several inference operators that--through their controlled interaction-- 
form a situation-specific model that satisfies task constraints. For example, 
NEOMYCIN's subtasks together implement a variant of MOLE's 
COVER-AND-DIFFERENTIATE method. 

• Furthermore, a subtree in NEOMYCIN's subtask hierarchy (e.g., EX- 
PLORE-AND-REFINE),  which appears in multiple problem solving 
methods, is packaged and distributed separately in what Chandrasekaran 
calls a Generic Task. 
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In conclusion, the model-construction-operator perspective reveals that dif- 
ferent researchers have pursued different levels of generality in formalizing 
control knowledge: single SSM operators correspond to a NEOMYCIN sub- 
task; subprocedures of one or more operators correspond to a Generic Task; a 
complete inference procedure corresponds to a role-limiting method. A good 
property of Generic Task and role-limiting methods analyses is that they each 
adopt a single point of view, compared to lists that mix inference methods with 
modeling purposes (e.g., a typical "problem types" list, appearing in an expert 
systems tutorial, is "evidence gathering, stepwise refinement, stepwise assem- 
bly, design, and monitoring"). However, there is no way of arguing for the 
completeness of either the Generic Tasks or role-limiting methods lists or even 
comparing two such lists without a dimensional analysis of the primitives that 
underlie them, precisely the role of mathematical analysis. In particular, the 
set-mapping and SSM constraint descriptions (Section 6) provide a means for 
systematically describing and hence generating candidate Generic Tasks and 
role-limiting methods (e.g., as in Table 2). We might look for these operators 
or operator combinations in existing expert systems to fill out our library or use 
them for selecting a new application that will extend the capabilities of an 
existing tool. 

9. Historical perspective 

One of the main ideas of this paper is that expert systems incorporate models 
of systems that are mostly nonnumeric in character, and by this technique AI 
programming has produced a new modeling method. We have termed this 
qualitative modeling; however, representational modeling or relational model- 
ing are also appropriate namesJ 3 The important point is that expert systems as 
computer programs are using a form of modeling that distinguishes them from 
traditional programs. 

9.1. Changing views of relational networks 

To see more clearly how AI programming has introduced a new modeling 
method that is worthy of being named and promoted in itself--independent of 
how it has been applied to develop intelligent programs--consider how our 

t3 Recalling Fig. 29, processes represented qualitatively include the domain system, inference. 
planning, data gathering, and discourse. A great deal of AI research has been concerned with 
"formal reasoning" (e.g., geometry, subtraction, theorem proving). From the perspective of 
system modeling, formal reasoning is degenerate because model notations are manipulated (e.g., a 
child's subtraction problem), but there is no specific system in the world being modeled. 
Nevertheless, the inference process is represented qualitatively (e.g., the subtraction process is 
represented in BUGGY as a procedural hierarchy [14]). Extensive discussion of formal versus 
physical systems modeling and algorithmic versus heuristic inference procedures appears in [25]. 
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views of relational networks have changed in computer programming over the 
past two decades: 

• Programmers have traditionally used node and link representations to 
represent processes; flowcharts are a leading example. In expert systems 
the relational network is a representation, an object in itself, that is 
selectively interpreted for different purposes. It is not executed or run so 
much as read, examined, and modified like a database. 

• In early AI research, complex relational networks are used for associating 
arbitrary things; semantic nets are a leading example. In expert systems we 
find systematic macrostructures (e.g., hierarchies, state-transition nets) relat- 
ing states, substances, and processes. It is not just a network where facts 
are stored, but rather a representation of a process or system. 

• Traditional programs read and print numbers and symbols; FORTRAN 
and COBOL are leading languages for this. Expert systems create and 
manipulate linked-node graphs (the SSM), whose intermediate structure 
often opportun&tically drives the computation. It is not just a data structure 
that is created and modified, but a model of structures and processes, 
usually on different levels of detail, whose form can be systematically 
interpreted for detecting incomplete or inconsistent facts. 

Notice the shift from describing a process as something that runs directly 
to something that is constructed by the program itself and selectively inter- 
preted, perhaps the hallmark of a representation. Notice also that the shift 
from semantic networks to the idea of classification (e.g., as developed in 
UNITS, KL-ONE, and CYC [57]) is in the direction of not just relating 
arbitrary things, but modeling processes (a point emphasized in CYC 
research). 

A key distinction that has been little recognized is that knowledge bases are 
not just complex networks (let alone unorganized pots of rules), but have a 
macrostructure that can be viewed in terms of types of graphs, such as types of 
transition networks. We have made progress by focusing on what a node 
represents (state, substance, process) and what the links mean (cause, spatial 
connection, temporal sequence, functional subprocess). Early studies focused 
on subtype relations of concepts [7, 95], which unfortunately misses the 
process-modeling aspects. These studies tend to view a knowledge base as a 
collection of facts that simply exists like a database ("Clyde is a grey 
elephant"). In an expert system--or indeed any program that must reason 
about the world and take action--descriptions of  systems are represented and 
employed for some purpose; they are not arbitrary. Finally, the key idea 
emphasized in this paper is that the program's reasoning can be usefully 
characterized in terms of set and graph operators for manipulating this model, 
thus relegating discussions of conceptual structures, rules, frames, blackboards, 
etc. to the level of notational style and program implementation. 
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Table 6 
Evolving purposes for using graphs to represent systems. 

Types of graph representations 
of systems Purposes/views 

Process classifications 
Causal (substance/process) networks 
Functional composition networks 
Structural composition hierarchies 

Object feature classifications 
(Entity-relation database) 

Semantic networks 

A N D / O R  subgoal tree 
Dataflow diagram 

Petri nets 
Flowcharts 
Influence diagrams 
(Decision trees) 

Model of a system taken as an 
object itself, interpreted and 
modified by diverse processes 
(links indicate causal, 
temporal, spatial, or functional 
relations, and inheritance of 
these). 

Taxonomy of physical 
appearance and behavior of 
similar objects (links indicate 
inheritance of static, 
inherent properties). 

Description of meaning of 
concepts (links indicate 
relations between objects 
and events). 

Derivational description of 
facts via inferences and 
calculations (links indicate 
conditional transformations). 

Description of conditions and 
operations constituting states 
of a process (links indicate 
flow of control). 

Table 6 provides a particular cut on the historical development of qualitative 
modeling, emphasizing what aspects of an object system's behavior or oper- 
ation are represented by different types of networks. Notice in particular how 
Petri nets, decision trees, and influence diagrams are similar to flowcharts 
because they do not describe how a system is put together or how it works, so 
much as procedurally specify what happens under particular conditions. In 
practice, these networks are often viewed as types of causal-associational 
networks. A N D / O R  subgoal trees (e.g., Fig. 13) and dataflow diagrams 
represent a collection of facts as a stream that is transformed by mathematical 
operations or logical syllogisms. The development of relational databases-- 
particularly its expression in the "entity-relation model" [8]--has paralleled 
the development of process modeling in AI and is close in spirit to early 
systems like UNITS and KL-ONE. This view emphasizes that collections of 
things are organized into a classification hierarchy, and primacy is placed on 
representing the relations that define this classification (corresponding to slots 
in frame systems). This is certainly an important part of the elephant's hide. 
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9.2. Decision support and critiquing models 

The system-modeling perspective also provides an easy way of contrasting 
decision support programs and expert systems. Generally speaking, decision 
support programs partially automate the modeling task, leaving the user to 
provide a general system model or to determine how an SSM should be applied. 
For example, risk analysis involves predicting how a system being modeled will 
behave, using heuristics to determine whether undesired events ("risks") will 
occur. An assessment step involves determining which system attributes or 
environmental inputs are causally related to the risk/undesired event. For 
example, a decision support system for designing new detergents might accept 
a detergent design as input and use simulation to determine that there is a risk 
of excess suds when washing certain kinds of synthetic materials; assessment 
could track this back to a particular component of the detergent. Such a 
program helps a user test and evaluate designs; more typically an expert system 
(as defined by Fig. 21) would generate the initial detergent design or given a 
supplied design would go on to say how it might be manufactured. 

The critiquing model of  consultation (e.g., SOPHIE's hypothesis evaluator 
[9], MYCIN's therapy explanation system [18] and similar methods developed 
by Langlotz and Shortliffe [56] and Miller and Black [65]) are essentially 
decision support tools, accepting an SSM or action plan from the user and 
comparing to what is internally generated. Instructional programs often pro- 
vide scenarios or cases for developing and exercising general models; they also 
provide representations by which the student can describe an SSM, as in 
Anderson's geometry program. Notice that in decision support, critiquing, and 
instructional tools the idea of modeling is salient because the model itself is an 
object of study or elaboration. In consultation programs like MYCIN the 
diagnostic model is not presented so much for the user to ponder over and use, 
but as a justification of the therapy (indeed, even the idea of an intermediate 
SSM is disguised by the goals, viz. "conclude that E.coli is one of the 
organisms that therapy should cover for"). 

A decision support or critiquing approach is valuable for problems in which 
it is difficult to automate action planning (e.g., controlling a company) or in 
which there are too many situations for the knowledge engineer to anticipate in 
the general model, using a fixed set of concepts. For complex design or 
planning (control) tasks, the decision support system becomes a kind of 
knowledge acquisition program which helps the user develop a general model 
and evaluate it by simulating its behavior in different situations. Critiquing has 
turned out to be especially valuable for medical diagnosis and therapy, both to 
remind physicians about the complexities of the general model and to keep 
them engaged and feeling responsible for patient care [56]. The main contribu- 
tion of AI to decision support systems is in providing these qualitative 
modeling techniques, in contrast with previous probabilistic, nonrepresenta- 
tional approaches [39], which limit the way models can be expressed. 
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9.3. Grammars, nonlinear modeling, automata theory 

Another way of understanding qualitative modeling techniques is to track 
them back even further to their origins in the theory of computation and 
cybernetics. This is a chapter that AI textbooks consistently omit, and it is 
perhaps responsible for the perceived lack of coherence in AI research. The 
1970s and 1980s generation brought up as computer programmers trying to 
create intelligent machines did not see itself as building on the nonlinear 
modeling and systems theory from which AI was born [82]. 

As an example, consider how control knowledge might be related to Post's 
original production formalism from linguistics [49]: 

• A blackboard is a data structure for posting alternative parses of some 
expression or behavior (indeed, this is precisely what HEARSAY is doing, 
posting alternative parses of input sentences, starting of course at the level 
of sounds rather than words). 

• An inference procedure expressed as subtasks and rewrite (meta)rules is a 
higher-order grammar for controlling the parsing/recognition and genera- 
tion process (indeed, this is explicit in ODYSSEUS, which uses 
NEOMYCIN's subtasks and metarules to parse a sequence of student data 
requests). 

• The relations for representing processes in the domain, inference, plan- 
ning, and communication models (Fig. 29) constitute grammatical (more 
precisely, lexical) distinctions for organizing objects in the object system; 
for example, "substance" and "follow-up question" constitute grammati- 
cal distinctions in a domain model for diagnosis (Fig. 20), and sentences 
(propositions) are facts about the domain. 

In short, it is easy to view blackboards, inference procedures, and relational 
languages as direct extensions of the production rule formalism developed for 
formally representing languages. Of particular interest is how the sentences 
generated and recognized in expert systems and tutorial programs are not just 
utterances in an arbitrary conversation, but are about some system that is being 
modeled for some purpose. Grosz's [35] research on task-oriented discourse is 
an early natural language effort that adopts this perspective. Indeed, how could 
there be a natural language program that carries on purposeful dialogue 
without a domain model and inference procedure inside it? 

As indicated, ODYSSEUS provides a particularly good example of how an 
abstract inference procedure can be viewed as a grammar for the inference 
process. Figure 46 shows a sequence of three data requests, listed on the 
right-hand side, parsed in terms of subtasks and domain rules, in boxes. The 
program indicates alternative reasons why a question might have been asked, 
using a bottom-up analysis, then groups them in terms of higher-order subtasks 
that could now be applied given the state of the SSM, a top-down analysis. For 
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example, the student's inquiry about seizures (FINDOUT/Seizures, Q6) might 
have been asked to determine whether the disease is caused by an Intracranial- 
mass-lesion, Subarachnoid-hemorrhage, and so on. The successful parse indi- 
cates that the query is consistent with TEST-HYPOTHESIS/Meningitis, as 
part of the process of looking up in GROUP-AND-DIFFERENTIATE.  By 
the same analysis, the question about fever (FINDOUT/Febrile,  Q5) has three 
consistent interpretations; we cannot determine from this information alone 
whether the student is focusing on Acute-bacterial-meningitis or Infectious- 
process, however NEOMYCIN would select Infectious-process first. 

This kind of automated protocol analysis is not possible using MYCIN's rules 
or even TEIRESIAS because a grammatical analysis requires that the rules not 
mention domain terms (analogous to using variables like "noun" and "verb" in 
natural language grammars, rather than specific words). The relations serve to 
classify the findings and hypotheses, in the same manner that a natural 
language lexicon classifies words (e.g., passive verb, demonstrative pronoun), 
determining which grammar rules will control their assembly into sentences. 
The subtask structure serves as a higher-order representation of the entire 
consultative interview, analogous to a grammar characterizing an essay or 
particular type of exposition [61]. In fact, the characterization of inference 
procedures as grammars plays a major role in criticisms about the adequacy of 
expert systems as models of intelligence, based on the idea that grammars are 
an observer's description of patterns of behavior and cannot be equated with 
the mechanism itself (Section 6) [30]. The explicitness of the grammar and 
parse in ODYSSEUS reminds up that expert systems and, more specifically, 
cognitive models share the power and limitations of natural language grammars 
as mechanisms for generating behavior. 

Much more could be said about the origins of AI in nonlinear modeling and 
automata theory. The ideas of compartmentalization (near decomposability 
[82]), topology, adaptiveness, informational flow, state transition, and 
rationality have their modern beginnings in attempts within cybernetics to 
model open and nonlinear systems [72, 92]). We can better present qualitative 
modeling to scientists and engineers if we return to these origins, explain the 
path we have taken, and show how our representational methods solve some of 
the early problems. For example, Bertalanffy summarized the difficulty of 
representing discontinuities (nonlinearity) in system behavior: 

Representation by differential equations is too restricted for a 
theory to include biological systems and calculating machines where 
discontinuities are ubiquitous. 

In our knowledge acquisition tools, we are implicitly claiming that we have 
found methods for representing just such a wide variety of systems. Kuipers' 
[54] qualitative simulation research is one good example where the relation 
between qualitative modeling and differential calculus is made explicit. Similar- 
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ly, relational modeling techniques can be fruitfully tracked through their use in 
describing formal machines (automata), to modeling reasoning processes in 
mathematical psychology, to representing states in physical systems such as the 
human body. 

Connecting qualitative modeling to its origins in cybernetics has recently 
taken on new importance with the emergence of new mathematical and 
nonrepresentational techniques for modeling complex, dynamic systems [85]. 
As new methods are found for building intelligent machines there is a danger 
that knowledge engineering methods will be tossed aside. We must recognize 
that these methods are more general, and have wider applicability, than their 
developers first intended. For example, qualitative modeling could be used for 
representing neural processes. To identify expert system techniques as just 
"one way to model reasoning" is to confuse a modeling method with the 
particular theories it has been used to represent. If we place qualitative 
modeling in historical perspective, we are more likely to get the ideas 
disseminated for general use by scientists and engineers, and better articulate 
the tools we will need to advance our understanding of intelligence. 

I0. Conclusions 

This paper can be viewed as the culmination of an inquiry that began by 
studying MYCIN's rules [21], led to generalizing patterns in expert systems 
[24], and now involves identifying methods that distinguish AI programming as 
a whole. A central claim is that it is productive to view AI programming in 
terms of a modeling methodology that represents causal, temporal, and spatial 
relations in systems. (Formal reasoning such as geometry problem solving is 
ungrounded model manipulation; the numbers, variables, lines and angles 
represent situations, but not particular systems in the world.) From this 
perspective, control knowledge consists of the procedures for constructing 
situation-specific models. Different representations, problem solving architec- 
tures, knowledge acquisition tools, specific expert systems, and even different 
areas of AI research can then be systematically related by this model construc- 
tion perspective, in terms of types of relational networks, process models, 
inference operators, system domains, and modeling purposes (tasks). 

Our exposition unfolded by studying NEOMYCIN's metarules, attempting 
to relate them to representations used in other programs and formalize 
principles by which metarules are written. We found that multiple views, 
incorporating basic mathematical and programming terminology, are useful for 
describing NEOMYCIN's subtasks: graph-manipulation operators, set 
operators, grammatical categories. The value of this formalization is ex- 
emplified by the GUIDON-DEBUG program, which uses constraints on the 
form of the SSM to detect problem solving failures and direct explanation- 
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based learning; the ODYSSEUS program which models diagnostic strategy by 
abstracting sequences of data requests; and the GUIDON-MANAGE program 
which allows a user to dictate diagnostic strategy and generates plausible 
actions (hints) in the same language. 

The programming technique that enables these capabilities represents con- 
trol knowledge as stylized procedures that order and control metarules, whose 
premises use a form of the predicate calculus (see appendices). This representa- 
tion reveals that each time we write a new procedure for interpreting a repre- 
sentation, we define new relations that classify its constructs. Thus, we find that 
classifications and procedures are defined in terms of each other. The repre- 
sentation of strategic knowledge that results from stating control knowledge 
abstractly, using variables in place of primitive terms, is not domain-indepen- 
dent, but domain-general, in the sense that the language or relations can be 
made more general than any one system being modeled by using spatial, 
temporal, causal, and subtype distinctions (a perspective by which all systems 
can be described). 

One of the surprises in our investigation is that control knowledge cannot be 
derived from the form of the SSM alone, but instead must always contain 
assumptions about the world (involving case population and constraints on the 
nature of the interaction between program and the world). We found that the 
blackboard approach for representing and reasoning about alternative control 
regimes provides flexibility for looking ahead and resuming interrupted oper- 
ations, that must be handled in an ad hoc way in NEOMYCIN. Similarly, we 
found that NEOMYCIN's representation of methods as objects provides a way 
of making explicit the relations between SSM elements and inference operators 
("knowledge sources") which are often coded in blackboard systems in an ad 
hoe manner. 

A major step is realizing that model construction recurs at three nested 
levels: the domain, inference procedure, and communication with the world. 
Specifically, the idea of a blackboard or SSM recurs at each level, which is to 
say that each level involves some general model of processes and an inference 
procedure for constructing a situation-specific representation (e.g., a model of 
a patient's disease, a diagnostic plan, a discourse/explanation process for 
communicating with the user). To see this, we need to extend the idea of a 
model to include classification descriptions and not just simulations. We then 
realize that a key contribution of  A I  programming is in using relational 
networks to represent processes. Representation research develops types of 
classifications and state-transition networks that are linked and composed in 
taxonomies, causal-associational networks, and structure-function models. 

The resulting picture is very general. Its power comes not from telling us 
specifically how to develop a good model for some purpose, but how to relate 
the diverse research that has attacked specific problems. We can relate 
blackboards to metarules, NEOMYCIN to ABEL, heuristic classification to 
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qualitative process simulation, XPLAIN to KNACK, and Generic Tasks to 
role-limiting methods. Put another way, we can now relate representational 
constructs, expert systems in a given domain, inference methods, knowledge 
acquisition programs, and reasoning strategies, all from a model construction 
perspective. 

A key observation is that existing programs differ greatly in the grain size by 
which inference procedures are described. For example, in SOAR procedures 
are described very generally in terms of operator/operand application and 
caching; in NEOMYCIN procedures are described in terms of relations 
between operands and operators for constructing sets of operands; in BB1 
procedures are described in terms of coping with resource limitations for 
applying applicable operators or observing available operands. These com- 
plementary views are integrated by the model construction perspective. Rather 
than continuing to talk past each other (SOAR: matching situations to achieve 
goals; NEOMYCIN: calling subprocedures to accomplish tasks; BBI: invoking 
knowledge sources to modify the blackboard), we can make progress by 
adopting a uniform graph-set-operator language. 

In general, we see a remarkable shift from talking about rules in MYCIN to 
talking about the structure of graphs and types of models of processes in 
NEOMYCIN, made all the more dramatic by the use of the same examples 
through the sequence of papers [21, 24]. This study suggests that AI re- 
searchers should be wary of describing reasoning in terms of "answering 
questions" or "achieving goals". At its heart, reasoning involves forming a 
model of some system in the world in order to take action (Fig. 21). This 
perspective relates expert systems to AI in the large, systematically relating 
knowledge, inference, and planning (Fig. 29). Given any AI program, we can 
ask, "What are the systems being modeled?, What are the structure and 
process characteristics of this system?, What kind of relational network is used 
to represent these structures and processes?, What is the inference procedure 
for constructing a situation-specific model?, How is this model employed by 
later reasoning phases, evaluated, or conveyed to the user?" Rather than 
simply asking about a new problem domain, "Is there real-world knowledge 
that allows classification?" we might ask, "Must the system be modeled as 
open in its interactions with its environment?, Is there a known etiological 
hierarchy?, Are there stages or developmental descriptions involving trends 
and frequency of behaviors?, What experience have people had with this 
system in rebuilding, modifying, assembling it in different situations?" Thus, 
knowledge engineering is a form of systems analysis. 

From these observations, we can conjecture where expert systems and 
knowledge acquisition research are headed. First, much more attention could 
be placed on the recurrent macrostructures in domain models. Hierarchies and 
transition networks need to be viewed as objects in their own right and 
classified (Fig. 34). Such classifications can then be mapped to a taxonomy of 
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system types, according to whether the system has dynamic properties, whether 
a classification of interactive-historical patterns is known, and whether a 
behavioral (causal-associational net) or functional simulation is possible and 
useful. 

Paralleling the approach in software engineering, indeed merging with it 
[90], object libraries need to be collected and shared. These objects will 
include and be organized by the relational language, types of process model, 
system type, inference operators, form of the SSM, constraints on interactions 
with the world, and modeling purpose. In this respect, HERACLES-DX, 
BB1-ACCORD, KNACK, Generic Tasks, etc. are precisely the systems that 
must now be studied and integrated. Automatic programming could play a role 
here, specifically if the SSM graph-operator representation is adopted for 
relating the diverse approaches. 

Researchers might begin by articulating and collecting the constraints that 
existing inference procedures place on the form of the SSM (Fig. 32 and Table 
3) and a program's interaction with its environment. This would be useful for 
both automatic programming and failure analysis (GUIDON-DEBUG). In- 
deed, the model construction view is essential for formalizing the process of 
evaluating expert systems. Other research areas that could adopt this perspec- 
tive include parallel computation (e.g., organize the modules as equivalence 
classes of operators, not just "knowledge sources") and learning (e.g., focus on 
how new relations are defined by new procedures for interpreting a representa- 
tion). Reuse of representations is called repurposing in the multimedia domain; 
one could apply repurposing of knowledge representations by knowledge 
acquisition programs to the problem of indexing and composing new sequences 
of multimedia presentations. 

Probably the greatest opportunity lies in integrating numeric simulation and 
qualitative modeling. Examples abound of engineering applications in which a 
qualitative model is used to aid in the design of a system [48], to generate 
scenarios to be simulated (including reasoning about boundary conditions as in 
SOPHIE), to make heuristic decisions as embedded models of human agents 
(e.g., in a manufacturing plant), and to analyze simulation results (particularly 
abstracting and explaining trends in numeric data). Applications to chemistry 
[13], biology [45], and genetics [36] are well known, but their contribution to 
scientific modeling has been obscured by the emphasis on "expertise". Similar 
applications in operations research [33] amply demonstrate how representa- 
tional and parametric modeling complement each other. 

In conclusion, a historical perspective suggests that we take care to separate 
the modeling contributions of AI research from specific theories of intelligence. 
In many respects, the techniques of knowledge engineering now have a life of 
their own, as they are adopted and developed by scientists and engineers who 
have no particular interest in cognitive science or automated reasoning, per se. 
Qualitative modeling should be studied, formalized, and presented as a 
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contribution to computer science and systems analysis. On this basis, links to 
software engineering and operations research will be more quickly realized and 
taught. Indeed, in many respects this generation of AI research may come to 
be viewed not so much for the particular capabilities of the programs that were 
developed, but for the generality of the methods, which as computational 
formalisms are arguably as novel and wide-sweeping in their impact as New- 
ton's calculus. 

Appendix A. HERACLES' architecture 

The architecture is described here as a general shell, then more specifically in 
terms of how it is implemented on top of EMYCIN, followed by details about 
the subtask interpreter and the metarule compiler. The full relational language 
used in NEOMYCIN's metarules is also categorized. 

A. 1. Nesting of shells, application programs, and model-manipulation routines 

HERACLES is a framework for encoding a domain model and an inference 
procedure. The language is called CTMR, standing for constraint, subtask, 
metarule, and relation (Fig. A.1). Out of these constructs, a specific inference 
procedure of subtasks and metarules can be written, which will mention 
relations by which the domain knowledge will be represented. HERACLES- 
DX is the expert system shell that contains the subtasks, metarules, and 
relations extracted from NEOMYCIN. CASTER, a rudimentary sand casting 
diagnostic system demonstrates the generality of this shell [89]. A new shell 
called HERACLES-CX is currently being implemented, with a new set of 
subtasks, metarules, and relations for configuration, based on a computer 
network layout expert system we are developing. Thus, HERACLES is not an 
expert system shell, but a framework for developing shells. As shown in Fig. 
A.1, the tutoring, explanation, student modeling, and knowledge acquisition 
programs are separate modules that rely only on the CTMR representation, 
not on the particular subtasks, metarules, or relations. Additional knowledge 
required for any of these programs is expressed in the same CTMR language 
(e.g., new relations required by the explanation program classify existing 
domain relations). 

A.2. Metarules, relations, and subtasks 

Originally NEOMYCIN's metarule premises were coded in LISP. In a hybrid 
system called MRS/NEOMYCIN [31], we represented metarule premises in 
MRS, a logic-programming language that provides a framework for multiple 
representations of knowledge and control of reasoning [37]. We also recoded 
the interpreter in MRS rules and placed a simple deliberation-action loop at 
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HERACLES 

Constraint 
Task 
Metarule 
Relation 

Process-Modeling 
Language 

Heracles-DX 

Diagnostic Procedure & 
Domain Claulflcatlon Relations 

"Task-specific" shell for formulating 
a diagnostic expert system 

Neomycin 

Disease tcxonomy and causal relations 

Expert system for medical diagnosis 
in the area of headache & CNS problems 

Guidon-Manage 

Explanation, Student Modeling, Coaching 
Heuristics 

Intelligent tutoring system for teaching strategic 
language formulated In Heracles-DX 

Fig. A.1. Nesting of language, task-specific shell, expert system, and communication procedures. 

the top. Unfortunately, this slowed down the program by an order of mag- 
nitude and made the procedure too obscure to read or maintain. A comprom- 
ise design works far better, with the interpreter written in LISP and the 
metarules coded in a variant of MRS, which are compiled into LISP. This 
provides the well-structured language required for bookkeeping and interpreta- 
tion by the explanation, tutoring, and student modeling, knowledge acquisition 
programs, without sacrificing runtime efficiency. Figure A.2 shows how an 



J D
ef

in
iti

on
al

 
Re

la
tio

n 

R
U

LE
S 

~ 
M

et
ar

ul
ea

 

ap
ply

 

D
om

ai
n 

R
ul

es
 

D
om

ai
n 

cl
as

si
fic

at
io

n 
an

d 
Pr

ob
le

m
 s

ta
te

 
pr

op
os

iti
on

s 
co

nc
lud

e a
bo

ut
 

~ 
). 

u
s

e
d

-
~

 
~ 

" 
. .

 

ac
hie

ve
d b

y 

 
 

m
si

n 
T

er
 

 
re

qu
es

t 

~ 
"a

pp
ea

r in
" 1 

co
nc

lud
e 

in
 p

ar
s 

us
ed

 by
 

"'
''"

 
Do

m
ai

n 
Pr

op
os

iti
on

s 
(F

in
di

ng
s 

an
d 

t 
~ 

co
nc

lud
e a

bo
ut

 
H

yp
ot

he
se

s)
 

Fi
g.

 A
.2

. 
R

ep
re

se
nt

at
io

n 
of

 a
n 

in
fe

re
nc

e 
pr

oc
ed

ur
e 

in
 H

E
R

A
C

L
E

S
. 



104 W.J. Clancey 

inference procedure is represented in HERACLES,  which we view to be a 
major contribution of this research. HERACLES has three kinds of "concept" 
or "parameter" objects and three kinds of "rule" objects. We use the 
EMYCIN terms parameters and rules because the system is actually im- 
plemented on top of EMYCIN. Parameters are specialized as domain rela- 
tions, control subtasks, and domain terms, conditionally inferred and invoked 
by definitional rules, metarules, and domain rules. We use "relation" in the 
mathematical sense to refer to both predicates and functions. Findings and 
hypotheses are two classes of domain term; more informally, they refer to 
propositions in the SSM (so informally we say that "the patient has meningitis" 
is a hypothesis). Subtasks are accomplished by an interpreter that applies 
metarules (described in more detail below). Propositions used by metarules 
premises (e.g., (EXPLAINED-BY SF SH)) can be inferred definitionally by 
rules or can be inferred by procedural attachment (accessing LISP structures). 
These propositions are both static and dynamic. They classify domain proposi- 
tions and domain rules, as well as characterize the problem solving state (e.g., 
the contents of the SSM and bookkeeping information about subtask applica- 
tion). Additional relations that classify subtasks used by the subtask interpre- 
ter, and the interpreters in GUIDON-MANAGE,  ODYSSEUS, etc. are not 
shown here. Metarule actions apply domain rules, request (from the user) or 
assert domain propositions (e.g., Fig. 6), or invoke other subtasks. In particu- 
lar, the subtask FINDOUT, recoded and expanded from the original EMYCIN 
program, uses all of these methods to infer domain propositions. In HERA- 
CLES all domain rules are applied directly by metarules rather than by 
uncontrolled backward chaining. Only domain rules mention domain terms 
directly; other rules use variables. No rule may mention another rule by name. 

To coordinate with the subtasks and metarules, the EMYCIN function 
CONCLUDE maintains a list of new finding and hypothesis assertions (part of 
NEOMYCIN's blackboard). A much more complicated certainty factor 
scheme distinguishes between inherited and direct belief (from rules); the 
cumulative CF of a hypothesis is defined to be its direct CF combined with the 
cumulative CF of its parent (because it inherits the slots and hence the 
evidence of its parent). Finally, EMYCIN primitives for setting up data tables, 
creating an instance in the context tree, etc. may be used directly in metarule 
actions. 

A.3. The subtask interpreter 

A HERACLES subtask is a procedure, represented as an ordered and 
controlled set of metarules. The control of a task's metarules is specifed by 
properties of the subtask: 

• The subtask focus, which is the argument of the subtask. Only one focus is 
allowed. 
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• The task's ordered metarules. 
• The end condition, which may abort the subtask or any subtask when it 

becomes true. Aborting can occur only while the do-during metarules are 
being applied. The end condition is tested after each metarule of a subtask 
succeeds. A subtask may also be marked to prevent its abortion. 

• Ordered rules to be applied before or after the metarules (used only for 
bookkeeping). 

• The subtask type, which specifies how the metarules are to be applied. 
There are two dimensions to the subtask type: simple or iterative, and 
try-all or not-try-all. 

The combinations of subtask types provide four ways of controlling the 
metarules: 

• Simple and try-all. The rules are applied once each, in order (equivalent to 
a LISP PROG statement). Each time a metarule succeeds, the end 
condition is tested. 

• Simple and not-try-all. The rules are applied in sequence until one 
succeeds or the end condition succeeds (equivalent to a LISP COND 
statement). 

• Iterative and try-all. All the rules are applied in sequence. If there are one 
or more successes, the process is started over. The process stops when all 
the rules in the sequence fail or the end condition succeeds (equivalent to 
a pure production system). 

• Iterative and not-try-all. Same as for iterative and try-all, except that the 
process is restarted after a single metarule succeeds (equivalent to a "for" 
loop). 

In addition, each subtask can have local variables that appear in metarule 
premises, allowing a binding to be passed to the action as a subtask focus. 

A.4. The metarule compiler 

The metarule compiler converts a metarule premise, expressed as a conjunc- 
tion of propositions, to a LISP function. Relations concluded by definitional 
rules are coded as separate functions. Primitive domain relations are compiled 
as direct LISP operations (e.g., GETPROP). The backtracking necessary to 
match the variables in the premise, including a capability for finding all 
possible matches is compiled as nested iterations and set collection operations. 

Table A.1 lists the ways in which primitive domain relations can be 
implemented in LISP, with examples. 

A miscellaneous category of general relations must be handled specially by 
the compiler, including the quadruple relation between a finding, hypothesis, 
domain rule, and certainty factor (EVIDENCEFOR) and relations that can be 
easily optimized by the compiler (e,g., MEMBER and NULL). 
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Table A. 1 
IMPLEMENTATION classification of domain relations. 

Implementation Example Interpretation 

FLAG NEW-DIFFERENTIAL T or NIL variable 
VARIABLE STRONGCOMP.WGHT LISP variable 
LIST DIFFERENTIAL LISP list 
PROPMARK ASKFIRST T or NIL property 
PROPLIST CHILDREN List-valued property 
PROPVAL PROMPT Arbitrary property 
FUNCTION SAMEP LISP function 
METARULE-PREMISE- TAXREFINE? Determined by a 
RELATION definitional rule 

To write a compiler for MRS-style rules in general is difficult. However, 
several features of HERACLES-DX metarules and a few simplifications made 
it easy to write the compiler: 

• Only one rule concludes about each metarule premise relation. Where 
necessary, rules were combined into a single rule with a disjunction. 

• Relations are either predicates or functions, rather than being used in both 
ways, For example, (CHILDREN $HYP $CHILD) is only used as a 
functional generator, never as a predicate to test whether a given candi- 
date is a child of a given hypothesis. This was not a deliberate design 
choice--all of the 166 relations in HERACLES-DX satisfy this property. 

• Functional relations are all single-valued (except EVIDENCEFOR). Con- 
sequently, backtracking to find matches for variables in conjunctions can 
be expressed as nested f i n d  x suchthat  or therexists an x suchthat  loops; 
failure of the inner loop and return to the next outer loop for a new 
variable match is equivalent to backtracking. 

• Rule conjuncts are ordered manually so that a variable is found (by a 
functional relation) before it is tested (by a predicate relation). This is a 
natural way to write the rules. 

• Inverse relations are defined so that the LISP atom with the property 
corresponding to the relation is the first variable in the relation. For 
example, the functional relation CHILDREN, as in (CHILDREN $HYP 
$CHILD), is used when $HYP is known. Again, this occurred naturally 
rather than being a deliberate design choice. 

• Redundant clauses are used in disjuncts, rather than being factored out, 
i.e., 

(AND (common clauses) (OR dl d 2 . . .  dn)) 

Consequently, a few rules are awkward to read. 

In general, the compiler's code is easier to understand than the original LISP 
metarules from NEOMYCIN because it does not use constructs like thereis and 
never ,  which require mental gymnastics to logically invert and combine. 
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Besides the IMPLEMENTATION property, domain relations may have 
PREDICATE and MULTIPLEMATCH properties. PREDICATE indicates 
that the matched variable need not be saved. MULTIPLEMATCH means that 
the rule that defines the relation should be matched as many times as possible. 
In essence, the compiler changes 

to 

( f ind  ( var) in (list) suchthat . . .) 

( fo r  (var)  in (list) collect (var)  w h e n . . . ) .  

Essentially, the task of the compiler can be viewed in terms of finding a binding 
for a variable, testing it, setting it, or simply checking to see if a value exists. In 
particular, the majority of metarules use some definitional relation of type 
MULTIPLEMATCH, returning a list, which is passed to the metarule's action. 
This pattern suggested the set-manipulation way of describing subtasks (Sec- 
tion 6). 

In conclusion, the use of prefix predicate calculus notation as a specification 
language for metarules is convenient and allows efficient compilation. 

A.5.  Relations used in H E R A C L E S - D X  

The relations used in NEOMYCIN and CASTER metarules and definitional 
rules are categorized as domain, dynamic belief, dynamic search or focus 
bookkeeping, and computational. Inverses (e.g., caused-by) are not listed. 
Primitive terms are $PARM, $RULE, $CF, and $CNTXT (an instance of a 
domain class). All other terms and relations are defined in these terms. 
Indentation indicates hierarchical definition of new terms. For example, a 
nonspecific finding is a kind of finding. These relations are generally im- 
plemented as LISP structures; the dynamic belief and computational relations 
are implemented as LISP functions. The remaining relations are composites of 
the others, defined by rules written in MRS. 

Relations classifying findings and hypotheses 

(FINDING $PARM) 
(SOFT-DATA $FINDING) 
(HARD-DATA $FINDING) 
(NONSPECIFIC $FINDING) 
(REDFLAG $FINDING) 

(HYPOTHESIS $PARM) 
(STATE-CATEGORY $HYP) 
(TAXONOMIC $HYP) 

(PARENTOF $TAXPARM $PARENT) 
(COMPLEX $TAXPARM) 
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(CAUSES $HYP1 $HYP2) 
(SUBSUMES $FINDING1 $FINDING2) 
(PROCESSQ $FINDING1 $FINDING2) 
(CLARIFYQ $FINDING1 $FINDING2) 
(SOURCE $FINDING1 $FINDING2) 
(SCREENS $FINDING1 $FINDING2) 
(PROCESS-FEATURES $HYP $SLOT $VAL $FINDING) 

(ALWAYS-SPECIFY $FINDING) 
(ASKFIRST $FINDING) 
(PROMPT $FINDING $VAL) 
(BOOLEAN $PARM) 
(MULTIVALUED $PARM) 
(TABLE $BLOCKPARM $FINDING) 

(ENABLINGQ $HYP $FINDING) 
(SUGGESTS $PARM $HYP) 
(TRIGGERS $PARM $HYP) 

Relations classifying domain rules 

(ANTECEDENT-IN $FINDING $RULE) 
(APPLICABLE? $RULE $CNTXT $FLG) 
(EVlDENCEFOR? $PARM $HYP $RULE $CF) 
(COMMONCASERULES $HYP $RULE) 
(UNUSUALCASERULES $HYP $RULE) 

(PREMISE $RULE $VAL) 
(ACTION $RULE $VAL) 
(ANTECEDENT $RULE) 

(TRIGGER $RULE) 
(SCREEN $RULE) 

Belief relations 

(BELIEF $HYP $CF) 
(CUMCF-VALUE $HYP $CF) 
(MAX-CONSIDERED-HYP-CUMCF $CF) 

(PREVIEW $CNTXT $RULE) 

(DEFINITE $CNTXT $PARM) 
(DEFIS $CNTXT $PARM $VALUE) 
(DEFNOT $CNTXT $PARM $VALUE) 
(NOTKNOWN $CNTXT $PARM) 
(SAME $CNTXT $PARM $VALUE $CF) 
(SAMEP $CNTXT $PARM) 
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Dynamic search or focus relations 

(CONSIDERED $HYP) 
(DESCENDENTS-EXPLORED $TAXPARM) 
(PARENTS-EXPLORED $TAXPARM) 

(APPLIEDTOP $RULE $CNTXT) 
(DONTASKP $CNTXT $PARM) 
(TRACEDP $CNTXT $PARM) 

(SPECIFICS-REQUESTED $FINDING) 
(SUBSUMPTION-CONCLUDED $FINDING) 
(USERSUPPLIED $FINDING) 

(TASK-COMPLETED $TASK) 
(TASK-COMPLETED-FOCUS $TASK $FOCUS) 

Dynamic relations describing the SSM 

(CURFOCUS $HYP) 
(DIFFERENTIAL $HYP) 
(NEW.DIFFERENTIAL) 
(WIDER.DIFFERENTIAL) 
(DIFFERENTIAL.COMPACT) 

(NEXT-HARD-DATAQ $FINDING) 
(NEW.DATA $FINDING) 
(PARTPROC.DATA $FINDING) 

Computational relations 

(ABS $ARG $RESULT) 
(CFCOMBINE $CF1 $CF2 $RESULT) 
(EQ $ARG1 $ARG2) 
(GREATERP $ARG1 $ARG2) 
(LESSP $ARG1 $ARG2) 
(MINUS $ARG1 $ARG2 $RESULT) 
(MINUS $ARG) 
(NULL $ARG) 
(TIMES $ARG1 $ARG2 $RESULT) 

(FIRST-ONE $LIST $RESULT) 
(LENGTH $LIST $RESULT) 
(MEMBER $MEN $SET) 
(SINGLETON? $LIST) 

(PREDICATE $RE~ 
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(IMPLEMENTATION $REL $VAL) 
(MULTIPLEMATCH $REL) 

(UNIFY $PATTERN $FACT) 

Relations defined by rules (composites) 

(ACTIVE.HYP? $HYP) 
(ALWAYS-SPECIFY? $FINDING) 
(ANTECEDENT.RULES? $PARM $RULE) 
(ANY.ANCESTOR? $HYP1 $HYP2) 
(BESTCOMPETITOR $CURRENTHYP $BETTERHYP $BHCF) 
(BESTHYP $HYP) 
(CHILDOF $HYP $CHILD) 
(CLARIFY.QUESTIONS $FINDING $PROCPARM) 
(DIFF.EXPLAINED $FINDING) 
(DIFF.NOTPARENTS-EXPLORED?) 
(DIFF.NOTPURSUED?) 
(ELIGIBLECHILD) 
(ENABLING.QUESTIONS $HYP $RULE) 
(EXPLAINEDBY $FINDING $HYP) 
(EXPLORE.CHILD? $HYP $H) 
(EXPLORE.HYP? $HYP) 
(EXPLORE.SIBLING? $OLDFOCUS $HYP) 
(NEXTGENERALQ? $FOCUSQ) 
(PARTPROC.NOTELABORATED? $FINDING) 
(PARTPROC.SUGGESTRULES? $PARM $RULE) 
(POP-FINDING $NEWDATA $FINDING) 
(POP-HYPOTHESIS $NEWDATA $HYPOTHESIS) 
(POP-REDFLAG-FINDING $NEWDATA $FINDING) 
(PROCESS-QUESTIONS? $PARM $PROCTYPEPARM) 
(REFINABLE? $HYP) 
(REFINABLENODE? $OLDFOCUS $FOCUSCHILD) 
(REMAINING.QUESTIONS $HYP $RULE) 
(SINGLE.TOPCAUSE $FOCUS) 
(SOURCEOF $PARM $SOURCE) 
(STRONG-COMPETITOR? $CURRENTHYP $BESTCOMP) 
(SUBSUMPTION.SUBTRACED $CNTXT $PARM) 
(SUBSUMPTION.SUPERFO $CNTXT $PARM) 
(SUBSUMPTION.SUPERTRACED $CNTXT $PARM) 
(SUBSUMPTION. SUPERUNK $CNTXT $PARM) 
(SUGGESTRULES? $PARM $RULE) 
(SUPERS.NOTRACED $PARM $SUPERPARM) 
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(TAXANCESTOR $HYP1 $HYP2) 
(TAXREFINE? $HYP) 
(TOP.UNCONFIRMED? $ANCESTOR) 
(TOPUNCON $ANCESTOR $HYP) 
(TRIGGERQ $HYP $RULE) 
(TRIGGERS? $FINDING $RULE) 
(UNAPPLIED? $RULE) 
(UNCLARIFIED-FINDING $NEW.DATA $FINDING) 
(UNEXPLOREDDIFF.COMPACT? $HYP) 
(UPDATE.DIFF.RULES? $FINDING $RULE) 
(WAITINGEVlDRULES? $HYP $RULE) 
(WEAK.EVIDENCE.ONLY? $HYP) 
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