
In Knowledge Acquisition for Knowledge Based Systems,
J. Boose and B. Gaines (eds.), Academic Press, 1987.

Knowledge base refinement by monitoring abstract
control knowledge

DAVID C. WILKINS, WUIAM J. CLANCEY AND BRUCE G. BUCHANAN

Department of Computer Science, Stanford University Stanford, CA 94305, U.S.A.

An explicit representation of the problem solving method of an expert system shell
as abstract control knowledge provides a powerful foundation for learning. This
paper describes the abstract control knowledge of the HERACLES expert system
shell for heuristic classification problems, and describes how the ODYSSEUS
apprenticeship learning program uses this representation to semi-automate “end-
game” knowledge acquisition. Ihe problem solving method of HERACLES is
represented explicitly as domain-independent tusks and mefanrlcs. Metarules locate
and apply domain knowledge to achieve problem solving subgoals, such as testing,
refining, or differentiating between hypothesis; and asking general or clarifying
questions.

We show how monitoring abstract control knowledge for metarule premise
failures provides a means of detecting gaps in the knowledge base. A knowledge
base gap will almost always cause a metarule premise failure. We also show how
abstract control knowledge plays a crucial role in using underlying domain theories
for learning, especially weak domain theories. The construction of abstract control
knowledge rquires that the different types of knowledge that enter into problem
solving be represented in different knowledge relations. This provides a foundation
for the integration of underlying domain theories into a learning system, because
justification of different types of new knowledge usually rquires different ways of
using an underlying domain theory. We advocate the construction of a definitional
constraint for each knowledge relation that specifies how the relation is defined and
justified in terms of underlying domain theories.

1. Introduction
An apprenticeship period is the most effective means that human problem solvers
use to refine domain-specific problem solving knowledge in expert domains. This
provides motivation to give apprenticeship learning abilities to knowledge-based
expert systems, since they derive their power from the quality and quantity of their
domain-specific knowledge. By definition, apprentice learning programs improve an
expert system in the course of normal probtem solving and derive their power from
the use of undertying domain theories (Mitchell et at., 1985).

There are two principal apprenticeship learning scenarios used by human problem
solvers in knowledge-intensive domains such as medicine and engineering. In the
first scenario, an apprentice problem solver learns in the course of observing the
problem solving behavior of another problem solver. A learning opportunity occurs
when the apprentice fails to explain an observed problem solving action. At this
point, the apprentice can often use the problem solving context and underlying
domain theories to identify missing or wrong problem solving knowledge, or at
worse be able to ask a pointed question that will isolate the knowledge discrepancy.
Our past research focused on this type of scenario: the ODYSSEUS learning

183

KNOWLEDGE-BASED
ISBN @12-273251-O

SY!xEMS
AU

copyright @ 1.988 Acodcmic Press LJmited

rights of reproduction in any form mervcd

William J. Clancey
In B. R. Gaines and J. H. Boose (Eds.), Knowledge Acquisition for Knowledge-Based Systems (pp. 183–195). Orlando: Academic Press, 1988.
Also: Int J Man-Machine Studies, 27 (3), 281–293, September 1987.�

184 D. o. WILKINS, W. J. CLANCEY AND B. G. BUCHAN~

program improves HERACLES-based expert system in the course of watching a
human expert solve problems (Wilkins et ul., 1986).

In the second apprenticeship learning scenario, an apprentice problem solver
learns in the course of solving problems and monitoring his or her own problem
solving failures. This paper described how the ODYSSEUS learning apprentice can
perform this type of learning; the ODYSSEUS learning apprentice improves a
HERACLES-based apprentice expert system by having ODYSSEUS monitor the
expert system’s normal problem solving.

This paper is organized as follows. Section 2 briefly describes the problem solving
architecture of the HERKLES expert system shell. The key aspects of
HERACLES that are crucial for learning are a separation of the domain knowledge
from control knowledge and an explicit representation of the control knowledge
using tasks and metarules. Section 3 describes the learning method used by
ODYSSEUS, provides two learning examples, and discusses the generality and
limitations of the learning approach. Section 4 covers related research, and Section 5
summarizes the contributions of this paper.

2. Heracles’ problem solving architecture

HERACLES is an expert system shell for solving problems using the heuristic
classif%ation method; it provides the user with a vocabulary of knowledge relations
for encoding domain knowledge, and a domain-independent body of control
knowledge that solves problems using this domain knowledge. In HERACLES,
control knowledge is represented as task procedures and metarules, which are
invoked by a task interpreter (Clancey, 1986b).

A task is a procedure for accomplishing some well-defined problem-solving
subgoal. Examples of tasks are to test a hypothesis, group and differentiate
hypotheses, refine a hypothesis, forward reason, ask general questions, and process
hard data. Each action within a task procedure for achieving the task procedure
subgoal is called a metarule, Metandes, which might more precisely be called
‘inference procedure rules’, do not contain domain knowledge; they index the
domain knowledge using a relational language.

The domain knowledge in HERACLES consists of MYCIN-like rules and facts
and is encoded using the MRS relational language (Russell, 1985). This knowledge
is accessed when metarules premises are unified with domain knowledge relations.
There are approximately 120 knowledge relations, such as subsumes($parml,
$pam2)f, trigger($rde), and evidence. for(Sparm, Shypothesis, &de, $cf)$. Tasks
and metarules can be viewed as orchestrating the domain knowledge: they piece the
domain knowledge together in order to achieve a problem solving goal. Examples of
metarules are shown in Section 3. Currently HEIUKLES contains approximately
thirty task procedures and eighty metarules.

The three main levels of organization in HERACLES are shown in Fig. 1. The
bottom level of organization includes all domain-specific knowledge of the expert

t Throughout this paper, all variables start with a ‘$‘.
$ This last relation myns that spana contributes evidence for $hypothe& in $r& and the certainty

factor or strength of ths I& IS sd. If a rule has several parameters in the premise, and evidence . for
tuple is constructed for each of them.

l *-

KNOWLEDGE BASE REFINEMENT

Factual database
of ground literals

RG. 1. Heracles’ architecture.

domain, such as medical or engineering knowledge. The _ _ middle layer contains
meta-level control knowledge, which encodes a problem-solving method such as
heuristic classification or constraint propagation. Earlier shells such as EMYCIN did
not have the middle layer of abstract control knowledge; rather, this knowledge was
imbedded in the interpreter and the domain rules.

185

In the examples in this paper, the domain knowledge base to be refined is the
NEOMYCIN knowledge base for diagnosing meningitis and neurological problems
(Clancey, 1984). The NEOMYCIN knowledge base is a reorganization and
extension of the MYCIN knowledge base, in which distinctions are made between
different types of problem solving knowledge, and the control knowledge is more
completely separated from the domain knowledge. The described HERACLES
system was actually created by removing the domain knowledge from NEOMYCIN.
Patient cases created for the NEOMYCIN domain are used as input. The
ODYSSEUS induction theory uses the MYCIN library of solved patient cases
(Buchanan & Shortliffe, 1984).

HERACLES me&rules have the responsibility for locating and applying all
domain knowledge. The form of the metarule provides a way to determine whether
the premise of the rule is true by accessing dynamic state information and
referencing and retrieving information from the domain knowledge base.
ODYSSEUS monitors HERACLES metarule premises for failures. If the cause of
the failure is missing domain knowledge, ODYSSEUS attempts to create this
knowledge using underlying theories of the domain. If ODYSSEUS succeeds in
finding the desired domain knowledge, the domain knowledge base in the expert
system shell is automatically refined. The metarule for achieving a problem solving
subgoal can now be successfully applied.

3. Odysseus’ learning method

An overview of the learning method to be described is shown in Fig. 2. The first
major task facing the learning system is global credit assignment, which is the
determination of whether there is a potential gap in the knowledge base. The gap
can be either a lack of factual or rule knowledge. The use of a relational language
for all knowledge, including rules, provides a uniform approach to discovering both
types of deficiencies. A gap in the knowledge base is suspected whenever the
premise of a metarule fails. Given a failed metarule premise, the learning program

186 D. C. WILKINS, W. J. CLANCEY AND B. 0. BWHANA.N

GlObOl
credit
assignment

LOCOI
credit

FIG. 2. Odysseus’ learning method. I

checks to see which conjuncts of the premise failed. If the failed conjunct indexes
dynamic state information or is used, to control the meta-level reasoning, then there
is no learning opportunity, as there% no corresponding underlying domain theory.
However, if the failed conjunct is the type that accesses the domain knowledge base,
then this could be a learning opportunity.

After detecting the existence of a gap in the knowledge base, the next task is to
pinpoint the gap; this is the local credit assignment problem. In our approach, there
are two major parts to local credit assignment: generation of potential repairs and
the testing of these repairs for validity.

The input to the ODYSSEUS candidate repair generator is the metarule that
failed, the known bindings for variables in the clauses of the metarule premise that
have been determined outside of the scope of the metarule, and a knowledge of the
range of values that each variable in a metarule clause is allowed to assume. For
example, the value of the variable $fWi.ng can be any finding in the domain
vocabulary. The candidate repair generator focuses on the knowledge relations in
the metarule and generates all allowable variable bindings for these relations. These
instantiated relations are then passed on to the ODYSSEUS candidate tester.

The input to the ODYSSEUS candidate tester is a knowledge relation instance,
such as subsumes(visual-problems, double-vision). In order to test this candidate,
two things are necessary. First, ODYSSEUS must have in hand a definition of all
the constraints (empirical or otherwise) that determine whether an arbitrary instance
of this knowledge relation is valid. Second, the learning program must have
underlying theories of the domain that are capable of determining whether the
constraints are satisfied, and hence. whether the knowledge relation instance is
valid. ODYSSEUS contains two underlying domain theories for testing of new

K,NOWLEDGE BASE REFINEMENT 187

knowledge: a strategy theory of heuristic classification problem solving and a
confirmation theory based on induction over past cases.

In the remainder of this section, two learning examples will be described in detail
to demonstrate the approach we are advocating. The first example, given in Section
3.1, illustrates the learning of factual knowledge for the knowledge relation
cIarQing.questions, using the ODYSSEUS strategy theory as the underlying
domain theory. The second example, given in Section 3.2, illustrates the learning of
rule knowledge for the knowledge relation evidence. for, using a confirmation
theory based on induction over past cases as the underlying domain theory. These
examples are based on the NEOMYCIN knowledge base, the MYCIN case library,
and an actual medical case. Both sections assume that a metarule failure has
occurred and that candidate repairs have been generated; they concentrate on the
third stage of learning, wherein candidate repairs are tested.

3.1. LEARNING FACI’UAL KNOWLEDGE

The focus of this example is the darifjing. questions knowledge relation in the
c!ar@ . questions metarule presented below. As an example of its use, suppose the
doctor discovers that the patient has a headache. The headache finding is associated
with many diagnostic hypotheses, so many that it is generally wise to narrow down
this set of hypotheses by determining the severity and duration of the headache
before pursuing a specific hypothesis. This is the process of clartfiing the finding,
and the questions about various subtypes of this finding (e.g., headache-duration,
headache-severity) are called clarifying questions. In the HERACLES system, this is
implemented by invoking the drrrify . finding task whenever a new finding is derived
by the system or provided by the user. In turn, the darify . Budiug task invokes the
clarify l questions metarule.

MetaRule 1: Clarify l questions
IFr goal(dariQ l finding $iiudingl) A

(d-g. questions($findingl $findi@) A

THEN:

ENGLISH:

not(valu~lnown $iwing2)

goal(findout Sfinding2)

If the current goal is to darify finding1
and fiudiugl can be clarified by finding2
and finding2 is currently unknown
then try to find out the vahxe of finding2.

Only one of the premise conjuncts of Rule 1 accesses domain knowledge, namely
clarifying . qnestions($iindingl Sfinding2). The first conjunct is for control purposes
and the third conjunct checks the value of dynamic state knowledge.

The situation when learning may occur is when Rule 1 is passed a value for the
variable $findingl, say ‘headache’, but the premise of Rule 1 fails because no
bindings can be found for $finding2. In this situation, $tindlx@ is a free variable at
the time of failure. ODYSSEUS begins the learning process by invoking the
candidate repair generator, which generates every possible candidate binding for

188 D. C. WILKINS, W. f. CLkwcEY AND B. 0. BUCHANAN

$fh&@. Using information regarding the domain of $&Iin@, the learning critic is
able to generate about 300 candidate relations.

In order to be able to validate candidate new domain knowledge for a particular
knowledge relation, two steps must be taken beforehand. First, a justification for the
knowledge relation must be constructed that specifies all the constraints that an
instance of the knowledge relation must satisfy in order to be valid. In our example,
this requires constructing a precise definition that captures the constraints on an
instance of the darifyiug . questions relation. Second, a way must be found to test
these constraints using underlying theories of the domain. This two-step method
constrasts with the current manual method of refining the NEOMYCIN
base, which consists of asking physicians what clarifying questions to use.

knowledge

Let us begin by giving an informal justication of darifying.questious. One
reasonable justification for asking clarifying questions is cognitive economy with
respect to efficient diagnosis. Much of diagnosis involves the testing of specific
hypotheses; however, sometimes a new piece of information is discovered that
suggests a very large number of hypotheses. To reduce the number of relevant
hypotheses, it is helpful to ask several clarifying questions that will add confnming
or disconf$rming evidence to many of the hypotheses associated with the new piece
of information. After asking these questions, only a few of the numerous potential
hypotheses will now be consistent with what is known.

We can now give a precise description of the constraints operating’ on
&ui@.ng . questions. This first-principles interpretation of a clarifying question is as
follows: if a question is associated with many hypotheses, say more than six, and
there exists a question that provides positive or negative evidence to many of these
hypotheses, say between one-third and two-thirds, then always ask this question as a
clarifying question. This can be formalized as follows.

De&&ion 1
For any finding f, let IfJ!J be the set of all hypotheses h such that relates-to (J h) is

true. Let fi and fi be distuxt findings, such that subsumes a,&) is in the knowledge
base. Let n be an empirically determined threshold indicating the minimum number
of hypotheses that a finding must relate to in order to require the use of clarifying
questions. Then

The reliztes-to() relation is not part of the domain knowledge base; it is computed
on the fly when a new piece of knowledge is validated, using a method which we will
now describe. ODYSSEUS has two underlying domain theories that together can be
used to check whether a new piece of knowledge satisfies all aspects of Definition 1.
One underlying theory is a strategy theory for heuristic classification problem
solving. A component of this theory is a line of reasoning explanation generator.
Given a finding, all paths from that finding to reasonable possible diagnostic
hypotheses via metarule applications can be determined. The generator can
enumerate all the reasons that a question could possibly be asked, given the strategy
and domain knowledge in HERKLES. The line of reasoning generator allows

KNOWLEDGE BASE m 189

determination of all the hypotheses that are associated with any one question either
directly or indirectly; it is used to compute relates-to (f” h).

We now describe the results of encoding Definition 1 and implementing our
approach for the NEOMYCIN knowledge base. Currently, there are two clarifying
questions for headache in the NEOMYCIN knowledge base: headache duration and
headache severity. Our implemented metarule critic for the dari& l questions
metarule considered the effect of all headache-related questions on the set of
hypotheses associated with headache, and determined that one more clarifying
question met the above described constraints: headache progression (i.e., is the
headache getting better or worse). ODYSSEUS automatically modified a slot value
under headache in the knowledge base to include this clarifying question; in the
future, this question will always be asked when the patient complains of a headache.

3.2. LEARNING RULE KNOWLEDGE

All rule knowledge is represented within HERACLES using knowledge relations.
This means that rules can be learned much as factual knowledge is learned. The
example in this section involves learning an instance of the evidence. for relation in
the Spilt . dve l hypotheses metarule. This rule is one of three invoked by the
task group .and,diiferentiate. hypotheses. This metarule is useful during diag-
nosis when there are currently a large number of strong diagnostic hypotheses. The
split .active. hypotheses metarule searches for a fmding to ask about that will
simultaneously provide strong positive evidence for some active hypotheses and
strong negative evidence against other active hypotheses.

MetaRole 2: Split. active. hypotheses

IFZ

THENt

ENGLISH:

goal(group . and. differentiate. hyps Sactive . hypotheses) A
member($hypothesisl Sactive . hypotheses) A
member($hypothesW $active . hypotheses) A
not(equal(Shypothesis1 $hypothesis2)) A

evidence. for(Sfind@ Shypothesisl Sdel Scfl) A

evidence. for(Sfinding Shypothesis2 Smle2 Scf2) A

greater(Scfl .2) A
less($cf2 - 0 2)

goal(6ndout Sfinding) .

If the current goal is to group and differentiate a list of active
hypotheses and a single finding provides positive evidence for one
of the hypotheses and negative evidence for another of the
hypotheses then try to find out the value of this finding.

.

The metarule is passed a value for the variable $active . hypotheses. The
interpreter attempts to find a unifier for all the clauses such that Shypothesisl is
bound to one member in Sactive l hypotheses, Shypothesis2 is bound to a different
member of Sactive. hypotheses, and there is a single finding in the premise of a
me&rule that concludes that Shypothesisl is probably present and is also in the

190 D. C. WILKINS, W. J. CLANCEY AND B. 0. BUCHANm

. premise of a rule that concludes that Shypothesis2 is probably absent. That is, a
finding is asked that simultaneously provides evidence against some of the
hypotheses and evidence for other hypotheses. Even though the NEOMYCIN
knowledge base has been under development for several years the
@it. hypothesis. list metarule is rarely invoked on any of the patient cases’in the
NEOMYCIN case library. Therefore implementing a learning critic. for this
metarule is useful.

In the example in which our learning critic was called into play, Sac&e.
hypotheses consisted of seven hypotheses: AV malformation, mycobacterium
TB meningitis, viral meningitis, acute bacterial meningitis, brain aneurysm, partially
treated bacterial meningitis and fungal meningitis. The metarule fails because
a binding for @n&g cannot be found in the two relations positive.
evidence. for and negative. evidence . for. Other clauses establish bindings for
$hypothesisl and $h ypothesis2. Using information regarding the domain of S&ding,
the learning critic conjectures many potential missing rules. The number of conjectures
can be quite large.

Given these conjectures, a confirmation theory determines whether any of them is
true. This requires the use of a formal definition for each relation. In this case we
need a formal definition of $evidence . for. - .

!i

Definition 2
Let t be a justifiable domain rule. Let f be a finding that appears in the premise of

r, and let h be a hypothesis that appears in the conclusion of r. Let s be the certainty
factor strength of r, normalized to lie between &l. Then

evidence . foru, h, r, s) - general(r) A sped&(r) A complex A -i&near(r)

To actually determine whether a domain rule is justifiable requires the use of an
underlying domain theory. ODYSSEUS uses induction over a case library to
determine whether the conjectured rule is valid. That is, ODYSSEUS does a
statistical analysis of the cases and determines whether the rule has good generality,
specificity, and economy, and satisfies other measures of rule fitnesst.

The confirmation theory using the ODYSSEUS induction system found five rules
that divide the list of active hypotheses, including:

Object-Level Rule 1
IFZ duration l of l symptoms s 1 day A

evidence. for(meningitis) 30.6

=Nr sUggests fan@. menhq@ (Cf= -tb8) A
suggests mycobacterium . tb . meningitis (cf = -045) A
suggests acute. bacteriaI. meningitis (cf= 0.7)

t The library of test cases that we used to generate rules is the MYCIN case library (Buchanan &
Shortliffe, 1984). Because diseases are defined in the NEOMYCIN knowledge base that are not defined
in the MYCIN system (in this case, AV maifotiation, partially treated bacterial meningitis, and brain
aneurysm), the values of the certainty factors (CFs) for some rules will be slightly inaccurate.

191 KNOWLEDGE BASE REFINEMENT

TABLE 1
Comparing apprenticeship scenarios

Scenario

Learning
Task

Global credit
assignment

Scenario 1:
watching other
problem solver

Attempt to construct an
explanation of observed
action fails.

Scenario 2:
watching own

problem solving

Meta-level control
rule premise fails.

-credit Generate domain KN
assignment: element that completes
generate repairs an explanation.

Local credit Check constraints on KN
assignment: relation using underlying
test repairs domain theories.

Generate domain KN
element that allows
rule to succeed.

Check constraints on KN
relation using underlying
domain theories.

3.3. COMPARING APPRENTICE scENAluos

Table 1 contrasts the two different ODYSSEUS apprenticeship learning scenarios of
watching another problem solver and watching one’s own problem solving. Table 1
compares the way the two scenarios accomplish the three major learning tasks faced
by an apprenticeship learning system: the realization that knowledge is missing, the
generation of candidate repairs, and the testing of those repairs. Note that the latter
two tasks, i.e. the local credit assignment process that involves the use of underlying
domain theories and the construction of definitional constraints, are identical in the
two scenarios. On the other hand, the global credit assignment process is easier
when watching oneself, because there is none of the uncertainty connected with
inferring another agent’s line of reasoning. Generating repairs is also easier when
watching oneself, as there is no uncertainty as to exactly which metarule and hence
which knowledge relation is responsible for the failure.

Compared to watching another problem solver, one can learn from watching one’s
own problem solving earlier in the knowledge acquisition ‘end-game’. When
watching another problem solver, a relatively large knowledge base is required;
otherwise it is impossible to follow the line of reasoning of an expert most of the
time, which is a requirement of this scenario.

A disadvantage of watching oneself is a large number of false alarms. Metarules
fail most of the time, and it is not clear what the failure rate would be for a really
good knowledge base. Perhaps it would only be a little lower than with a fairly
incomplete knowledge base. More experimentation is required to answer these
questions.

4. Discussion

Monitoring abstract control knowledge appears to be a very promising lever for
aiding apprenticeship learning. In showing two examples of the leverage obtained by

192 D. c. WLKINS, W. J. CLANCEY AND B. 0. BUCHANAN

this approach, we have only scratched the surface of the topic. This section discusses
some of the remaining open issues.

As described in Sections 3.1 and 3.2, we have begun to implement constraint
definitions to link knowledge relations to underlying theories. A key question that
needs investigation is the reusability of these constraint definitions; are there sets of
knowledge relations that can use the same or similar constraint definitions? As there
are scores of different knowledge relations in the NEOMYCIN system, reuse of
definitions could significantly reduce the amount of effort needed to create metarule
critics for all metarules in the expert system shell. Further, it is not yet known
whether all types of knowledge relations will be amenable to formal constraint
definitions.

The best method of gauging the improvement produced by the addition of new
knowledge is another open question. The heuristic knowledge that the examples of
Section 3 added to the knowledge base is clearly helpful for the example cases,
because it allows several hypotheses to be confirmed or disconfrrmed with a single
question. However, a complete validation should show improvement in performance
on a validation set of cases. The measure of performance should be diagnostic
accuracy and efficiency.

Another issue involves the control of the learning process. When should this type
of learning be invoked? Not every metarule failure signals missing knowledge; how
can learning opportunities be distinguished from routine failures?

Another open problem relates. to the quantity of new knowledge introduced into
the system. For example, in Section 3.2 five new rules were found that would divide
the current hypothesis list. More generally, an open problem in the induction of rule‘ f
bases is how to adequately bias the selection of rules (Fu & Buchanan, 1985;
Michalski et at., 1983). There may be very many good candidate rules, but having
too many rules is injurious to an expert system-efficiency is decreased, debugging is
complicated, and explanations of actions become harder to follow. Of course,
learning knowledge in the context of normal problem solving increases the
likelihood that the rules produced by the induction system are going to be useful for
problem solving. Only adding rules that are needed by the metarules of the
inference procedure is a good step towards introducing a sufficient bias on rule
selection.

5. Related work

Two major apprenticeship learning systems are LEAP and DIPMETER ADVISOR
(Mitchell et al., 1985, Smith et al., 1985). In both of these systems there is a single
type of knowledge. In LEAP, all knowledge is implementation rules. In
DIPMETER ADVISOR all knowledge is heuristic rules. In contrast, there are
dozens of types of knowledge in HERACLES-each knowledge relation cor-
responds to a different type of knowledge. The key to automatic learning seems to
be the definition of constraints to tie each knowledge relation individually to one or
more underlying domain theories.

There has been a great deal of research on failure driven learning that monitors
control and planning knowledge (Mitchell et al., 1983; Korf, 1985; Minton, 1985).
The goal of these research effort is to create better control knowledge so as to speed

KNOWLEDGE BASE REFINEMENT 193

up problem solving, rather than to learn domain-specific factual knowledge. This
compliments our approach, as we do not address the learning of ‘abstract control
knowledge for a problem-solving method; in other words, we do not learn tasks and
metarules.

ODYSSEUS has a separate definitional constraint for each knowledge relation.
This allows ODYSSEUS to determine whether the candidate new knowledge
relation instance is valid. This is reminiscent of the approach taken in AM (Lenat,
1976), where each slot of a concept has a set of associated heuristic rules that can be
used to validate the contents of the slot.

6. Summary

It is well known that expert systems derive much of their power from the quality and
quantity of their domain specific knowledge. The method described in this paper
provides a method of partially automating the acquisition of some of this
knowledge.

The construction of expert system shells for generic tasks has become a common
practice. There is a growing awareness that the power of a knowledge acquisition
system for an expert system shell is bounded by the complexity and explicitness of
the inference procedure (Eshelman & McDermott, 1986; Kahn et al., 1985). There
is also a growing awareness that automated knowledge acquisition must be grounded
in underlying domain theories (Mitchell et al., 1985; Smith et’al., 1985). Using the
HERACLES expert system shell and the ODYSSEUS apprenticeship learning
program, we have demonstrated how underlying theories of a problem solving
domain can be effectively used by a learning method centered around an explicit
representation (i.e., tasks and metarules) of the problem solving method.

The learning method described in this paper has three stages. The first stage is
global credit assignment, the process of determining that there is a gap in the
knowledge base. This is accomplished by monitoring metarule premise failures in
the expert system shell, since all knowledge base gaps cause these. The second stage
of learning is generating candidate repairs. Candidate repairs are generated by
locating the knowledge relation in the failed metarule premise, and generating all
values of the relation for the free variables in the relation. The last stage of learning
is evaluation of candidate repairs. The ODYSSEUS method involves constructing a
constraint definition for each different type of knowledge, to describe how an
underlying domain theory can be used to validate the repair. In the described
experiments, we used the NEOMYCIN knowledge base for the HERACLES expert
system shell. The underlying domain theories are a strategy theory and a
confirmation theory based on induction over past cases.

A major open question is to determine how many of the knowledge relations in
the expert system shell can be grounded in underlying theories of the domain. In
particular, we are investigating the extent to which the different knowledge relations
can be grounded in the two underlying theories that are part of ODYSSEUS.
However, for certain types of domain knowledge used in the metarules, such as
definitional and causal knowledge, we currently have no underlying theory;
construction of such theories to allow automated knowledge acquisition will be
difficult and perhaps impossible.

194 D. C. WILKINS, W. f. CLANCEY AND B. G. BUCHANAN

The type of learning demonstrated in this paper is more powerful than most forms
of failure-driven learning, because the definition of failure is weaker. Failure to
solve the overall problem is not necessary; rather, failure to satisfy a metarule
premise for achieving a problem solving subgoal is sufficient for learning to take
place.

We express our gratitude for helpful comments provided by Haym Hirsh and Marianne
Winslett for several draft versions Of this paper.

This work was supported in part by NSF grant MCS-83~12148, ONR/ARI contract
N0001479C-0302, Advanced Research Projects Agency (Contract DARPA NOOO3983-C-
0136), the National Institute of Health (Grant NIH RR-00785~11), National Aeronautics and
Space Administration (Grant NAG-5-261), and Boeing (Grant W266875). We are grateful for
the computer time provided by the Intelligent Systems Lab of Xerox PARC and SUMEX
AIM.

References

BUCHANAN, B. G. Bt SHORTLIFFE, E. H. (1984). Rule-Based &pert Systems: The MYCIN
Experiments of the Stanford heuristic Programming Project. Reading, MA: Addison-
Wesley.

CLAN-Y, W. J. (1984). NEOMYCIN: reconf@ring a rule-based system with application to
teaching. In CLANCEY, W J. & SHORTLIFFE, E. H. Eds. Readings in Medical Arti@irrl
Intelligence. Reading, MA. : Addison-Wesley. pp. 361-381.

CLANCEY, W. J. (19860). From GUIDON to NEOMYCIN to HERACLES in twenty short
lessons. AI Magazine, 7, 4040.

CLANCEY, W. J. (19866). Representing control knowledge as abstract tasks and metarules. In
C~OMBS, M. 6t BOUT, L. Editors. Computer Expeti Systems Heidelberg: Springer
Verlag. Also, Knowledge Systeti L+ab Report KSL-85-16, Stanford University, April
1985.

E~HELMAN, L. & MCDERMO~, J. (1986)~ MOLE: a knowledge acquisition tool that uses its
head. In Proceedings of the Fifth National Conference on Artificial Intelligence.

Fu, L. & BUCHANAN, B. G. (1985). Inductive knowledge acquisition for rule based expert
systems. Technical Report KSL 85-42, Stanford University, Computer Science
Department.

KAHN, G., NO~LAN, S. & MCDERMOIT, J. (1985). MORE: an intelligent knowledge
acquisition tool. In Proceedings of the 198.5 ZJCAI. pp. 573-580.

KORF, R. (1985). Learning to solve problems by searching for macro-operators. Marshfield,
MA: Pitman.

LENAT, D. B. (1976). AM: An artificial intelligence approach to discovery in mathematics as
heuristic search. Ph thesis, Stanford University.

MICHA~SK~, R. S., CARBONELL, J. G,, & MITCHELL, T. M. Eds (1983). Machine Learning:
An Artifkia~ Intelligence Approach. Pato Alto: Tioga Press.

MINTON, S. (1985). Selectively generalizing plans for problem solving. In Proceedings of the
1985 I’CAZ, pages 596-599.

MITCHELL, T.; UTOOFF, P. E. & BANERJI, R. S. (1983). Learning by experimentation:
acquiring and refining problem-solving heuristics. In MICHALSK~, T. M., CARBONELL, J.
G. & MITCHELL, T. M., Eds. Machine Learning: An Artijkial Intelligence Approach.
Palo Alto: Tioga Press. pp. 163490.

MITCHELL, T. M., MAHADEVAN, S. & STEINBERG, L. I. (1985). LEAP: a learning apprentice
for VLSI design. In Proceedings of the 1985 UCAI. pp. 573-580.

RUSSELL, S. (1985). The Complete Guide to MRS. Technical Report KSL-85408, Stanford
University.

SW, R. G., WINSTON, H. A., MITCHELL, T. M. & BUCHANAN, B. G. (1985).

KNOWLEDGE BASE REFINEMENT

Representation and use of explicit justifications for knowledge base ref’mement. In
Proceedings of the 1985 NCAI. pp. 673480.

WILKINS, D. C., CLAN~EY, W. J. & BUCHANAN, B. G. (1986). An overview of the
ODYSSEUS learning apprentice. In MITCH=L, T. M., MICHALSKI, R. S. AND

CARBONELL, J. G., ENS. Machine Learning: A Guide to Current Research, New York:
Kluwer Academic Press. pp. 332-340.

