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Abstract 

This aper introduces a system to infer au- 
tomatic J y the model of an expert medical diag- 
nostician by watching the expert diagnose a pa- 
tient. Our ap 
res ondence 

YI 
g 

roach relies heavily on a close cor- 
etween the system and a human 

wit respect to knowledge organization, infer- 
ence methods and discourse language. The de- 
scribed system is a major component of a fearn- 
ing by wutching system being created to facili- 
tate automatic ac uisition of new problem solv- 
ing knowledge an x to refine cognitive models of 
expert reasoning. 

In this paper we describe the closed world 
learning environment that allows an expert to 
solve a problem and explain his or her reason- 
ing to the system. Each time the expert requests 
data, a hypothesis generator reduces a set of al- 
ternative interpretations of t Y/l e behavior. These 
are pruned by a hypothesis evaluator currently 
under construction. 

1 Introduction 

Artificial intelligence has been successful in 
producing problem solving systems that demon- 
strate expertise in limited domain areas within 
fields such as symbolic integration, medical di- 
agnosis and organic chemistry [LIN80]. A bot- 
tleneck in the creation and expansion of these 
knowledge-intensive systems is knowledge acqui- 
sition. Acquiring the necessary domain knowl- 
edge is a very tedious and time-consuming man- 
ual process requiring many person-years of effort 
on the part of a domain expert and a knowledge 
engineer. There is good motivation to automate 

this process, but me 
unsuccessful. 

We are taking a 
[HOL75] to this prob 
are trying to create 

ihods to date have proved 

natural systems approach 
em. This means that we 
a framework whereby an 

expert problem solver’s knowledge organization 
and knowledge acquisition methods are mod- 
eled as similarly as possible to human problem 
solvers. 

There are a number of reasons why medi- 
cal diagnosis is an attractive domain in which 
to explore this approach. Foremost is the ex- 
istence of a large body of psychological stud- 
ies on how human clinical expertise is organized 
and used [ELS78, KAS78, PAT81, POP82]. A num- 
ber of medical expert systems have been con- 
structed that approximate the knowledge orga- 
nization and problem solving method suggested 
by these studies. In contrast to systems such as 
Mycin, the creators of the Neomycin, Pip, and 
Internist medical expert systems view their pro- 
grams as simulations of the process of clinical 
reasoning [CLA81, PAU76, POP82]. 

Learning by observing seasoned experts is a 
very important step in the development of med- 
ical expertise. Prior to observing experienced 
physicians, a medical student f!irst spends two 
or three years studying and acquiring textbook 
knowledge of diseases and the physiology of the 
human body. At the end of this period, despite 
a significant repertoire of factual medical knowl- 
edge, the student is unable to demonstrate any 
real diagnostic expertise. Since we define med- 
ical expertise as that body of knowledge built 
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up over textbook knowledge, this comes as no 
surprise. Expertise is acquired during an ap- 
prenticeship period in which the student watches 
his or her mentors diagnosing real cases and at- 
tempts to duplicate this skill on his or her own 
through practice [KAS82]. The novice’s knowl- 
edge base undergoes a reorganization during this 
period. 

Our system watches a physician-patient dia- 
logue and tries to determine the physician’s rea- 
sons for each of the questions asked of the pa- 
tient. When a question cannot be explained, our 
system assumes that the expert possesses some 
knowledge that it does not, and then tries to 
acquire this knowledge. 

The ability to infer the reasons for the ac- 
tion of another expert when watching the expert 
solve a problem is as much a dimension of exper- 
tise as problem solving, explanation of expertise, 
and teaching of expertise. A familiar example of 
this within the field of artificial intelligence is 
seen during organized human vs. machine chess 
matches. There is often a highly ranked player 
present who explains the probable reason for the 
moves of each player during the game. Medi- 
cal diagnosis is another domain where experts 
in the same area of specialization are very good 
at critiquing each other’s problem solving be- 
havior. When a physician asks a question of a 
patient, another physician watching the patient- 

physician interview can usually infer the reason 
for each question asked of the patient. 

2 The Simulation of Clinical Exper- 

tise 

The major results on modeling clinical ex- 
pertise relate to the way knowledge is chunked 
in long term memory, the relationship between 
domain and strategy knowledge, and the role of 
short term memory in managing focus of atten- 
tion and problem solving. This section reviews 

three distinguishing characteristics of medical 
expert systems designed to simulate clinical rea- 

soning, and then describes the ways our research 
will contribute to refinement of existing models 
of clinical expertise. 

The first characteristic of these systems is 
representation of the medical knowledge as a 
network of frames centered around diseases, clin- 
ical states and findings. Examples of slots in 
these frames are findings (observations including 
facts from the the patient’s history, data about 
the patient’s present illness elicited from the pa- 
tient), caused-by (diseases or clinical states that 
can cause this disease or clinical state), cause- 
of (diseases that are caused by this disease or 
clinical state), complicated-by, complication-of, 
triggers (usually a single finding that is very 
strongly connected with the disease or clini- 
cal state, prompting the disease to be placed 
on the differential), differential-diagnosis (evi- 
dence that helps distinguish between two simi- 
lar and commonly confused diseases), subsumes 
(disease frames that this disease subsumes), and 
subsumed-by (disease frames that this disease is 
subsumed by). 

The second distinguishing characteristic of 
these systems is the use of a hypothesis- directed 
diagn .ostic technique organized around a hypoth- 
esis list called a di’erential. A differential is the 
list of hypotheses a physician has in mind as pos- 
sible causes of the patient’s symptoms. Much of 
the diagnosis involves operations on a differen- 

tial of hypotheses that represents the system’s 
and physician’s short term memory. Examples 
of operations on the differential are confirming, 
eliminating, and refining an element, grouping 
elements together and differentiating between el- 
ements or sets of elements, and narrowing and 
broadening the set of elements. Questions that 
the system asks have one of three purposes: af- 
fecting the state of the differential, clarifying or 
characterizing a previous question, or asking a 
routine question such as those covered in a head- 
to-toe exam [CLA84]. 

The third characteristic of these systems is 
the separation of strategy knowledge and med- 

ical domain knowledge. Ideally, the strategy 
knowledge should be domain independent, mak- 



ing no mention of medical knowledge. Designing 
a representation that allows strategy knowledge 
to be cleanly represented is one of the major 
goals of the Neomycin medical expert system. 
Neomycin’s strategy language provides a conve- 
nient framework for creating new strategy rules. 

The current approach used to improve pro- 
grams that claim to simulate clinical reasoning 
is principally to see how closely the line of rea- 
soning in consultation sessions mimics that of 
humans on cases other than those on which the 
program was tuned. Programs are then modified 
to reduce deviations between the program and 
human experts. But even when these changes 
are made, it is difficult to decide exactly how 
to change the program so as to more accurately 
model the underlying process of clinical reason- 
ing. And just because a program seems to do a 
good job of mimicking an expert does not guar- 
antee the fidelity of the model upon which the 
program is based. 

Our approach is to see if a program based on 
a model of clinical reasoning provides the neces- 
sary constraints to infer the model of the expert 
by watching. We attempt to infer a physician’s 
model at each point during the consultation ses- 
sion when the physician asks a question of the 
user. This is exactly opposite to the current 
approaches whereby a program is run (either 
in consultation, explanation, or teaching mode) 
and a physician, psychologist, or computer sci- 
entist tries to infer the (reasonableness of the) 
model of the program. Inferring the model of the 
expert is, of course, a much more difficult task, 
and the deficiencies in our model of clinical rea- 
soning should quickly evidence themselves. In- 
dividual differences between diagnostic styles of 
physicians make this a particularly challenging 
task. Yet we know that the possession of exper- 
tise does give a human the ability to infer the 
model of different physicians, so we should ex- 
pect a good model to provide us with the basis 
for doing this. 

Each time our program fails to infer the cor- 
rect user’s model, protocol analysis is used to 
determine why the program was deficient. Ad 

hoc changes to the program to correct specific 
cases are not allowed. Rather, any modifica- 
tions involve changes at a high level of generality. 
For instance, changes to the strategy knowledge 
are domain-independent, making no reference to 
medical domain knowledge. Our program shall 
certainly fail at times because of major deficien- 
cies that are beyond both the frontiers of expert 
systems and psychological studies on medical ex- 
pertise. An example of this is inferring the user’s 
model in a situation that requires complex tem- 
poral reasoning or requires heavy use of mecha- 
nistic models of physiological processes. 

3 Experimental Framework 

Our research focuses on a phase of clinical 
reasoning known as taking the patient’s present 
illness - the typical consultation .a patient has 
with a general practitioner in which a patient 
presents a chief complaint. This section de- 

scribes the method used to gather protocols of 
this situation and the modeling and learning en- 
vironment constructed by analysis of the proto- 
cols. 

Novice and expert problem solvers are pre- 
sented with a case, initially consisting of name, 
age, sex, race and initial complaints of the pa- 
tient. Our physician, Dr. Curt Kapsner, an- 
swers questions asked about the patient from 
the point of view of a medical person who knows 
the patient’s medical history and present illness 
record. The questions must be specific, and gen- 
eral questions such as “describe the stiff neck are 
not answered. When a question is asked, the ex- 
pert also tells why it is asked. The answer is 
then given. Upon receiving an answer, the ex- 
pert states what was learned from the informa- 
tion and any hypotheses under consideration. 

This data collection methodology was ap- 
plied to tuberculosis meningitis and subarach- 
noid hemorrhage cases. Based on a care- 

ful examination of these protocols, a “closed 
world diagnostic problem solving environment 
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has been constructed. Using menus, the expert 
requests information on observations which in- 
eludes the patient’s history, present illness and 
lab data. There are also menus for disorder re- 
lated hypotheses: diseases and psychopatholog- 
ical states. These menus, in conjunction with 
a menu for communicating to the system the 
expert’s Reason FOT Question (RFQ), allow a 
user to diagnose a case and critique his or her 
reasoning without ever touching the keyboard. 
All entries are input by selecting graph and 
menu entries with a Xerox D-Machine mouse 
button. This lead to a friendly user interface 
and provides our program with all the informa- 
tion needed to model the expert. 

sis generator outputs the various ways the ques- 
tion relates to elements on the differential, rou- 
tine diagnostic questions, and previous data re- 
quests. The Reason-for-Question (RFQ) tax- 
onomy shown in figure 2 provides the kernel 
of the hypothesis generation routine. Strategy 
metarules associated with each RFQ task search 
the knowledge base for alternate RF& interpre- 
tations. 

1. Reason-for-question 

l Hypothesis-related 
- Strongly-Confirms 
- Confirms 
- Weakly-Confirms 
- Strongly-Eliminates 
- Eliminates 
- Weakly-Eliminates 
- Discriminates 

l Finding-related 
- Necessary-to-Clarify-Finding 
- Just-Gathering-Info-On-Find 

0 General-exploration 
- Review-of -systems 
- Something-always-asked 

I Expert Medical 
I 
< 

Diagnostician _____-___-_______ 

Figure 2: Reason For Question (RF&) Taxon- 
omy. 

__-____-_--__ 

I Watcher strategy 
metarules I -_-------~--- 

I Neomycin medical 1 
1 knowledge-base I 

I 
and 

I strategy language -------------_------ 

I Consultation I 
l semion I 
I trace I -------------~-- 

The hypothesis generation metarules begin 
by performing bottom-up reasoning from the 
data request to disease hypotheses. This pro- 
duces a set of hypotheses for which the expert’s 
data request provides evidence. The set is then 
pruned to include only hypotheses on the dif- 
ferential and hypotheses related to elements of 
the differential. The data-driven search starts 
with the specific data item that the user requests 
and all subtypes of this data item, since the user 
might be trying to confirm a hypothesis by sub- 
sumption. The set of generated hypotheses are 

Figure 1: System Organization of Watcher. 

4 Hypothesis Generation presented to the user who chooses the one closest 
to the reason why the question was asked. 

Hypothesis generation involves covering the 
data acquisition strategy space of the expert. 
For each question the expert asks, the hypothe- 

An example of the output of the hypothesis 
generator is illustrated in figure 3. The expert 
requests information concerning the observation 
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“fever” and there are three items are on the dif- 
ferential: tension headache, meningitis. and sub- 
arachnoid hemorrhage. The hypothesis genera- 
tor executes seven strategic tasks represented by 
the leaves of the RFQ taxonomy (i.e., confirma- 
tion, elimination, discrimination, characterize- 
or-clarify-finding, etc). Three RFQ critiques are 
returned by strategy task metarules. By search- 
ing for explanations in the context of a consulta- 
tion, the pathways from data to hypotheses are 
sufficiently constrained so as to allow identifica- 
tion of the correct pathway. 

5 Hypothesis Evaluation 

Section 4 described generation of a set of can- 
didate hypotheses to explain the expert’s reason- 
ing. This section addresses selection of the hy- 
pothesis most likely to be the correct interpreta- 
tion of the observed behavior. As stated earlier, 
this part of the system is under construction. 

Initially, the expert provides an RFQ each 
time a question is asked. If for each question, 
the RF& of the expert is contained in the RFQ 
list produced by the program, then our hypothe- 
sis generator is judged complete. If not, the pro- 
tocol information will provide guidance on how 
to refine the hypothesis generator. This process 
will be repeated using a second observing ex- 
pert who critiques the fist expert’s behavior. 
If we choose our RFQ taxonomy at the right 
level of abstraction, then there will be strong 
agreement between the two experts; otherwise 
our RFQ taxonomy will need to be refined. 

The evaluation of competing hypotheses pro- 
duced by the program can also be done by the 
expert diagnosing a patient case during the con- 
sultation. The hypothesis generator produces 
the set of possible interpretations of the expert’s 
data request as the data request relates to the 
differential; and this is displayed to the user in 
the closed world critiquing language described 

in section 3. The user chooses the critique that 
best describes the reason for asking the question. 

* SHOW-DIFFERENTIAL 
> 
> tension-headache, meningitis 
> and subarachnoid-hemorrhage 
> 
> 
* Does the patient have a FEVER (Y or N)? 

c RFQl: fever = yes 
> hypothesis related: confirmation, 
) strongly-suggests 
) meningitis by subsumption 
> 
> RFQ2: fever = no 
> hypothesis related: elimination 
> weakly-suggests tension-headache 
> 
> RFQ3: fever = yes or no 
> hypothesis related: discrimination 
> yes: meningitis, no: tension-headache 
> 
> 
* What is patient's HEADACHE-CHRONICITY 
* (Acute, Subacute or Chronic)? 

3 RFQl: headache-chronicity = acute 
> hypothesis-related: confirmation 
> strongly-suggests 
> acute-bacterial-meningitis 
> 
> RFQ2: headache-chronicity = acute 
> hypothesis-related: confirmation 
> suggests subarachnoid-hemorrhage 

z RFQ3: headache-chronicity = acute 
> hypothesis-related: confirmation 
> weakly-suggests viral-meningitis 

z RFQ4: headache-chronicity = chronic 
> hypothesis-related: confirmation 
> suggests tension-headache 
> 
> RFQS: acute or chronic 
> hypothesis-related: discrimination 
> acute: meningitis subarachnoid-hemorrhage 
) chronic: tension-headache 
> 
> RFQG: headache-chronicity 
> characterize-or-clarify-finding: 
> headache 

c RFQ7: headache-chronicity 
> just-gathering-information-on-finding: 
> headache 

Figure 3: Example of RF& critiques generated 
by hypothesis generator. 

The next step is to construct an expert sys- 
tem to solve the task of hypothesis evaluation. 
We will soon begin collecting protocols from ex- 
perts on their methods of arbitrating between 
competing hypotheses. This information will 

provide the empirical data to automate the hy- 



pothesis evaluation process. Recall that experts 

can do this successfully because it is a dimen- 
sion of expertise. The expert uses a variety of 
knowledge sources in reaching a decision. Many 
involve reasoning about patterns of interpreta- 
tion in the consultation session. 

Notice that once again we are involved with a 
hypothesis formation task. How does an expert 
form hypotheses regarding which interpretation 
of another expert is the correct one? The data 
used to solve this hypothesis formation task is 
similar to the data an expert uses to solve the 
medical diagnosis task. We begin with the same 
data used during the consultation session, but 
abstract it in different ways. For example, if 
three questions in a row relate to the same hy- 
pothesis, this provides suggestive evidence that 
the next question will relate to the same hy- 
pothesis. Another example is the case where 
one hypothesis is pursued for a period of time, 
but abandoned before satisfactorily determining 
its likelihood. This provides suggestive evidence 
that it will be returned to, and this pattern 
should be expected. 

The hypothesis evaluation subsystem com- 
prises a complete expert system in itself. This 
system searches for patterns of interpretation of 
the user’s behavior using the Neomycin knowl- 
edge base, a trace of the consultation session, 
and the user’s history. Our embedded expert 
system that abstracts trace data into categories 
of interpretation is also a diagnostic or classifi- 
cation expert system like Neomycin [CLA84]. 

Querying an expert regarding his RF& is a 
crutch that we only plan to use at the beginning 
of the phase of our work on hypothesis evalua- 
tion. Experts do not require this crutch, so nei- 
ther should our program. The RFQ will be de- 
termined directly from the consultation session, 
and the user will only be asked when the system 
produces several different explanations with high 
certainty factors. Even then, this might not be 
necessary since later questions could aid in dis- 
ambiguating these multiple interpretations. 

6 Comparison to Other Learning by 

Watching Systems 

The ability to infer a user’s reasoning is an 
important element of any system to do learning 
by watching. This section describes some well 
known systems for learning expertise by watch- 
ing. 

Samuel’s checker player was one of the earli- 
est system that acquired expertise by watching a 
human expert [SAM63]. Book moves of recorded 
games played by experts were substituted for us- 
ing an actual person. This provided Samuel with 
several hundred thousand training instances. A 
preference was given to games that led to both 
sides having about equal advantage at the end of 
the game. The book-move training was used to 
learn a set of signature tables. These were used 
to assign credit and blame to measured board 
features, in accordance with the extent the mea- 
sured board features correctly predicted the ex- 
pert’s move. 

Samuel’s measured board features were ab- 
stract aspects of the board situation, such as to- 
tal mobility and back-row control. These may 
approximate the type of features used by human 
experts in evaluating the merits of alternative 
moves for a particular board position. Analysis 
of protocols from checker experts might have en- 
abled Samuel to determine how the features se- 
lected for each of the seven chronological phases 
of the game correspond to those that checker 
experts believed were most relevant. Such an 
analysis might also have been useful in determin- 
ing if the initial set of thirty-two features were 
the most relevant features for evaluating alter- 
native moves. However, even then, performance 
improvements might be limited because of the 
basic feature approach taken. Checkers experts 
probably chunk their knowledge around board 
configurations similar to the way chess experts 
are believed to organize knowledge. This orga- 
nization provides a context for storing the long 
range strengths and weaknesses of particular po- 
sitions. 
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Waterman’s poker player infers a model of 
good play in its implicit training mode [WAT70]. 

Based on a retrospective analytic evaluation of 
a hand, the program determines the action it 
should taken at each point in the game. This 
provides a move-by-move performance standard. 
Each time there is a difference between the move 
the program would have made and the per- 
formance standard, a training rule is built by 
the learning element to modify the move that 
the program will make in future similar circum- 
stances. The learned behavior is represented as 
production rules. 

There is a way in which Davis’s Teiresias pro- 
gram can be viewed as part of a learning by 
watching system [DAV76]. However, in this ex- 
ample, it is the expert that is inferring a model 
of the program and then comparing the model to 
the experts own model, rather than the program 
constructing a model of the expert. This relieves 
the program of having to face the difficult appor- 
tionment of credit problem: the expert provides 
this information. In many ways, our program is 
the exact reverse of Teiresias [BAR77]. 

7 Concluding Remarks 

Our research on inferring a user’s diagnostic 
reasoning is based on principled lines. We em- 
phasize the creation of a learning environment 
similar to that in which humans are immersed 
during acquisition of expert’ise. Expertise is ac- 
quired starting with a rich base of textbook type 
knowledge, and then augmenting this knowledge 
through an apprenticeship period by watching 
seasoned expert’s and trying one’s hand as the 
expert problem solving. The environment be- 
ing created approximates these conditions. Our 
approach also stresses the importance of using 
knowledge organization and inference techniques 
similar to those used by humans. The large body 
of literature on how physicians organize and use 
their knowledge during medical diagnosis pro- 
vides us with the opportunity to construct an 
expert system that simulates this clinical reason- 

ing process. This approach should lead to expert 
systems that escape the brittleness of current ex- 

pert systems. 
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