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Abstract
This survey of Intelligent Tutoring Systems is based on a tutorial originally presented by

John Seely Brown, Richard R. Burton (Xerox-Parc, USA) and William J. Clancey at the
National Conference on Al (AAAI) in Austin, Texas in August, 1984. The survey describes the
components of tutoring systems, different teaching scenarios, and their relation to a theory of
instruction. The underlying pedagogical approach is to make latent knowledge manifest, wnich
the research accomplishes by different forms of qualitative modeling: simulating physical
processes; simulating expert problem solving, including strategies for monitoring and
controlling problem solving (metacognition); modeling the plans behind procedural behavior;
and forcing articulation of model inconsistencies through the Socratic method of instruction.
Proceeding chronologically, examples of intelligent tutoring systems are described in terms of
their internal knowledge representations and the evolving pedagogical theory. Although these
programs are generally only research projects, examples of what they can do make abundantly
clear the long-term scientific and software-engineering advantages of the new modeling
methodology.

I. Introduction
What are intelligent tutoring systems? Why is it necessary to call them "intelligent"?

Shouldn't every tutoring system be intelligent? This name in part reflects the history of the
research (Sleeman and Brown, 1982, Wenger, 1986). The people who began this workin
particular John Seely Brown, Alan Collins, and Ira Goldsteinwanted to contrast their work
with traditional, computer-aided instruction, so they called their programs, based on Artificial
Intelligence programming techniques, Intelligent CAI (ICAI) programs. The name Intelligent
Tutoring System (ITS) means the same thing.

Perhaps the best reason for attributing intelligence to these programs is their ability to solve
the same problems that they present to students. This capability greatly enhances student
modeling and explanation. It provide., an efficient foundation for explaining all of the details
of solving a problem, not just what a teacher decided ahead of time might be useful. It also
allows us to build a student modelling program that can solve problems in alternative ways.
Obviously, to do this the modelling program first has to be able to solve the problem in at
least one way.

Explaining how a problem is solved is by no means easy, and the idea of what constitutes an
explanation has changed very much in the last ten years. In MYCIN, just saying what rules
were used and printing them was an innovative accomplishment. We now call this an audit-
irail explanation, similar to an inspectable record of financial transactions. The audit-trail
explanation program can tell you every step, but doesn't necessarily know the rationale behind
the steps. There is a difference between saying what happened and explaining why it was the
right thing to do.

Another major characteristic of an ITS is the degree of individualized instruction it provides.
Early CAI programs were contrasted with classroom teaching in terms of the individualized
instruction they allow. An ITS provides improved individualized instruction by building a
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distinct model of what he student knows, as In interpretation of how he behaves (Clancey,
1986). Thus, an ITS relates instruction to an understanding of the individual student's goals
and beliefs.

Earlier CM programs are sometimes described as branching programs. At each point, the
program makes an evaluation as to whether the student's answer at some place in solving a
problem is correct or wrong. The teacher builds in the program: If the student gives answer A
go to this section, if the student gives answer B, go to this section. The program can only
recognize these built-in answers. No coherent model of patterns in the student's behavior is
recorded. Of course, it is possible using conventional programming to build student models.
For example, you could keep a history of all of the branches that a program made and have
each new decision about where to branch based on the history of what branches have occurred
before. This could be very complex because you would have to anticipate all of the possible
histories. The methodology of art'ficial intelligence provides an easier way.

Intelligent tutoring systems dynamically analyze the solution history and use principles to
decide what to do next, rather than requiring situations to be anticipated by the author of the
program. Also, the person who writes the traditional CM program is not expressing his
strategies of why the branching is occurring at any point. At each time, v.hen he designs a
new step in his program, he may be redundantly using the same ideas of how to teach. In
intelligent tutoring systems we want to extract these principles so they can be applied
automatically, as well as expressing them explicitly, so we know what they are.

A final point is that we shouldn't think of intelligent tutoring systems as being one kind of
program with one kind of interaction with the student. There are really many different types
of programs that have different capabilities. Some are completely reactive or passive in their
behavior, they wait for the student to do something and then respond. Others, like GUIDON,
make an attempt to present new information in what is called opportunistic tutoring (Clancey,
1982). There is also a distinction between "coaching" and "tutoring." This was a point that
Goldstein made in his early work (Goldstein, 1977). A coach is of course someone who
watches and doesn't constantly interfere, but stays on the sidelines and lets you play the game.
Then, perharo when you ask for help or in a crucial moment of play, the coach interrupts and
states an important lesson. This is a non-intrusive pedagogical strategy, based on the idea that
people should just solve the problem and act on their own. If you interrupt, you won't be
giving them the opportunity to develop skills to monitor their own problem solving, such as
the capability to detect and back out of false starts.

1.1. Components of an ITS
Figure 1-1 is a diagram that I adapted from (Goldstein, 1978). I will go over it in some

detail because these components occur in most intelligent tutoring systems.

The central idea is that there is a knowledge base, some formal model, of how the problem is
to be solved, which is in the kernel of the program. For example, suppose that the student's
problem is to diagnose a patient, to see if the patient has a disease and to prescribe therapy.
The problem might be, as we'll see in some other examples, a game that the student is playing.
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It might be a child's game, intended to teach mathematics. As the student is solving this
problem, he might be receiving new information, and he's making certain solutiun steps that
we'll call "moves" in general.

Suppose now that the student requests some patient data. The tutor is watching and passes
on to a problem- solving simulator program (often called an expert system) all of the
information that the student has received about the problem. If ttis were a game, such as a
board game like chess or checkers. the tutor would tell the expert where all of the pieces are,
the current configuration. The expert simulation program examines its knowledge base. This
could include procedures, facts, plus maybe the rules of the game. Thy expert then generates
the preferred behavior of what to do next, possibly as a set of plausible alternative. For
medical diagnosis, this would be a set of good questions to ask about the patient, and maybe an
indication of the expert's preferred next question. In a game, this would be the next move to
make.

This idealized information is given to the modelling program, which combines it with some
additional information, perhaps about different types of students and what students know
depending on their background, maybe very complex patterns. (I'm describing an idealized
architecture which is more complicated than any existing ITS.) In addition to these prototypes
or patterns of different types of students and student behavior, there may be descriptions of
typical misconceptions or incorrect knowledge. The modeling program may also be given
knowledge about prerequisite ordering of facts and procedureswhat does it make sense t.)
know given what you already know, what would it be difficult to understand given what you
know? (Wescourt, et al., 1977, Goldstein, 1982)

The modelling program combines these patterns with the student's and expert's recent moves
and rationalization for them, and updates the model of the student's goals, what he believes
about the current problem, and what he knows in general. Thus, the core of the student model,
the result of relating student behavior to the expert rationalization, is a description of what the
student knows, expressed as a subset of the expert knowledge base, with degrees of belief
attached to each item. For example, GUIDON's model states what the student is believed to
know about the current problem, his goal structure in requesting new data, and for each rule in
MYCIN's knowledge base a certainty measurement indicating whether the studelit knows the
rule. This differential or overlay model then is fed back to the tutor, which has to decide,
given principles of teaching, what to say next. Show:; it make an interruption and give some
advice, or just let the student continue to solve the problem on his own?

Note that the separate boxes in the figure correspond to separate parts of the tutoring system.
This is our programming methodology: Rather than writing one program that arbitrarily
combines the knowledge, we abstract the components. This enables the expert simulator,
modeling, and tutoring modules to operate upon different knowledge bases, as in GUIDON.

Are there any questions?

Question: "What is saved between sessions?" There is also an cumulative record from one
problem to the next of what the student knows. Maybe some future tutoring program will save
certain things that it couldn't understand about a student's behavior that, later on, it would be
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able to disambiguate. In fact, this confirms fairly well to the Schank model of memory that
the exceptions are saved, and they help you generalize concepts later on (Schank, 1981). Part
of the problem of course is how much are we going to save; there is a space problem. This is
why we need a combination of abstraction and good indexing.

Question: "Can you say more about Schank's method for remembering exceptions?" The
basic idea was called MOPS (memory organization packets). Janet Ko lodder did the most
relevant follow-on project in her dissertation research, invo!ving memory organization for
efficient retrieval and storage (Kolodner, 1983). She models how knowledge, as a memory of
many specific facts, is organized. The program is thus able to answer questions about what
happened in the past and what typically happens. The idea is that generalizations form a
hierarchy of concepts.

The name of Kolodner's program was CYRUS. This vvas a model of Cyrus Vance who was
the U.S. Secretary of State at the time. She would feed the program stories of the travels of
Vance and what he did on his various trips. Then you could ask the question: "When Cyrus
goes to Egypt, will he visit the pyramids?" The program knows that this is a sightseeing event
and looks at its memory to see where there were other sightseeing events. Is it common? Are
there any times when Cyrus made a visit to a country but didn't do any sightseeing? The
program would then say: "Well, yes, Cyrus will probably visit the pyramids, because every time
he has been in the Middle East, he has gone sightseeing." But if you asked about Asia, Cyrus
might be uninterested in sightseeing in Asia, and the memory of exceptions would indicate that
visits to Asia involve no sightseeing.

The basic idea is that a discrimination net organizes and filters events in memory. The
program will notice that, up to a certain point, there have been several similar events, and an
exception, a different specific event, is saved. If there are two exceptions, the program looks
for similarit!es. The network, as a pattern of generalizations, provides an efficient way of
saving exceptions: An exception is defined with respect to some pattern. This is related tc
other discrimination models of memory, such as (Carbonell and Collins, 1973).

I found this model to be very stimulating for thinking about teaching and learning. The
most intriguing thing is that this is not how knowledge bases are typically organized. In fact,
Janet Kolodner is now building an expert system using her model of memory and having the
program record and consider exceptions as times when its heuristic generalizations might not
apply. If the program has a record of all of the cases it has solved, and if generalizations
constitute its rules for classifying each new experience, the program might notice that a new
case is more similar to the exceptions than to the generalizations. It wit! now have an ability
to say that it should be careful, that this case is something different than what it can
understand, and maybe it should make an attempt to generalize the exception. Of course, it's a
very difficult problem to start extracting medical knowledge in this way and it requires
knowledge of the mechanisms of disease; Kolodner hasn't considered causal representations.
She is working in an area of psychiatry with a superficial theory of causal mechanisms, and
this makes the simple classification approach tractable.



1.2. Teaching Scenarios
In Figure 1-2 John Seely Brown makes the point that teaching programs differ along a

spectrum of learner control. Who is in charge of the interaction? In the case of a traditional
program, what we call frame-based CAI, the branching type mentioned earlier, the program is
constantly deciding what to do next. Again, this is a generalization and by no means describes
every non-Al system. On the opposite side, a good example is the LOGO work of Papert and
DiSessa at M.I.T., inspired by the Piaget exploratory school of discovery learning (Papert,
1980). The idea is to give the student a good environment to explore in which he can use his
own innate curiosity, combining things in new ways to learn the underlying principles. If the
environment is very rich, as in LOGO, with the concepts of recursion, iteration, modularity,
hierarchywhich can be discovered as part of designing programsthe student may learn very
general principles that can be of value to him.

When we have extremes there are often disadvantages on each side. For example, if we don't
allow the student the ability to move around as he wants, he cannot use his curiosity to explore
new areas. The other extreme is that, if there is no initiative by a coach or the program, the
student may get stuck or unable to progress. This may also be viewed as an inefficient use of
the student's time. If someone would just say; "Here is what I expect you to learn," then the
student can say, "I understand that already" or, "Explain to me how this is different from
something else." We can efficiently bring the student's conception of the world closer to what
we think he should understand.

As you might imagine with these two alternatives, we want a combination. We want to give
the student an ability to explore, but we also want some kind of an active agent, some kind of
a coach perhaps that watches the student and guides him, redirecting him at various times.
John Brown points out here that in some ways this is the most difficult system to build
because it requires the most knowledge. If the program is always in control, we needn't
understand what the student is saying to us when he wants to do something different, and we
needn't do something intelligent when he asks us for something different. In the case of a
program which is not attempting to present something in some logical order, there are no large
and complex student modelling, tutoring, system and explanation programs to build. We just
design a good language, like LOGO, and a good set of problems. It's an interesting fact about
LOGO that you observe the teacher going around and helping the students, or the students
helping each other. Pedagogical control can be subtle to detect and describe.

Different forms of computer-based learning can be contrasted in another way. Early
programs individualized instruction by drill and practice. I give you a problem and you solve
it; I give you another problem and you solve it; and I keep selecting problems so that they get
more difficult or they follow some logical sequence. This is a good idea, and it is something
that we will always want to do; sometimes you can select five good problems and if the student
follows them, he will learn something. In the SOPHIE program John Brown and Richard
Burton used a traditional CAI front-end to get the student familiar with the electronic circuit
that they were going to learn how to diagnose. There can be a place for drill and practice.

Another perspective on computer-based learning might be called intelligent machines.

2
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GUIDON is a classic example, and there are maybe six or seven similar systems from the
1970s. These programs exploit the idea of a mixed-initiative discourse to replicate many
aspects of teaching. Through the use of general teaching procedures, the program can respond
flexibly to the student's initiP.tive. Whenever the student says "help" to GUIDON, it uses its
general procedures to r ..,/ide help in any context. This was begun by Carbonell in the
SCHOLAR program (Carbonell, 1970), which parsed natural language using a keyword parser,
allowing the student to type in questions and respond.

It's an interesting historical point that from about 1979 to 1984 people stopped building
these programs. The experience of building programs like GUIDON made us realize we were
trying to do everything at once. We didn't have a good knowledge representation, and we
didn't really understand what kind of misconceptions the students have. The idea of modelling
the student became the central idea. Almost every project from the late 1970s until today has
started with this one problem: How do we write a program that can understand what the
student is doing? There is no need to consider strategies for teaching if we don't understand
what the student is doing. It was a logical step in the research to ignore the teaching problem
and emphasize the problem of linderstanding.

The third form of computer-based learning involves the use of simulation. By the late 1970s
with LISP workstations and fancy graphics, it became possible to design new kinds of
interaction in a teaching system. A good example is the STEAMER project. Here the idea is
to use the program to give the student a realistic situation. STEAMER uses graphics and color
to show dials and process change which is very similar conceptually to what happens in the
world.

These three types of approachesdrill and practice, intelligent instructor, and simulationcan
be combined, but they are useful extremes to consider.

1.3. Learning scenarios for an intelligent tutor
Focusing now on the intelligent tutoring form of computer-based learning, we can further

categorize learning scenarios by how the knowledge in the program is used. Here we have
different pedagogical philosophies.

First, we have the Socratic approach, in which the teacher keeps asking questions and giving
new cases to force the student to realize gaps and inconsistencies in his understanding. In
GUIDON, using this pedagogical approach we wouldn't spend two hours talking about one
patient. Instead we would contrast cases, asking hypothetical questions and leading the student
to see similarities and differences. This is the idea in the WHY program (Collins and Stevens,
1980). For problem solving that is strongly based on precedent and particular experiences,
such as law and medicine, this is obviously a good way to iiiroceed.

In contrast, a reactive environment is used in SOPHIE. The student solves a problem, but the
program does not interrupt. It reacts to the student and gives feedback. In learning by doing,
the apprenticeship alternative, the teacher actively contributes. The teacher watches to see
whether the student is making progress and checks his understanding. After classroom learning,
medical students follow the physicians around the hospital and help them solve problems. The

14
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student takes a patient's history, and then the physician will ask, "What do you think the
problem is?" He will quiz the student to test his understanding and encourage him to consider
alternatives. This is essential the approach in GUIDON.

Learning while doing differs in a subtle way. Consider a job performance aid, a tutor built
into the machinery of the normal working environment. An example would be a copying
machine that could watch what you're doing when you make copies Copying machines are
complicated. If you want to make reverse double-sided copies with collating, there might be
more than one way to solve the problem. If we build a coach into the copying machine, the
coach would observe what you do. Perhaps you never use a certain combination of options.
The tutor might know that people who know what they are doing use these options. Unless
there is something special about your task, you might not know how to use the machine
effectively, and the program will interrupt to offer assistance. Thus, a job performance aid
would help you learn while you're in your normal course of business.

These examples illustrate how the research is proceeding: We are still discovering different
ways in which instruction occurs and devising new opportunities for applying computers.
Brown summarizes what we have learned by the aphorism that "teaching involves using
knowledge, rather than just presenting it." Thus, in GUIDON we give the student a problem to
solve, rather than converting the knowledge base into a multiple-choice exam. In some sense,
knowledge is inherently active. What it enables you to do is important, and this is what
"learning while (or by) doing" seeks to exploit.

1.4. A naive theory of coaching
In Figure 1-3, Brown points out that our theory of coaching involves a computer-based coach

with many of different kinds of knowledge. He indicates the lesson that we learned in
GUIDON, that it is more than an expert system, to say the very least. Yes, the tutor has
expert problem-solving strategies, but it needs knowledge about explanation, how to model the
student and tutoring or kibitzing strategies (an interruptive strategy for probing the student's
understanding and presenting information). From all of this, we construct the model of the
user, a differential model, in which difference in behavior is explained in terms of a
difference in knowledge.

One thing we haven't considered here is metacognitive knowledge, such as knowledge about
the mind, memory, and learning. Schank's model of memory organization is one example: It
describes how new experience is stored and generalized. When a problem solver uses such
knowledge to improve his problem solving or learning, we call such reasoning metacognition
(Collins and Brown, ress). Researchers take for granted that we also need a strong theory of
how people learn in order to design an ideal tutoring program. Our study of misconceptions
and student models in general is just the first step in this direction. Goldstein drew a box in
his early diagrams that he called the learning model, corresponding to this idea. Nothing in
our programs corresponds to it. However, Anderson has recently incorporated a learning
theory in the design of his tutors for Lisp programming and geometry (Anderson, et al.,
1984a).

_1 5
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1.5. Making latent knowledge manifest
An important theme behind ITS research is the attempt to make latent knowledge manifest.

Latent know:edge hasn't been expressed or stated, but is implicit in the behavior of a person or
some physical process. By manifest, we mean articulating it in words or making it visible in
pictures. A simulation shows this in a simple way. We can simulate how a device works by
using graphics and show the student step by step the mechanism and the interactions. The
design and the process might be very hard to see if you look at the real device; graphically it
can be simplified and idealized. This is the central idea in STEAMER. Another example is
modelling the knowledge of an expert; we are taking the expert's knowledge and making it
manifest. An expert might not be able to state what he does, but we look for patterns in his
problem solving. We say, "You have a procedure that you use. There is something you do
that is regular." We make the procedure explicit.

John Brown also speaks of reifyingto make concrete or to make visible (Brown, 1983). For
example, we can reify the space of possible ways of solving a problem. One strategy we might
use for teaching is to show a student a graphic history of his various steps and compare
alternate ve ways of solving the problem. Here is a simple example: We show the student a
tree of rules and goals and show the student that if he had done things in a different order, it
would not have been necessary to do as much work. This is one idea that we are pursuing in
NEOMYCIN. Specifically, if the student asked a general question first, let's say about
infection, rather than considering specific infections, he might save ten questions about specific
infections by determining categorically that there is no infection. One way to show that is to
lay out a kind of visible history and say, "You went all of the way down here in all of these
details, but if you had done it this way, you could have pruned the search earlier." This is
what John Brown means by reifying the problem space.

Another example of latent knowledge is the idea of a plan behind a procedure. Several
examples occur in the programming tutor. There is the superficial behavior: Miat is it that
the expert does? Behind that is a plan: Why is that a good procedure? To give the example
of medicine again, I might ask, "Does the patient have a fever, has he lost weight, has he had a
trauma, has he fallen?" This is my superficial behavior, what you see me doing when I solve
the problem. More abstractly described, my procedure is to reason categorically. I'm asking
very general high-level questions before going down any path. We can now state the procedure
separately, as an abstraction of the original questions. Obviously, the idea of reasoning
categorically has nothing specifically to do with medicine. We could also ask why it makes
sense to reason categorically. If the search space is organized hierarchically, it can be more
efficient to work from the too and work down rather than to work from the bottom, because
you can eliminate possible paths. We call this description the plan behind the procedure.

Finally, the Socratic methou is another way of making latent knowledge manifest. Asking
the student questions makes him realize that there are things that are incomplete or
contradictory in his knowledge. The Socratic teacher chooses examples that will force the
students to realize a paradox in his behavior and in his understanding, and leads him to
express a question that will resolve that misunderstanding.

In building a teaching system, we're making different kinds of knowledge explicit: the

17
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domain knowledge, the method for explaining and the tutoring rules about interrupt'.ng and
making presentations. We also make meta-cognitive knowledge explicit, knowledge about
1 srning. To "teach" all of this to a computer involves theorizing, not :ust writing down what
we all know for granted, but an abstraction process.

In building an expert system to be used for teaching, we learned that it is advantageous to
work with good teachers. A good teacher has theories of knowledge organization and inference
and learning. That is, he has knowledge about his reasoning, metacognitive knowledge, which
he can impart to students to help them learn.

Similarly, because of our interest in making latent knowledge manifest, not every expert
system makes a good tutoring system. In fact, we might ask whether any expert system makes
a good tutoring sy.,tem today. We need certain kinds of knowledge to be explicit and separate,
which is the point of NEOMYCIN (Clancey and Letsinger, 1984), in which the diagnosis
procedure is separated from the facts about diseases. We may need alternative ways of solving
problems, including the ability to understand misconceptions. We may need to justify the
knowledge base to help the student understand why it's correct. In particular, to understand
misconceptions, we need to understand why the preferred rules are correct.

2. Survey of Specific Systems

0

2.1. SCHOLAR
The SCHOLAR program is the first attempt to use an AI representation as the basis of a

teaching program (Carbonell, 1970). Carbonell saw the possibility of stating the teaching
knowledge separately from the domain knowledge which was to be taught. So we have a
semantic network for statint, geographical facts, and we have a program for carrying out the
interaction with the student. One of the later developments of SCHOLAR, work done by
Collins, enabled answering questions that were not stored in the knowledge base. The program
performs what is called "plausible reasoning" to infer what might be true, given certain
assumptions about the world (Collins, 1978). It is a very interesting development, because
people now understand this form of metacognition to be an important part of expertise.
SCHOLAR is the first attempt to use Al for building a general system, allowing multiple use
of the same knowledge, rather than encoding it as part of the teaching program.

Figure 2-1 shows part of an interaction with SCHOLAR, illustrating a mixed-initiative form
that Carbonell and Collins sought to develop. The program asks a question, "What is the
language of Argentina?" The student answers, "Probably Spanish." The program says, "Very
Good," and then asks another question. A transition-network parser is used here.

You also see the student taking initiative, rather than answering the question that the
program has asked. This clearly inspired Carbonell a great deal. In comparison with ea-lier
AI programs, SCHOLAR allows the student to do whatever he wants at any point. The
dialogue also illustrates retrieval of information from the semantic network. There is a
hierarchy of countries and geographical areas, so it knows that Peru is located in South
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What is the language of Argentina?

** Probably Spanish

Very good. Approximately what is the area of Argentina?

** Tell me something about Peru

Peru is a country.
It is located in South America.
The capital of peru is Lima.
Now answer the question you didn't answer before.

** The area of Argentina is 1,100,000 square miles

Approximately true, but a more exact value is 1,200,000.
The eastern bordering country of Peru is ---.

** Catholicism

Wrong. Catholicism is not a country but a religion.
The correct answer is: Brazil.
Where is Peru?

** Is Asuncion hot?

Since Asuncion is part of Paraguay, yes.

** What is the most important difference between Peru and
Paraguay?

The primary difference is: The population of Peru is larger by a
factor of 7.8.

Figure 2-1: Excerpt from a dialogue with SCHOLAR
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America. It has superconcept3 and instantiations of them. Carbonell also used a clever kind
of response, "New answer the question you didn't answer before." This reminds me of how
people were so excited about automatic spelling correction in early Lisp programs, reminiscent
of the joke about the dancing dogit is superficial, but intriguing that it can be done at all.
Carbonell also used a rimer to see how long the student takes to solve the problem. The
program interrupts after a while, and says: "You are taking a long time."

When the student asks, "Is Asuncion hot?", the program says, "Since it is part of Paraguay,
yes." This is an example of a fact that is not stored explicitly. The program knows that if a
city is located inside of a country, and country has a climatic property like temperature or
rainfall, then we can infer plausibly (with uncertainty) that the city has the same property.
This does not always work, and it is not too hard to thinl: of counterexamples where there is a
country with coastal and mountain cities.

More complex examples are given by Collins. The stude.it asks whether a particular country
engages in a certain type of manufacturing or trade. The program has associated with it a
number indicating how important each fact is, in this case importance of various trade facts
related to each country. Let's say the question was, "Does Brazil have oil wells?" The program
would look at other countries and see that oil wells were mentioned, but not for Brazil, and
that these wells were very highly ranked. So if a country has oil wells, it was rated at number
9, out of 10. So the program could infer that if Brazil had oil wells, and it were important
for Brazil, it would be rated high, and would therefore be in the knowledge base. Assuming
that you know everything about the world to a certain point, a certain degree of importance,
the lack of knowledge allows you to make an assumption about what is true. This is another
form of meta-cognitive ability. We can say with some degree of belief that certain things are
true or false, even if we have not learned them explicitly. We can infer them from general
patterns of what we know. The idea was developed further to explain how we can answer so
quickly that we don't know certain things. Collins also did some psychological studies with
Quillian, measuring how long it takes people to answer certain questions, and used the results
to support a model of memory.

2.2. WHY
WHY is the follow-on work to SCHOLAR, developed by Collins and Stevens after Carbonell

passed away (Collins and Stevens, 1980). They changed the domain from purely factual
reasoning of geography to casual reasoning of meteorology, opening up many new problems.

Figure 2*-2 shows the program generating certain questions for the student: "Do you think
the Amazon jungle has heavy or light rainfall?" Collins has made explicit the teaching rules
for generating these questions. They are stated abstractly, referring to predictions, particular
cases, prior causes, general rules, insufficient causes. This kind of terminology is a major
advance. It inspired me in GUIDON to express teaching knowledge abstractly, separate from
the medical knowledge.

Collins attempted to mimic the Socratic dialogues that we find in the writings of PLATO.
He also analyzed teachers teaching law by the case method and looked at physicians teaching
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Ask for a prediction about a particular case.

Do you think the Amazon jungle has heavy or light rainfall?
** Heavy rainfall

Ask for prior causes

Why does the Amazon jungle have heavy rainfall?
** Because it has mountains nearby.

Form a general rule for an insufficient cause.

Do you think that any place with mountains has heavy rainfall?
** Yes

Pick a counter example for an insufficient cause and
Ask for prior causes.

Southern California has mountains.
Why doesn't Southern California have heavy rainfall?

Figure 2-2: Excerpt from a dialogue with WHY
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medicine. Notice the systematic logic behind these questions: "Why does the Amazon jungle
have heavy rainfall?" The student has just said that he thinks it has heavy rainfall. The
student replies, "Because it has mountains nearby." This suggests that the student has a rule,
"if there are mountains, then there is heavy rainfall." The program can look in the knowledge
base to see if it is always true that mountains are correlated with heavy rainfall. The program
observes that's an insufficient cause in its model of rainfall. So it asks, "Do you think any
place with mountains has heavy rainfall?" This forces the student to realize that he has stated
something t:iat is not a necessary factor. Here the student says: "Yes, of course." Now the
program looks in the knowledge base and picks a counterexample. We have gone far beyond
just retrieving facts, which occurs in SCHOLAR, to analyzing the student's responses to see if
he undefstands the particular model that we want to teach. Again, the idea of formalizing the
questioning methods is a major accomplishment.

Collins and Stevens built in a tutoring plan that detects the facts that the student doesn't
seem to understand. A teaching strategy then selects one of these misconceptions to work with.
It says something like: "Deal with misconceptions before unnecessary factors." In this way, the
program maintains a plan for its dialogue.

It's not clear how well WHY could understand the student's misconceptions. In their follow-
on program, Collins and Stevens enumerate possible misconceptions to be recognized. After
working with many students, they found patterns in what students tended to believe. The tutor
checks to see if a student has these particular misconceptions. When I said, "The program now
sees that the student knows the rule," I don't know how explicitly this was modelled. In
particular, it does not appear that WHY followed the student during long dialogues,
characterizing model changes and consistency.

2.3. WEST
WEST is an example of a coach system. It is 'LAIR on top of the game "How the West was

Won". It is a child's game, a variation of a game also called "Shoots and Ladders" (Figure
2-3). There are sets of spinners or dials, and the student spins these to get three numbers,
which he can combine using subtraction, addition, and multiplication, or group the numbers
using parentheses. The objective of the game is to get to the end first. You have the
advantage of various ladders, which are shortcuts. So you want to choose the mathematical
operators that will allow you to take the shortcuts. If you land on a place where your
opponent is located, that bumps the opponent back. Therefore, it might be an advantage not
to maximize your own forward progress, but to land where your opponent is to make him go
back.

The game was originally available on the PLATO system. PLATO is the tutoring
environment that was developed by Computer Development Corporation, CDC, in the 1960s.
Given that this program was intended to teach mathematics, Brown and Burton decided that it
would be good to add a coach to observe and critique the student's use of the various operators.

They developed a paradigm that they call Issues and Excmples. They enumerated in the
program all of the various kinds of operator combinations that a student should be able to use,
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called issues. For example, a student should be able to know that multiplication can be
applied next to a parenthesis for example; this is legitimate syntax. Obviously the first thing is
that the student should know is that he can use any of these operators. To give a simple
example, the program watches the student as he plays the game, maybe over several sessions,
and after a while notices that there is a pattern, say, the student never uses parentheses. If the
student used parentheses ut various times, then he might be able to play better. So, the
program finds an opportunity to interrupt and says: "You never use parentheses and if you
used parentheses, as in this example, you would be able to land here and you would be way
down here..." The student would see that using parentheses was to his advantage. This was the
idea: The interruption should be weR-motivated by something that the student will understand.
You shouldn't just say a'. some random time "You never use parentheses." Rather, pick a
moment when the student will appreciate what parentheses are all about; this will help him
remember. This is one of WEST's kibitzing strategies concerning when to interrupt: Pick a
time when there is a good eatrple of an issue that you want to bring to the student's
attention.

The study of WEST was very complex and I strongly recommend to you the paper by Burton
that appears in Intelligent Tutoring Sys:ems. Their analysis of strategies is impressive. They
found that there were students who were using the PLATO system with these color graphics
who enjoyed the game so much, they would keep trying to go back in order to make the game
last longer. This raises a problem: The student modelling program that is looking at
parentheses may be missing a more general plan. So Brown and Burton invented the idea of
what they called "a tear" in the model: Can you detect a time when you think you don't
understand what the student is doing? For example, suppose that the student seems to be using
parentheses some times, but not always, and you can't understand the pattern. One way of
understanding tear is that there are constant breaks in known patterns. It raises the larger
issues of how do we detect strategies, and how do we dt. act if a model is good or bad, and
what does it mean to recognize new strategies that were not built into the program?

The issues and examples paradigm is very useful for understanding how to build a tutoring
or teaching system. The idea is very simple. You build into the program concepts or rules
(the issues) that you want o teach the student, in this case the use of mathematical operators.
Then you build in recognizers (procedures) for detecting whether or not the student knows each
issue. In GUIDON the issues are the EMYCIN rules, and the recognizers are replaced by a
single, general modelling program, which attempts to determine whether the student knows the
rules used by the EMYCIN expert program. In contrast, in WEST each issue has a program
for recognizing it, called a specialist.

Today in the US there is increasing interest in applying some of these early ideas, especially
programs like SCHOLAR and WEST. At San Francisco State University, and in several other
universities in California, they are trying to teach high school teachers how to use this
paradigm in their own areas of expertise. They are receiving computers from Hewlett Packard,
new Lisp machines and networks. This is encouraging because it is something that researchers
don't have the time to dosetting up projects to teach high school teachers what we did ten
years ago and trying to make the ideas practical.
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To summarize the research paradigm, we are stating teaching rules in an attempt to formalize
principles. We've considered three examples: The WHY system illustrates the principle of
constructing a counterexample for an insufficient factor. In GUIDON (in an earlier lecture)
we considered part of the procedure for completing a topic; GUIDON simply states a domain
rule rather than belaboring the discussion. In WEST, we considered the principle of
illustrating an issue by an example that is dramatically superior to the move made by the
student. I think this shows a science in a very early stage of writing down what is intuitively,
in common sense terms, believed by Nye researchers to be reasonable.

After this, we must represent this knowledge explicitly so it can be reasoned about by the
programs and can be explained. Every complex system like GUIDON will have hundreds of
teaching rules. They form another knowledge base, that we want to be easy to change. The
program has to be able to explain its behavior, easy to modify, and so on. Next, we must
study this formalized knowledge and understand why these are good things to do. What is the
underlying model of learning and of human reasoning that makes these good teaching rules?
For example, if w' look at fifty GUIDON rules, we might find that they are inconsistent.
Maybe we want to build different versions of GUIDON that systematically test alternative ways
of teaching. For example, Collins studied Socratic tutoring in many different domains.

This is a good place to mention the work of Beverly Woolf. She went back to GUIDON,
studied it in some detail, and restated the tutoring discourse according to natural language
conceptions of patterns in a dialogue. She essentially tried to extract the strategies that were
implicit in the alternative ways of tutoring that I had compiled together in GUIDON's rules.
Her program, the MENO-TUTOR, reasons in more layers of abstraction about what to do
(Woolf and McDonald, 1984).

2.4. The WUMPUS ADVISOR
Goldstein and his colleagues developed a coach for the WUMPUS game, adapting it for

teaching probabilistic reasoning to a student (Goldstein, 1982). In a manner similar to
SCHOLAR, WEST, and GUIDON, Goldstein used production rules for stating teaching
principles. Various rules produce explanations an select examples. In the game, there are
many caves, hats and pits. You move through the caves to find your way out or to find some
treasure. When you arrive in a particular cave, you receive information about what might be
nearby. You are told that it's cold or that you can hear certain sounds. You know that pits
will have cold air coming from them, and so on. As you go through this network of caves,
you can collect evidence of what is nearby.

At one point the coach might interrupt and say, "Mary, it isn't necessary to take such large
risks with pits. We have seen that multiple evidence is more dangerous than single evidence
for bats...." Figure 2-4 shows part of WUMPUS's reasoning here. We want to teach the
student the general rule preferring single dangers over multiple dangers, and this becomes
instantiated or specialized for three different types of dangers. Thus, here a previous
explanation about how the rule applies to bats is referred to when explaining its application to
pits. Goldstein points out that the program needs to keep records of what it has explained
already so it has an opportunity to draw an analogy. Notice that in this formal domain,

11,1 0N.f
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unlike medicine or meteorology, there is no underlying causal model, just axioms describing
how the world works. This greatly simplifies the modeling problem.

2.5. TURTLE
The next three programs are concerned with teaching computer programming. We see a

student's program and want to under tand its design. What a- the student's plan? Why is he
using these steps in this way?

"Turtle" was one of Papert and DiSessa s constructions for teaching using LOGO (Papert,
1980). The instructions in the language are very simple, you can simply turn the turtle or you
can move in a certain direction or you can have it lower its pen and draw as it moves. They
actually have a mechanical device that draws on paper in the room; the student types in the
program and the little robot turtle moves around. In this way the students can watch what
their programs do, another example of reification. This was part of Papert's idea of an
environment that would give students feedback.

The TURTLE system is extremely simple; it has the capability to only write four programs,
and the solutions are canned (built into the program). The program is able to detect certain
types of errors. It has prespecified hints that it prints out, which are intended to help the
student (Figure 2-5).

Here is how the program proceeds. The problem is to draw a well with a roof on it. We
have a box, a square and then a pole. Its like a triangle on top of a box. Miller analyzed in
detail the various ways that people solve this problem. In the interaction the student says that
his first step is to draw the top using another procedure. Then he wants to have the pen go
200 steps forward, draw a box, and then stop. This is his program for drawing well with a
roof. The program has to relate the terminology of the student's names for his programs to
the internal names that the programmer has defined. This is a very interesting problem in
programming tutors. The modelling program has to understand what the variables stand for.
The program infers here that "Top" is the roof of the well and "Draw 200" is the pole and
"Box" is the student's name for the base. This was done by building into the program various
synonyms that people are likely to use.

Figure 2-5 shows a mapping between the student behavior and the internal model of the task.
It shows in a simple way the importance of being able to recognize alternative solutions, in
this case by using something as trivial as different terminology. Next, the student defines these
functions for Top and Box, and the program analyzes where the pen moves around.

Next the TURTLE program points out that there is some basic step that has been left out.
It says, you have provided no "Set-up" for the Well task. "Set-up" is a general programming
concept. Before you call another procedure you have to get the turtle in the right position to
do the next procedure. It's a kind of initialization that makes the next procedure perform
correctly. If you look at the picture, the roof might have been sideways, or maybe the pole
might have the wrong angle. The program analyzes what the drawing looks like and relates it
to what the correct step should be. It points out that two steps were left out as part of this
interface.
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Task is to draw a well with a roof.

First step? TOP
Next step? DRAW 200
Next step? BOX
Next step? QUIT
OK, WELL is defined!

Let me see if I understand your program:
The function TOP draws the ROOF of the WELL-TASK.
The code: DRAW 200 draws the POLE of the WELL-TASK.
The function BOX draws the BASE of the WELL-TASK.

Does that seem correct? YES

After the student defines functions TOP and BOX

Did you intend to interface the function TOP to the step DRAW
200 by following the path C D? YES

Here is the interface you defined between the mainsteps in the
function TOP and the step DRAW 200 in WELL:

TURN 180

Analysis:
Correct code Commentary

TURN 180 Correct interface to turn through angle BCD
MOVE 50 Missing interface to move over segment CD
TURN 90 Missing interface to turn through angle CDE

You provided no setup for the WELL-TASK.

Figure 2-5: Excerpt from a dialogue with TURTLE
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This is a very simple example of conveying to the student that programming has certain
clans behind it and there are certain recurrent operations in programming, in particular,
performing a set-up as part of calling a subprocedure. The program has related the student's
behavior to the underlying model, isolated an error, told the student what the error is, and
indicated what he should do differently. Notice that there is no attempt to understand the
student's error, why he do this, just what he did wrong and the correction that should be
performed.

2,6, MENO
MENO (Soloway, et al., 1981) is the work of Elliot Soloway, who is now at Yale and did his

thesis work at the University of Massachusetts in the late 1970s. MENO attempts to
understand a student's programming bug, to articulate the misconception. :t not only fixes the
plan as in TURTLE, it helps the student resolve his misconception. To sLmmarize these levels:
There is the surface behavior of the program; there is the plan, which is the design; and there
is the underlying misconception that generates the design that generates the program.

Figure 2-6 shows the input to the MENO program; it is a very difficult task to understand a

program like this. It requires knowledge of the problem that is to be solved and knowledge
about alternative solutions. The purpose of this program is to compute an average. It
initializes the sum and then counts how many numbers have been input. While the input is
not equal to 999 (a sentinel, a strange number that would not be part of the input) we add the
input to the sum and increment the count. Notice that the student adds 1 to the input and
then continues. This obviously takes a long time, but eventually we get to 999, exit the loop,
and divide the number of times we've gone around into the sum.

The student has made a mistake of putting the READ statement outside of his loop. Why
did he do that? Soloway and his collaborators have performed a very interesting analysis to
get at the misconceptions.

Consider what MENO says to the student (Figure 2-7). First, like TURTLE it finds a
mapping between the student's names and the internal names of the program. It says, "Positive
identifier is the new value variable and count is the counter variable." There is a general plan
that MENO has for doing averages. It doesn't have variable names like X, W, A, B, but it has
general names that correspond to the meaning of the variable: to get the new value, the
counter, the running total, etc. And so again, we're relating the student's behavior to the plan
that's in the program. MENO has many plans for the problems that it solves. The program
points out the bug, "You modified the new value variable by adding 1 to it whereas you should
modify it by calling the READ-procedure."

MENO then goes further than TURTLE. It has a library of misconceptions, not generated
by the program, bu' built-in by Soloway. One possibility is that the student thinks that READ
is like a declaration and so, every time he mentions X, its value should be read. It is like
saying that X is an integer, describing a property that should persist through he entire
program.

Figure 2-8 shows the kind of analysis that is being performed. Meno builds a semantic net,
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A student's program...

1 PROGRAM AVERAGE1(INPUT, OUTPUT);
2 VAR
3 SUM, POSIDEN, COUNT: INTEGER;
4 AVE: REAL;
5 BEGIN
6 SUM: = 0;
7 COUNT: = 0;
8 READ(POSIDEN);
9 WHILE POSIDEN09999 DO
10 BEGIN
11 SUM : = SUM + POSIDEN;
12 COUNT : = COUNT + 1;
13 POSIDEN : = POSIDEN + 1;
14 END;
15 AVE : = SUM / COUNT;
16 WRITELN('THE AVERAGE IS', AVE)
17 END.

Figure 2-6: Program interpreted by MENO

...

1
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MENO's analysis...

POSIDEN is the New Value Variable
COUNT is the Counter Variable
SUM is the Running Total Variable

You modified POSIDEN by adding POSIDEN to 1
where as...
you should modify the New Value Variable by calling the READ
procedure: READ(POSIDEN).

Two misconceptions can be associated with this bug:

1. You might be thinking that the single call to the READ
procedure at the top of your program is enough to define a
variable which will always be read in from the terminal....

2. You might be thinking that POSIDEN is like COUNT... The
computer does not know to reinterpret + 1 in the former case
to be like a READ.

Figure 2-7: Excerpt from a dialogue with MENO

I
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a parse of the program, and then relates each of the variables and the operations to an internal
model of the problem. Then it associates certain bugs with various plans. The analysis is not
generative; the program cannot take an arbitrary program and understand it. It has to be an
"Average program" or another one in the library. Explaining bugs requires a lot of creativity.
The explanation of the bug as an alternative model is often as complicated and difficult as
what you are trying to teach. People probably rely a great deal on experience and receiviug
information from students. It's uncertain how many teachers could understand what the
students are doing. We are certainly far from being able to write a program that could
generate similar explanations for misconceptions, especially in domains like medicine or
programming.

MENO was re-implemented by Lewis Johnson in his dissertation research as the PROUST
program (Johnson and Soloway, 1984). Rather than matching bugs as specific segments of
code, it constructs a complete parse of the code on different levels of abstraction. This
provides a more robust, generativ^ capability for understanding student programs and is the
first step beyond the template approach of TURTLE and MENO. The misconceptions are still
built-in, but the program bugs are stated abstractly, rather than as specific lines of code to be
matched.

2.7. The MACSYMA ADVISOR
The MACSYMA Advisor (Genesereth, 1982) is very similar in style to the MENO system.

We have the same problem of understanding a sequence of student behavior. We want to
extract the user's plan. MACS :4A, developed at MIT by Joel Moses, is a mathematical
manipulation system for simplifying and combining the equations. The problem is to take a
user's sequence of interactions with MACSYMA and to provide help or consultation.

Figure 2-9 shows an example in which the user is surprised by an answer of zero. The user
asks for help, indicating that there is a problem. The point is, when we type in commands to
a program like MACSYMA, we have some kind of plan in mind, that is, a method or approach
for solving a problem. In this case the user was trying to solve an equation (to determine
values of X for which the formula evaluates to zero). The MACSYMA Advisor has to examine
the sequence of user actions, and given the user's goal, infer his plan for using the MACSYMA
program. The Advisor has a built-in library of different ways of using MACSYMA, somewhat
similar to MENO's library of program patterns. The Advisor provides a remediation in terms
of correct set of steps of what to do, plus an explanation of the student's behavior in terms of
a misconception.

The user says, "I was trying to solve equation that was stated in D6 for X and I got 0." At
this point, the program determines that, if this is the user's goal and this is what he did, he
must believe that the COEFF command or operator has a certain effect. The user has a
misconception. He believes that COEFF returns the coefficient of a particular formula, but it
returns the coefficient of X to the first power. The program goes on to say that, "If this is
what you are trying to do, it's important that the expression b2 expanded with respect to the
variable, and you should use RATCOEFF to get the right result."

t.
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(C7) (A:COEFF(D6, X, 2), B:COEFF(D6, X, 1),
C:COEFF(D6, X, 0))$

(C8) (- B + SQRT(B* *2 - 4*A*C)) / (2*A);

(D8) 0

(C9) HELP()$

USER: I was trying to solve D6 for X and i got 0.

ADVISOR: Did yon I expect COEFF to return the
coefficient of D6?

USER: Yes, doesn't it?

ADVISOR: COEFF(exp, var, pow) returns the correct coefficient
of vat.'" in exp only if exp is expanded with respect to var.
Perhaps you should use RATCOEFF.

USER: Okay, thanks. Bye.

Figure 2-9: Excerpt from a dialogue with the MACSYMA Advisor

3 4
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The important point is how the MACSYMA Advisor constructs this interpretation. Unlike
the other programs we've seen, where the misconceptions were pre-enumerated, the MACSYMA
advisor has the capability of generating the misconception by an analysis of the student's plan.
Consider Figure 2-10. At the top, you see the goal of solving the equation for X. At the
bottom appears the user's superficial behavior. In the middle appears the interpretation of how
this goal generates this sequence of behavior, expressed as a hierarchical structure of subgoals
and methods for accomplishing them.

To make the user's actions fit together in a coherent explanation, the program makes certain
assumptions about the user's beliefs. The Advisor indicates the actual input and output for
each operator and general constraints that the input and output must satisfy. Thus, the
interpretation of the user's misconception, as a model of his beliefs, is stated as both specific
computation results and general facts about MACSYMA's operators.

In particular, the analysis shown here is made complete by assuming that the user believes
that this particular operator, COEFF, returns a particular value that has a certain input and
output. This assertion about COEFF is technically incorrect, but it makes the plan coherent;
the user's sequence of behavior is now understandable. Constructing .3;.ich a plan is a complex
search problem. The program generates multiple parses in both a bottom-up and top-down
way. Having the behavior constrains possible interpretations, and knowing the goal constrains
the possible operations that are performed. Different template (canned) plans are used by the
program to generate and to recognize the sequence of behavior.

We see here the power of a logic formalism in which Genesereth expresses the various
constraints on each of the operators and what the operators accomplish. Again, an appropriate
language enables writing a program that can reason about the knowledge involved. If these
operators were in LISP, the plan recognizer wouldn't be able to reason about them. Notice
how far this is from the SCHOLAR system, which has only an idea of right and wrong
answers. Here we generate a structural analysis of what the user believes, given his behavior. I

think this is one of the best examples of student modelling. It shows us how to generate
misconceptions, rather than building them into the program. Contrast this with the work of
Stevens and Collins where the misconceptions about meteorology and heavy rainfall are pre -
enumerated, so the program has only a fixed library of possible misconceptions. It helps c,7
course to be working in a mathematical, closed domain. Genesereth has gone on to develop
the ideas of the representation system that was used here, MRS, and to examine in more detail
architectures for problem solving (Genesereth, 1983).

2.8. DEBUGGY
DEBUGGY is a program for modelling a student's knowledge of the subtraction procee ire.

It models incorrect procedures, to be contrasted %,,itri modelling (factual) misconceptions.
DEBUGGY builds a procedure that describes how a student does subtraction, based on a set of
example problems solved by the student.

Figure 2-11 shows the procedural network that is DEBUGGY's internal representation of an
incorrect subtraction procedure (Brown, 1978). It shows a decomposition of the various steps.

;45



GOAL

30

Am OBTAIN es

(1111" OUNORIITIC I. v) Im.,

SOLTIO0 tab vl .1tOOT(u.v)

RECONSTRUCTED
PLAN & BELIEFS

RTOUROOTOMIdt)

MOOT

SO It
VALUATE

..

(1hsVyVz

cotrr tr oh z).COECTIC ITOT tn. v. a)

;
SEEK ow es x r OBTARCZ, a It 1 o

1

661 OBTAIN in
(wit. too 4.6)- -1

Hi TVAL Ice

USER ._ L0
ACTIONS MEVAL

r

/ ..------

Flue 2-10: Reconstructed plan generated by the MACSYMA Advisor
{from (Genesereth, 1982)}



31

If for example, at one point, you want to subtract a column from another, there are various
alternative procedures to apply depending on the current situation. Here the subprocedure
"switch digits" has replaced "borrow and subtract." Brown and Burton were inspired by
Sacerdoti's approach of using a procedural network to describe a plan.

The idea of DEBUGGY is that there are systematic errors that people make and we can
analyze the problems to detect these errors. You should realize that there is significant
computational problem in generating this description from ali of the possible alternative
procedures DEBUGGY can construct. On the order of a hundred bugs were found to occur in
students. There were thousands of students whose problems were examined.

2.9. Repair Theory
Recalling the distinction between describing student behavior and the rationale behind this

behavior, Kurt van Lehn's project was to understand where subtraction bugs come from. We
start with the surface behavior: The student can't subtract from 0 or doesn't subtract from 0.
We describe the procedure, and now we ask, "Why does he do that?" Where did this bug come
from? It is a model based on how people learn. In repair theory, rather than just recognizing
the bugs, we try to understand the cause of the misconception. This is like taking the
MACSYMA Advisor one more step. Suppose you have isolated a misconception, what is the
reason for it? It's an attempt to understand learning problems. Recalling the MENO example,
why does the student believe that READ is a kind of declaration. How can we explain why
students have certain bugs and not others? We want a theory of where the bugs come from
that allows us to generate the bugs and explain the systematic errors in more primitive terms.

The central idea in repair theory is that an incomplete correct procedure causes an impasse
during problem solving, which is repaired by a general problem solver and critics. This is an
interesting first-order theory which seems to have a lot of power. In one sense, this is the
idea of an overlay model again: The students know a subset of the correct procedure. But the
next part is different. Suppose a student doesn't know what to do when there is a zero on top
or when it's necessary to borrow (in a subtraction problem), but they do everything else
correctly. Without a complete procedure, the student gets stuck. This is called an impasse.

For example, if you don't know what to do when the top number is smaller, you have to do
something. You're supposed to write down some number when you're doing a subtraction, you
can't just leave it blank. Students know that and so they need some kind of alternative way of
acting. When they reach this impasse, they repair their procedure in some way. This is the
origin of the name "repair l'neory." vanLehn assumes that people have general problem-solving
methods that they will follow when they get stuck. They don't sit there paralyzed, they do
something. He wanted to study how a repaired impasse might generate bugs.

Figure 2-12 gives an example. Suppose we take the bug of not being able to borrow when
the top digit is smaller than the bottom digit (not being able to subtract 6 from 3 here). This
is modelled by deleting part of the procedure that allows us to behave when we reach that
situation. It's a simple production rule view of subtraction. There are situations and
operations you can perform. If yOU see a large number on top of a small number, you just
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Figure 2-11: Example of a subtraction bug represented by a procedural net
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look it up in your table. So if you see 8 over 2, you can look it up: 8-2 = 6.

But now you get to 3-6, and let's say that there is no table for that. You can't write down
-3. It's not permitted to write down a negative number here, but you have to write something
down. So it is time to borrow. But if we delete the knowledge about borrowing, there is an
impasse.

vanLehn gives the general problem-solving strategies that he believes are sufficient to
generate the observed bugs. First is to skip the column, write down nothing. Some students d'
that. Second is to quit, stop the problem right there. Don't write down any more numbers, go
on to the next problem. Third, (this is very creative) just turn the numbers around and
subtract. Fourth, called dememoize, just look up the answer in an idiosyncratic table of
arithmetic facts.

These repair strategies will generate different bugs. We have the opportunity now of
systematically deleting rules in the correct subtraction procedure, applying the problem-solving
strategies and generating the bugs. We can go backwards from actual problems and determine
how the people applied the strategies and so on. DEBUGGY discovered 89 different bugs in
several thousand problem sets. Repair theory explains (generates) 21 bugs that have been
observed. Also interesting, it generates 10 bugs that have not been observed but are at least
plausible or possible. VanLehn uses the term star bug (from language theory) for a bug that
we, for many reasons, believe could never occur. (This is from the idea of a sentence in a
language that we would never expect anyone to utter.) Obviously we want the fewest number
of star bugs; VanLehn takes this as a measure of quality of his theory that there is only one
star bug. As for the ten originally unobserved bugs, he went back and found some of these in
the problem sets. There are many detailed parts of this theory; it has recently been extended
to expkna the origin of impasses in what is called Step Theory (VanLehn, 1983).

Finally, bug migration concerns changes in bugs over time. Using Repair Theory, VanLehn
and Brown were able to make certain predictions, based on the idea if the student has one bug,
he might replace it by another one because his impasse says the same. He still doesn't know
how to borrow, but he might apply a different problem-solving strategy. One time he might
leave it blank, and the next time he reverses the numbers. Thus, the bugs are related to one
another, and vanLehn and Brown found a systematic change from, say, Friday to Monday when
retesting the student. This also turns out to be an interesting concept because, originally, we
might have said the behavior was random because the bugs seem to be changing. But a deeper
analysis shows that there is some systematic pattern. Vanlehn has written extensively about the
problem of developing a principled theory (VanLehn, 1984). I've gone into some detail with
his work because even though DEBUGGY and Repair Theory are not tutoring programs, they
provide a good example of how AI methods are used to develop ..tailed models of human
problem solving.

n
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I. Delete rule of procedure:
"borrow when top digit is too small"

2. Problem solving ends with an impasse:

638
-462

16 0 impasse occurs in second column

3. Different repair methods produce different procedural bugs:

REPAIR BUG

Skip
Quit
Swap vertically
Dememoize

blank-instead-of-borrow
doesn't-borrow
smaller-from-larger
zero-instead-of-borrow

Figure 2-12: Analysis of a bug provided by Repair Theory

...
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2.10. SOPHIE
SOPHIE is a very large, complex program of three different versions developed by Brown

and Burton i rom about 1974 through 1978. Most of this work was done at Bolt, Beranek and
Newman. SOPHIE stands for "Sophisticated Instructor for Electronics," but it was also the
name of Richard Burton's dog. SOPHIE versions 1 and 2 did not contain an expert system in
the sense that we define it today. At their core is a mathematical FORTRAN program that
simulates how a particular circuit behaves under different loads. The sirwilator is used by the
tutoring program to evaluate a student's diagnostic- hypotheses. SOPHIF 3 is an attempt to
formulate a procedure for doing diagnosis, an expert system, that the student can watch and
emulate.

Recall L.-. SOPHIE provides a reactive en ironment; it does not attempt to teach anything to
the student in a systematic way. Ti.e, student given a version of the circuit with a bug in it,
or a fault, as it is called in this context. He is to determine which component is faulty. The
student makes measurements and then poses a hypothesis. He can ask questions a'out what
could possibly be wrong, given the information is received.

Consider Figure 2-13. The program starts with a fault in the circuit. The student is told
various readings, such as voltage. Burton developed a "semantic grammar" for parsing the
student's input. This parser consists of a set of procedures corresnonding to various phrases
and expressions. The parser is capable of disambiguating pronouns and filling in omitted
references (anaphora). The program has a fact table in which it looks up circuit informd.ion.

The student makes a measurement, "What is the voltage between R8 and Ql?" Later he poses
a hypothesis, "Is it possible that Q6 is open?" The program has to disambiguate this
description, and then, using the simulator, determine if the hypothesis is consistent with the
current se,up of the circuit. It turns out that this is not the fault. The program points out
that, if it were the fault, the measurements would have been different. To do this, it sets up
the circuit again, using the student's fault and runs the FORTRAN simulation to determine
how the circuit would behave given , fault that the student has stated. Using the FORTRAN
simulation program in this way requires considerable intermediate knowledge structures and
reasoning to set up meaningful boundary conditions for the hypothesized situation. This
integration of multiple knowledge representations is a major contribution of SOPHIE research:
the FORTRAN program simulates the circuit; a semantic network describes the components of
the circuit; and semantic parsing procedures disambiguate student input.

The program comments that even though the student's hypothesized fault is incorrect, it is
consistent with two of the values that the student received. We've seen this tight logical
analysis of consistent, necessary, and sufficient factors in several programs (WHY, GUIDON,
WUMPUS ADVISOR).

The student could aka sk, "What are all of the things that could be wrong?" This has to be
answered with respect to the current known measurements. The program has to run multiple
simulations, setting up the circuit in different ways to determine all possible faults that could
accourt for the behavior that's been observed so far. This is also a very complicated type of
analysis.
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Welcome to SOPHIE, a reactive learning environment
tThe Instrument has a fault and Its present control settings are:

C411-

f
°IRO° I S

CC=1,CR =HIGH, LOAD= 20, VC=1, VR =HIGH cati"1
>>What is the output?

Ll ft rrn isdel eti. atde 3 (fp if Le* S p Le" u4" 5The output voltage is 11.7 volts.

>Wha a working instrument?
In a working circuit the output voltage is 19.9 volts.

>>What lathe voltage between R8 and 01?
The voltage at Ni is 47.6 volts.

>>What is the base emitter voltage of the voltage limiting transitor?
= transistor
The base emitter voltage of 05 is -.037 mIllivolts.

014
olts. at; 414'

tier'r
>Ns it possible that 06 is open?
Is the complete fault mode EB/EC/BC = OP/OK/OP what you intended?
>>Sure

When the settings were:
CC-1.0, r = HIGH, LOAD= 20, VC =1.0, VR = HIGH

haas
ea r Clamp le-

That fault conflicts with the following measurement. You observed that the
output voltage was 11.7 volts. If 06 had fault mode EB/EC/BC = OP/OK/OP It
would be 23.9 volts. In a working circuit it is 19.9 volts.

That fault does not ()writ:In any of the symptoms you observed but it is
consistent with the values for the base emitter voltage of 05 and the voltage at
N1.

ha also oleternas.ver tAikt IS rat"
Witt ttc hjetteS;s .

Figure 2 -13: Excerpt from a dialogue with SOPHIE
{annotations added by John Seely 3rown}
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While SOPHIE has no teaching knowledge in it, it provides a laboratory work bench, a kind
of smart tool. In any lab, we could take a faulty circuit and have the student try a diagnosis.
But here using the computer with a simulation, the student can pose hypotheses and ask for
alternative analyses.

We can summarize the type of inference that SOPHIE can perform as follows:

1. Hypothetical question answering: What happens when the circuit is changed in a
certain way?

2. Hypothesis evaluation: Could the circuit be faulty in some way?

3. Hypothesis generation: What could be wrong, given the information known so far?

4. Redundancy checking: Does a particular measurement add any new information,
given the set of possible faults and what's been observed so far? (Is the student
testing useful a hypothesis or is he just randomly making measurements?)

It is possible to apply these ideas to a tutor built upon NEOMYCIN. But imagine the
difficulty of answering the question, "What if the patient didn't have a fever? What if the
patient's fever were 110?" Imagine the complexity of the model of the body and the kind of
computations that would be necessary to deal with any question of this form. The power of
SOPHIE comes from the complete simulation model, which makes certain assumptions, of
course, about how the circuit works and what the current environment is. In medicine we can't
perform this hypothetical generation and question answering. We can't say everything that
could be wrong. We have a model, but we don't have a basis for performing experiments for
determining how the patient would behave under different environmental loads.

This is a subtle point. The problem arises not just because we have represented a small part
of the space of possible diseases in NEOMYCIN. Diseases in medicine are different from
faults in a circuit. Diseases in medicine are not faulty components, they are interactions that
the "device" has with the world that cause the components to fail. You cannot possibly
enumerate all of the world knowledge that could cause all the possible diseases that are or
could be observed.

To give an example: Consider a disease like tennis elbow. Suppose someone plays tennis and
gets a sore arm and he comes to you and says, "Something is wrong with my arm." You need
to know to tell him to stop playing tennis. Just having a model of the body says nothing
about tennis. You need to know all of the ways that people interact with the world.
SOPHIE's form of electronic diagnosis has nothing to do with how the circuit interacts with
the world. If the fault is caused by a room that is too warm or because somebody dropped the
power regulator before they installed it, SOPHIE will fail. To restate, a disease in medicine is
not a component fault, but what caused the fault in the world. [This might remind you of the
difference between a procedural bug (DEBUGGY) and the problem-solving and learning
process that generated this bug (Repair and Step Theory).]

There is a lot more to say about SOPHIE; read the paper in the Intelligent Tutoring Systems
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book. It explains in detail the work of deKleer which came later, involving an expert system
that could perform and describe the diagnostic process.

LII. STEAMER
STEAMER teaches how to operate a steam plant in a ship (Hollan, et al., 1984). The use of

graphics coupled to a mathematical simulation program and semantic network descriptions
allows the program to provide a high-fidelity conceptual model of how the steam plant works.
STEAMER is the work of Stevens, Forbus, and several people of the Naval Personnel and
Research Development Center, including Jim Hollan and Mike Hutchins. The project was
originated by a psychologist, Mike Williams, who had expe;ience on a ship teaching and
learning steam-propulsion plant operation.

The project was designed to be put into the field as a prototype within a few years; today
they are using STEAMER to train new recruits. In general, the military is excited about
automating teaching because of their high turnover and the great deal of technical expertise to
be learned in many different areas.

The major difficulty here is to understand the rationale for why the procedures for running
the steam plant are correct, particularly to facilitate remembering and modifying them. Valves,
pipes, and wires are arranged in a complicated jumble inside the ship. When a student is
brought on board, it's very hard for him to understand how things are connected to one
another. Graphics provide an easy -,.-,,,,y of rett'eving the information. You can look at the
lubricating system and you can look at the steam system. This graphics system is connected to
the underlying simulation program, using the idea of active images or "active values" to the
LOOPS Programming system, developed at Xerox-Parc. The program sends a message to a
particular concept or a unit say one tat corresponds to a valve. The valve instance is then
responsible for setting itself on the screen to reflect its value.

Figure 7-14 shows part of the teaching problem in STEAMER. The procedure says, "Step 5,
aiign the drain valves Dl and D2." Much later, it says, "Open valve 117." This is what you
are supposed to do. The rationale for this procedure is not explicitwhy should you do step 5
at all? Why shoield you do it before step 12? We want to teach the rationale as well as the
procedure: Whenever steam is admitted to a chamber, you must align the drains first. If you
don't, the water that is left in the chamber will mix with the steam, and high-energy water
pellets will get thrown downstream.

STEAMER research included new work in explanation. Using the description of the current
state of the dlant, the program generates explanations of what is happening. For example, it
can describe a feedback process. They've studied to some extent the problem of packaging the
text and presenting overviews, as well as going through causal detail. There is some natural
language work, but the research has emphasized causal modelling.

4 ti
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Operating Procedure = Order of Steps

118 117

D1

D2

0
0

5. Align Drain Valves D1 and D2.

e
12. Open Input Valve 117.

9

Why?

Figure 2-14: Schematic from STEAMER with steps in operational procedure
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3. Conclusion
How well do these programs perform? Is anybody using them? Some of them have been

tested, but there is no system that has in any sicinificant way replaced the traditional methods
of teaching. These are mainly pilotstudies that demonstrate plausibility. STEAMER might be
the closest to a system that has replaced some traditional teaching and maybe greatly augmented
what can be taught. DEBUGGY has been used for thousands of students, but as data
collection to verify the model, not interactively. MENO is being used at Yale, for teaching
introductory programming. The WEST system was used as an exploratory system for a couple
of months in an elementary school. SOPHIE was used experimentally for a few years over a
computer network within the U.S. Recent programs by Anderson and Reiser are effectively
teaching Lisp and Geometry (Anderson, et al., 1984b, Anderson, et al., 1985).

In short, education has not been turned upside down. The process of developing ,ese ideas
and getting the programs to be used is very slow. I believe that professional educators in the
schools today, not the researchers who developed the programs, will be the people who
eventually take these ideas and apply them.

So what is ali this worth? How would we compare the state of CAI and ICAI today? There
is a mixture o7 goals and accomplishments. I think if we did a very simple analysis of the
best traditional programs today, we would say that they are much better than almost any of the
ICAI tutoring systems. They are bette when viewed in terms of being operating, portable
programs that students can actually learn from. Many hours of work were put into designing
CAI programs, with a lot of handcrafting of the design to make them useful. I know a
physician at Stanford who has been cranking out CAI programs for probably 20 years. He felt
embarrassed when he saw what we were doing. He felt that we were coming from another
planet and believed that now all of his work wz.s obsolete. I told him that was not true at all.
he is teaching students today with his programs, and it might be ten years before we have
anything to give him. That ..as in 1977. His programs still work, and they are teaching many
students every year. ICAI is ,ainly a lot of promises still.

On the other hand, these promises are profound and changing nodr just how we think about
teaching, but our inderstanding of what needs to be taught. We should remember that CAI
systems don't have a systematic conceptual representation of what is being taught. The person
who designs the traditional system is not provided with a language that allows him to write
down what he knows in a structured) reusable way. Very little cumulative science or
engineering is occurring. Each CAI author is building in his knowledge and not effectively
sharing it with other teachers except to say, "Here i3 my program, you can learn from my
example." The field will advance much more quickly if people could share their knowledge of
learning and pedagogy, and develop formal theories. While WEST, WHY, GUIDON, and other
ICAI programs take many years to develop, ICAI researchers can now say, "Here is my set of
rules: Use them in your system." The idea of shared knowledge bases is something that excites
me a great deal when I consider where we might be in ten or twenty years, after collecting and
abstracting knowledge in tutoring and expert systems.

ei rj



41

Acknowledgments
This paper is an edited version of a presentation given in Namur, Belgium in May, 1985, as

part of the program for the Intern ional Professorship in Computer Science (Expert Systems),
Universite de L'Etat, sponsored by the Belgian National Foundation for Scientific Research and
IBM. I sincerely thank my friend Axel van Lamsweerde for his hospitality during my stay and
for his arduous efforts to produce a transcript of this presentation. While the original
transcript has been edited a great deal, this paper is intended to reflect the extemporaneous
naruie of an oral presentation, rather than a scholarly work. I have however added citations to
bring the material up-to-date. As indicated in the text, much of the material was prepared by
John Seely Brown and Richard R. Burton, or in collaboration with them. Much of what I
know about intelligent Tutoring Systems comes from working with John and Richard.

My research is sponsored in part by ONR (contract N00014-85-K-0305) and by a graz from
the Josiah Macy, Jr. Foundation. Computational resources have been provided by the Sumex-
Aim National Resource (NIH grant RR00785).

4 7



42

References
Anderson, J.R., Boyle, C.F., Farrell, R., and Reiser, B. Cognitive principles in the design of

computer tutors, in Proceedings of the Sixth Annual Conference of the Cognitive Science
Society, pages 2-10, Boulder, June, 1984.

Anderson, J.R., Farrell, R. and Sauers, R. Learning to program in LISP. Cognitive Science,
April-June 1984, 8(2), 87-129.

Anderson, J.R., Boyle, C.F., Yost, G. The geometry tutor, in Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 1-7, Los Angeles, August,
1985. Volume 1.

Brown, J. S. and Burton, R. B. Diagnostic Models for Procedural Bugs in Basic Mathematical
Skills. Cognitive Science, April-June 1978, 2(2), 155-192.

Brown, J. S. Process versus product - -a perspective on tools for communal and informal
electronic learning, in Education in the Electronic Age, proceedings of a conference
sponsored by the Educational Broadcasting Corporation, WNET/Thirteen, July, 1983.

Carbonell, J. R. Mixed-initiative man-computer instructional dialogues. Technical Report 1971,
Bolt Beranek and Newman, 1970.

Carbonell, J. R., and Collins, A. M. Natural semantic in artificial intelligence, in Proc. 3rd
IJCAI, Stanford, CA, pages 344-351, IJCAI, August, 1973.

Clancey, W. J. GUIDON. In Barr and Feigenbaum (editors), The Handbook of Artificial
Intelligence, chapter Applications-oriented Al research: Educationpages 267-278. William
Kaufmann, Inc., Los Altos, 982.

Clancey, W.J. Qualitative student models. (To appear in the first Annual Review of Computer
Science, Palo Alto: Annual Reviews, Inc., 1986.).

Clancey, W. J. and Lets: Eger, R. NEOMYCIN: Reconfiguring a rule-based expert system for
application to teaching. In Clancey, W. J. and Shortliffe, E. H. (editors), Readings in
Medical Artificial Intelligence: The First Decade, pages 361-381. Addison-Wesley,
Reading, 1984.

Collins, A. Fragments of a theory of human plausible reasoning, in Proc. 2nd Conference on
Theoretical Issues in Natural Language Processing, pages 194-201, TINLAP, July, 1978.

Collins, A. and Brown, J.S. The computer as a tool for learning through reflection. In H.
Mandl and A. Lesgold (editors), Learning Issues for Intelligent Tutoring Systeins, .

Springer, New York, In press.

Collins, A. and Stevens, A. L. Goals and strategies of interactive teachers. BBN Technical
Report 4345, Bolt, Beranek, and Newman, 1980.

Genesereth, M. R. The role of plans in intelligent teaching systems. In D. Sleeman and J. S.
Brown (editors), Intelligent Tutoring Systems, pages 137-155. Academic Press, New York,
1982.

Genesereth, M. R. An overview of meta-level architecture, in Proceedings of 1 he National
Conference on Artificial Intelligence, pages 119-124, August, 1983.

Goldstein, I.P. The Computer as Coach: An Athletic Paradigm for Intellectual Education. Al

dr

1



43

Memo 389, Al Laboratory, Massachusetts Institute of Technology, 1977.

Goldstein, I. Developing a computational representation for problem solving skills, in Proc.
Carnegie-Mellon Conference on Problem Solving and Education: Issues in Teaching and
Research, October 9-10, 1978.

Goldstein, I.P. The genetic graph: a representation for the evolution of procedural knowledge.
In D. Sleeman and J.S. Brown (editors), Intelligent Tutoring Systems, pages 51-77.
Academic Press, London, 1982.

Hollan, J. D., Hutchins, E. ., and Weitzman, L. STEAMER: An interactive inspectaole
simulation-based training system. The Al Magazine, 1984, 5(2), 15-27

Johnson, W. Lewis, and Elliot Soloway. Intention-lksed Diagnosis of Programming Errors, in
Proceedings of the National Conference on Artificial Intelligence, pages 162-168, Austin,
TX, August, 1984.

Kolodner, J. L. Maintaining organization in a dynamic long-term memory. Cognitive Science,
1983, 7, 243-280.

Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books,
Inc. 1980.

Schank, R. C. Failure-driven memory. Cognition and Brain Theory, 1981, 4(/), 41-60.

Sleeman, D. and Brown, J. S. (editors). Intelligent Tutoring Systems. New York: Academic
Press 1982.

Soloway, E.M, Woolf, b., Rubin, E., Barth, P. Meno-II: An intelligent tutoring system for
novice programmers, in Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, pages 975-977, Vancouver, August, 1981.

Soloway, E. M. Rubin, E., Woolf, B., Bonar, J., and Johnson, W. L. Meno-II: An AI-based
programming tutor. Technical Report CSD/RR No. 258, Yale University, Dec Aber 1982.

VanLehn, K. Human procedural skill acquisition: Theory, model, and psychological validation,
in Proceedings of the National Conference on Al, pages 420-423, Washington, D.C.,
August, 1983.

VanLehn, K., Brown, J. S., Greeno, J. Competitive argumentation in computational theories of
cognition. In Kintsch, Miller, and Poison (editors), Method and Tactics in Cognitive
Science, pages 235-262. Lawrence Erlbauni Associates, Hillsdale, NJ, 1984.

Wenger, E. AI and the communication of knowledge: an overview of intelligent teaching
systems. To be published by Morgan-Kaufmann, Los Altos, CA.

Westcourt, K. T., Beard, M. and Gould, M. Knowledge-based adaptive curriculum sequences for
CAI: Application of , network representation. Tech Report 288, Stanford University,
Institute for Mathematical Studies in the Social Sciences, 1977.

Woolf, B. and McDonald, D.D. Context-dependent transitions in tutoring discourse, in
Proceedings of the National Conference on Artificial Intelligence, pages 355-361, Austin,
August, 1984.


