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Abstract
Knowledge acquisition is a process of developing qualitative
models of systems in the world—physical, social,
technological—often for the first time, not extracting facts
and rules that are already written down and filed away in an
expert's mind. Models of reasoning describe how people
behave—how they interactively gather evidence by looking
and asking questions, represent a situation by saying and
writing things, and plan to act in some environment. But
such models are inherently brittle mechanisms: Human
reinterpretation of rules and procedures is metaphorical,
based on pre-linguistic perceptual categorization and non-
deliberated sensory-motor coordination.

This view of people relative to computer models yields an
alternative view of what tools can be and the tool design
process. Knowledge engineers are called to participate with
social scientists and workers in the co-design of the
workplace and tools for enhancing worker creativity and
response to unanticipated situations. The emphasis is on
augmenting human capabilities as they interact with each
other to construct new conceptualizations—facilitating
conversations—not just automating routine behavior.
Software development in the context of use maintains
connection to non-technical, social factors such as
ownership of ideas and authority to participate. The role of
knowledge engineering is not merely “capturing knowledge”
in a program delivered by technicians to users.  Rather, we
seek to develop tools that help people in a community, in
their everyday practice of creating new understandings and
capabilities, new forms of knowledge.   

A Shift in Perspective
Knowledge acquisition is a process of developing computer
models, often for the first time, not a process of extracting
facts and rules that are already written down and filed away
in an expert's mind. We can represent knowledge, but the
representations are not knowledge itself, no more than a
map is the territory it describes. The "knowledge acquisition
bottleneck" is a misleading metaphor. It suggests that the
problem of developing a knowledge base is to squeeze a
large amount of already-formed concepts and relations
through a narrow communication channel. In contrast,
knowledge acquisition usually involves inventing new
languages for modeling previously unarticulated experience.   

Choosing and evaluating knowledge acquisition methods
can be facilitated by shifting our perspective about the
nature of knowledge engineering:

1) The primary concern of knowledge engineering is
modeling systems in the world, not replicating how people
think (a matter for psychology).

2) Knowledge-level descriptions (e.g., “this physician
follows this diagnostic strategy”) characterize human
behavior in some social environment—what people say and
do in particular situations, not stored, physical structures
inside the head.

3) Modeling intelligent behavior is fraught with frame-of-
reference confusions. We must tease apart the roles and
points of view of human experts, mechanical devices they
interact with, the social and physical environment, and
observer-theoreticians (with their own interacting suite of
recording devices, representations, and purposes).  

The challenge to knowledge acquisition today is to clarify
what we are doing (computer modeling), clarify the difficult
problems (the nature of knowledge and representations), and
reformulate our research program accordingly (how to
collaborate with social scientists and users). I sketch out
these ideas in this position statement.

Qualitative Process Modeling
In the past decade, we have studied knowledge bases and
abstracted their designs, so we can describe what we are
doing and devise methods to do it more clearly, reliably, and
efficiently. Second generation expert systems separate out
and make explicit the two processes that are modeled in
every expert system (Clancey, 1983):

1) a model of some system in the world (the domain,
e.g., a model of an electronic circuit);

2) a model of reasoning processes (the inference
procedure, e.g., a diagnostic procedure).

These aspects of expert systems are reflected in two
dominant, interacting areas of research, called qualitative
reasoning and generic expert systems. The focus of
qualitative reasoning (Bobrow, 1984) is to develop
notations and calculi for modeling processes in the world.
The focus of generic expert systems is develop task-specific
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representations and inference procedures (e.g., specific to
diagnosis, configuration, scheduling, auditing, control)
(Clancey, 1985).  These complementary areas of research
are integrated in expert systems and associated tools with
enhanced capability for knowledge acquisition and
explanation. Second generation expert system techniques
produce a growing library of abstractions, enabling new
programs to be constructed by reusing and refining existing
representations and inference procedures (Marcus, 1988).

The content analysis involved in constructing generic
expert systems is called "knowledge-level analysis." It
contrasts with earlier emphasis on implementation-level
distinctions (e.g., using rules vs. frames). Developing
alternative representational notations (e.g., more formal
conceptual structures (Sowa, 1984)) plays a secondary role.
Questions about notations do not go away, but are recast in
terms of tasks, domains, process representations, and model
construction. Useful dimensions for describing expert
systems include:

 —the nature of the task (e.g., diagnosis vs. design);

—the nature of the system being modeled (e.g., an
isolated, designed device vs. an open, biological system),

—how processes are represented (e.g., classification vs.
simulation),

—the inference method for constructing a situation-
specific model (e.g., contrasting alternatives on a
blackboard vs. depth-first, incremental refinement of a
single hypothesis),

 —the macro-structure of the relational network used for
describing the domain and inferential processes (e.g.,
hierarchies, state-transition networks, and compositions of
these) (Clancey, 1989).  

 Questions of computer encoding are thus reformulated in
terms of process modeling methods that separate process
descriptions of the domain, inference, and communication
(Clancey, in press).

In short, all knowledge bases contain models of systems
in the world. A human expert serves as an informant about
how a given system tends to behave, how it can be designed
or controlled to generate desirable behaviors, and/or how it
can be assembled or repaired. It follows that an expert
system's performance can be evaluated in terms of the
suitability of the model it constructs for the purpose at
hand. For example, for medical diagnosis we need to look
beyond the names of the diseases output by the program to
determine whether the preferred diagnosis covers the
symptoms that require explanation (Clancey, 1986).
Previously, such consideration of completeness and
consistency was reserved for programs using simulation or
so-called "model-based reasoning." But all expert systems
construct models and can be evaluated on this basis.  

In summary, qualitative reasoning embraces modeling
based on classifications (e.g., a taxonomy of disease
processes), as well as modeling based on simulations (e.g.,
a behavioral simulation in the form of a causal network
relating abnormal substances and processes internal to the

system being modeled). From this second generation
viewpoint, we can define knowledge engineering as a
methodology for modeling processes qualitatively, in the
form of relational networks describing causal, temporal, and
spatial relations. Having shifted from the view that the
knowledge base is a model of expert knowledge exclusively,
we have no qualms about integrating qualitative and
numeric models. We are belatedly discovering that many
expert systems have done this all along. For example,
SOPHIE used qualitative modeling to control and interpret a
FORTRAN simulation of its electronic circuit (Brown, et
al., 1982). SACON used simplified numeric equations to
estimate stress and deflection, which were then abstracted to
select programs that provide more detailed analysis
(Bennett, et al., 1978)).

Why classification models are necessary

The knowledge engineering community's disparagement of
classification in the 1980s went beyond the suggestion that
it is not modeling. Many papers in the literature suggest
that classification models are inferior to simulation models
and can be entirely reduced to or compiled from them (e.g,
De Kleer and Brown, 1984). According to this point of
view, physicians talk in terms of syndromes and disease
classifications because they do not understand the causal
mechanisms causing these processes. A "real" model would
reduce disease descriptions to descriptions of physical
structure and function. For the most part these assumptions
are false and belie a fundamental misunderstanding about the
nature of system modeling and, more generally, how
systems interact.

Disease descriptions characterize the result of recurrent
interaction between an individual person and his or her
environment. Consider for example tennis elbow. This
syndrome cannot be causally explained in terms of
processes lying exclusively within the person or within the
environment.  Rather it is a result of a pattern of interaction
between the person and environment over time. As for any
emergent effect, it can't be predicted, explained, or
controlled by  treating the person in isolation, or even by
studying the person-environment system over short periods.
It is a developmental effect, an adaptation in the person that
reflects the history of his or her behavior in the world. The
same claim can be made about the entire taxonomy of
medical diseases—trauma, toxicity, infection, neoplasms,
and congenital disorders—they are all descriptions of bodily
processes after a history of recurrent interactions. Similar
examples can be drawn from computer system failures;
faults cannot be reduced to changes in a blueprint, but are in
fact constantly introduced and prone to change in an open
environment. A favorite story at Stanford's SUMEX-AIM
is how system crashes were caused every fall when the first
October rains wet the phone lines going to Santa Cruz,
swamping the computer with spurious control-C's
attempting to get its attention. Such problems aren't fixed
by swapping boards.

 The consequences of this systems-modeling perspective
are more staggering than we might first imagine. Simply
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put, blueprints and functional diagrams of a device being
modeled (including the human body), fail to capture
emergent, historical effects of the system’s interaction with
its environment over time. If the device is adaptively
developing new structures during its interactions with its
environment, then a classification model is necessary in
order to characterize how the device will behave and be
internally organized over time. Such descriptions are
necessary in order to describe the state of the device, to
explain—historically—how it got into this configuration,
and thus to provide a basis for modifying or controlling the
system in some desired way (e.g., to prevent the tennis
elbow from recurring). Biological systems are replete with
examples of emergent structure; common examples are tree
rings, the spirals of the nautilus shell, and the distribution
of species over the landscape (Bateson, 1988).

In effect, a category jump has been made: The system we
are now describing is the environment and the embedded
device interacting over time, not the device in isolation.
Thus, classification models constitute a level of system
description, but they cannot be reduced to or mapped onto
pre-existing physical structures in individual devices. As we
move from blueprint-like structure-function models, we
move from the domain of an isolated system to social,
interactive, emergent processes. As Ryle warned us, we
make a category mistake if we try to find the university in
the members of colleges, the division in the parade of
soldier battalions, or team spirit in specific "cricketing
operations"  (Ryle, 1949, p. 16). It is no coincidence that
Ryle's examples all contrast social organizations with
individuals or entities viewed in isolation. To suppose that
classification models of how adapted behavior of a system-
in-its-environment appears to an observer can be reduced to
internal mechanisms of individual agents that existed before
the interaction began is to make a category mistake.

We have to be careful in modeling complex, interactive
systems like a computer, the human body, or a team of
workers. We are interested not only in how a system works
(its components and their purposes), but how its behavior
develops in different interactional environments. This is
precisely the province of the human expert, who can tell us
what he has observed from experience, as he has participated
in the system’s operation. For different purposes, we may
find it necessary to get the viewpoint of different observers,
providing descriptions relative to different points of view
(for further discussion, see (Clancey, 1991d; in preparation
b)).

Knowledge and Representations
An observer ascribes knowledge to a human agent in order
to describe and explain recurrent patterns of behavior in
some environment. Knowledge-level descriptions (e.g.,
natural language grammars and problem-solving strategies)
cannot be reduced to mechanisms in the body of individual
agents; they are relative to the observer's point of view and
characterize the total system of agent plus environment. In
effect, there are several related claims:

—a knowledge representation such as a situation-action
rule describes how someone behaves in some environment;

—as pattern descriptions, rules and scripts describe habits
and routines that develop over time. Behavior patterns
cannot be attributed to internal, stored structures that are
first learned as theoretical descriptions (e.g., memorized
facts and procedures) and subsequently control behavior in
the manner of a template (by retrieval and mere application,
in the manner of a tool that remains the same from
situation to situation (Lave and Wenger, 1991)).

Part of the confusion in relating knowledge bases to
human behavior is that we work backwards from our
models to attribute properties of the computer to people.
Observing the static nature of rules stored in a computer
memory, we start explaining human behavior in terms of
retrieving, matching and interpreting stored rules. We view
human behavior as caused by symbolic structures. This is
certainly true of computer system behavior, but it is a great
leap to assume that it is literally true of people. Our
representations have a great effect on how we see people, to
the point we forget that an expert system is just a model,
and that psychological claims prevalent in the early
knowledge acquisition literature (Hayes-Roth, et al., 1983)
are disputable.

Philosophical and psychological studies of memory,
representations, and perception (see Clancey, 1991a; 1991b;
1991c) suggest radical shifts from the early knowledge-
engineering points of view that knowledge acquisition is
“transfer of expertise” (Davis and Lenat, 1982). Crucially,
we must distinguish between representations out in the
world (such as this book chapter and rules in an expert
system), perceptual experiences (such as silently talking or
singing to yourself, or visualizing something), and neural
structures which are coming into being during our behavior.  

We must not confuse representations of knowledge with
whatever neural structures are in the brain coordinating our
activity. A knowledge-level description, as a physical
representation, must be expressed in some perceived
medium. When we speak we are not translating internal
representations of what our words mean, but creating the
representations in our activity. Interpretable representations
only exist physically in an observer's statements, drawings,
computer programs, silent speech, etc. 

Representing meaning is a subsequent perceptual act. In
interpreting an already existing representation—that is, in
using it—we perceive some structures and comment on
what they mean. Representations, including knowledge
representations, are always open to interpretation; their
meaning is never fixed or defined, but always relative to an
observer's frame of reference in the next act of interpretation
(Agre, 1988). Thus, a second level of perceptual
construction is interposed by the observer of the observer's
representations (Clancey, 1991d).

  Elaborating some implications, we find ourselves almost
overwhelmed with reasons for doubting that a knowledge
base can be associated with structures that were previously
encoded in the head of the expert:
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❏ Knowledge-level descriptions are attributions made by
an observer (the knowledge engineer), involving
selective interactions with the agent (the expert),
personal perceptions, and point of view;

❏ Knowledge-level descriptions abstract a sequence of
behaviors (what the expert does and says in the
course of solving a sequence of related problem
examples), not single, moment-by-moment
responses;

❏ Descriptions of the device being modeled and
inferential processes are informed by the expert's
observations and problem-solving behavior, but they
are not primarily intended to be the expert's "mental
models" or psychological explanations of  behavior;

❏ To the extent that the processes people follow in
gathering data to solve a problem and taking action
in the world are intended to be simulated by the
expert system, these descriptions always model the
combined, usually social, system (how the expert
interacts with his or her environment);

❏ Meaning is not fixed or stored in the brain.
Knowledge-level descriptions have an open
interpretation, dependent on the point of view of the
observer of the representation, in the course of his or
her ongoing activities;

❏ People express knowledge-level descriptions in
perceptual space (e.g., on paper or in a computer
file), so they can be subsequently reperceived and
interpreted (Clancey, in preparation).  Human use of
representations (e.g., reading this article) involves
new conceptualization, not syntactic manipulation of
definitions and meaning templates, which is all that
today’s computer programs can do (Clancey, 1991a);

❏ Designing knowledge representations is the province
of the knowledge engineer and AI researcher. The
human expert, despite often being a theoretician of
his or her own behavior, in general does not bring
representational languages ready-made to the
knowledge acquisition session. Otherwise, there
would be no need for knowledge representation
research.

In light of this perspective, it is illuminating to
reinterpret Newell's comments about the knowledge-level
(Newell, 1982) (reinterpretations in italics):

The knowledge level is not realized as a state-like
physical structure, "running counter to the common
feature at all levels of a passive medium." (p. 105)  
"It seems preferable to avoid calling the body of
knowledge a memory."  (p. 101)  "The total system
(i.e., the dyad of the observing and the observed
agents) runs without there being any physical
structure that is the knowledge." (p. 107)

—Knowledge isn’t a substance that behind the scenes
causally drives human behavior. A knowledge-level
pattern, such as a natural language grammar
characterizes the product of interaction, how behavior

routines and the world appear; it doesn’t describe
structures in the head. Put another way, the neural
structures coordinating perception and action in
people come into being in the course of interaction
itself. Thus, new knowledge (capability to speak,
perceive, and act) develops as new coordinations in
the course of behavior itself; people are not
automatons rotely executing stored programs.

Knowledge can only be "imagined as the result of
interpretive processes operating on symbolic
expressions." (p. 105)   

—When we comment on (represent) the meaning of
perceived structures, in effect claiming that they are
symbolic, we reorient our behavior (e.g., reading a
map, following instructions). Interpretation of
representations by people is always perceptual,
involving new conceptualization, not syntactic
interpretation as in an inference engine. This gives
us new capability to act, which we call knowledge.

"Knowledge of the world cannot be captured in a
finite structure." (p. 107)   "Knowledge can only be
created dynamically in time." (p. 108)  

—Every human behavior is an adaptation; every
perception, thought, and action is a generalization
(Clancey, 1991b). Words, meanings, and
understandings are not merely retrieved or
syntactically combined. Coordinations and
capabilities are always at some level new; they are
constantly constructed out of previous coordinations.
Again, we must distinguish between the product of
knowing (a spoken sentence) and the process by
which neural structures are selected and recomposed.
People needn’t store away descriptions of behaviors;
our capability to speak and act is created dynamically
in time.

"One way of viewing the knowledge level is as the
attempt to build as good a model of an agent's
behavior as possible based on information external to
the agent." (p. 109)  

—The knowledge engineer's knowledge-level
description of the expert emphasizes the expert's
awareness and use of materials and circumstances in
the environment; that is, it accounts for behavior in
terms of interaction between agent and environment.
Reasoning procedures and domain models describe
how experts behave, as well as recurrent processes in
their environment. Knowledge bases are models; no
claims need be made about internal structures in the
agent.

As Newell says, knowledge can be represented, but it is
“never actually in hand.” Each statement by the observer
captures what he needs to say at any point in time, and each
such statement is later interpretable in different ways. We
must work against the common sense tendency to
rationalize observed behavior in terms of physical
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representations of goals, meanings, intentions, and
assumptions that supposingly exist inside the head of the
agents before behavior begins. People can of course
represent their goals and assumptions, and this of course
influences their behavior. But all human behavior—
including uttering such representations—is immediate,
without requiring intermediate plans or other semantic
schemas that model what we are about to say or do. When
an observer describes an intelligent agent, a distinction
needs to be drawn between knowledge as a capacity ascribed
to the agent (dynamically changing through interaction with
the environment) and the observer's representations of this
capacity (perceivable structures, open for interpretation).
Hence, we may be ready to return to and build upon Ryle's
famous distinction between knowing how (a capacity to
perform some action) and knowing that (a representation).
The capacity to perform cannot be reduced to
(mechanistically replaced by) knowledge-level descriptions
of how the performance appears.

Perhaps the strongest claim is that a machine that
syntactically manipulates representations can model human
behavior, but as an agent, an expert system isn’t capable of
what the human brain allows in flexibility and creativity.
This isn’t something that can fixed by adding more
representations, but requires inventing a new kind of
mechanism that doesn’t rely on stored models or programs
(Clancey, in preparation a). This places a premium on
understanding the differences between today’s expert
systems and human capability, and exploring uses for
computers beyond automation of reasoning.

Implications for Socio-Technical
System Design

What are the implications for expert system design and
knowledge acquisition if human reasoning is not produced
by interpreting stored representations?  First, we must adopt
a different way of talking about our programs.  They are
only models, not intelligent beings. We are not modeling
structures in the expert's head, though we will certainly
continue to pay close attention to how experts talk and
what representations they use (e.g., diagrams, logbooks,
notational shorthand, calculi). We are free to incorporate
different kinds of models in whatever combination is useful
for the task at hand, no longer bound to vaguely relate
knowledge bases to expert methods. Adopting the systems-
modeling perspective suggests that numeric approaches
should be freely integrated (e.g., linear programming,
Bayesian statistics).  

But more radical changes to knowledge engineering are
required. In developing expert systems, we must reconsider
how human work relates to computer models. To restate
some claims made above:

❏ A representation is not equivalent t o
knowledge.

A representation of what a person knows is just a
model of his or her knowledge, a representation of a
capacity. Knowledge cannot be reduced to (fully

captured by) a body of representations.  Knowledge
cannot be inventoried.

❏ The meaning of a representation cannot be
made explicit.

Meaning can be represented, but it cannot be defined
once and for all, captured fully by representations.
The meaning of a representation is open, though
there are culturally stable representations of meaning
(e.g., word senses).

❏ The context in which a program is used
cannot be made explicit.

Context can be represented, but the world cannot be
objectively and exhaustively described;  cultural or
social circumstances cannot be reduced to a set of
facts and procedures (Lave, 1988).

One way of summarizing this is “practice cannot be reduced
to theory.” This contrasts with the familiar idea that
theoretical descriptions are a kind of ideal, but the world is a
messy place. In effect, by saying that human behavior isn’t
driven by stored theoretical descriptions (e.g., formal
procedures, rules, or models), we are saying that models of
behavior and the world always selectively abstract and give
a limited impression of human capabilities.  It is the
unspecifiable “messiness” of the neural system—becoming
organized in new ways at the time of interaction itself—
which gives human behavior its robust, always adaptive
character.

The limitations of scientific models based on pattern
descriptions has also been brought to the forefront by the
invention of chaos models (Gleick, 1987, p. 6):

Twentieth century science will be remembered for just
three things: relativity, quantum mechanics, and chaos....
Like the first two revolutions, chaos cuts away at the
tenets of Newton’s physics. As one physicist put it:
“Relativity eliminated the Newtonian illusion of absolute
space and time; quantum theory eliminated the Newtonian
dream of a controllable measurement process; and chaos
eliminates the Laplacian fantasy of deterministic
predictability.” Of the three, the revolution of chaos
applies to the universe we see and touch, to objects at
human scale.  Everyday experience and real pictures in the
world have become legitimate targets for inquiry.

Strikingly, at the level of workplace analysis, both
knowledge engineering and ethnography have opened up
everyday experience as a target of inquiry (Lave, 1988). But
like the physicists, we must make some new distinctions
between our models and the phenomena of study. We must
distinguish between activities, patterns, and theories:

Social activities and physical phenomena: The
world being modeled has an inviolable nature; it cannot be
exhaustively described.  We can model the world, but we
can always go back to find new perspectives for describing
what we are modeling, usually involving new perspectives
on what constitutes information (data), new languages for
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modeling, and new perspectives on the purpose for
constructing models.

Design and interaction patterns: Rules,
classifications, scripts, grammars, structure-function
models, causal state-transition networks, metaphors,
statistics,  etc. are useful for describing complex designs
and social systems. Models are especially useful for creating
new designs (Alexander, et al., 1977), diagnosing and
repairing undesired situations, and teaching. But we must
remember that models (notably formal specifications)
remove us from the world we are attempting to understand
and influence. In the design process, for example, we must
develop disciplined means of relating tools to the context of
use.

Social-psychological theories: At another level,
we develop theories about why the models we create are
valid, why these representations have been constructed and
not others. For example, the idea that the purpose for using
a model determines what kind of model is desirable is part
of knowledge engineering theory. In general,
metatheoretical considerations help us organize our
modeling techniques into a coherent methodology. For
example, having related modeling techniques to domains
(Clancey, 1986), we might go back to the world of artifacts
and social activities to flesh out our repertoire by
attempting to model new domains. In general, to be
effective, knowledge engineering requires more extensive,
integrated theories of work, collaboration, communication,
understanding, creativity, routines, perception, and
representations.

One implication of these distinctions is that researchers
should make clear whether they are providing practical
knowledge acquisition tools or focusing instead on theories
and new modeling techniques.  Providing tools requires
more careful attention to the social setting in which expert
systems are used, focusing on how teams of people interact
to solve problems and how job aids can facilitate this
interaction.

Studying the nature of intelligence will continue to
involve knowledge-level analyses, for this is the leverage
that cognitive science provides over neurobiology.
However, a clear separation should be made between
knowledge-level descriptions and physical mechanisms. The
idea that human-equivalent behavior could be generated by
interpreting stored programs that predescribe the world and
ways of behaving must be abandoned, for this view
confounds descriptions an observer might make with
physical mechanisms inside the agent.

Researchers can commit to both practical knowledge
engineering and the study of intelligence, as surely both
feed into each other.  However, the practical needs of tool
users and the difference between knowledge bases and the
human mind require a more explicit commitment than
before, otherwise evaluation and choice of methods will be
confused.

To elaborate on what can be done today, I will discuss
two recommendations for designing expert systems:

1) Don’t just deliver technology; collaborate with social
scientists and users on site in tightly-incremental
designs.

2) Facilitate, don’t just automate conversations.

Collaborate with users in tightly-incremental
designs

Social-technical systems must evolve; they are
deterministic, but not predictable, and therefore cannot be
controlled. We can design organizations, but we cannot
control how people will work together, how they will
actually accomplish what they need to do. At another level,
this means that we cannot control or strictly predict how
people will construct  goals, sources of information, or new
tools. When we supply technology, we cannot predict all
the nuances of how the tools might be exploited or how
they might change the social interactions and roles (Zuboff,
1988; Greenbaum and Kyng, 1991; Wenger, 1991).

One implication is that knowledge engineering splits
between the attempt to invent new theoretically interesting
uses of computers and the attempt to deliver useful tools for
industry, schools, professionals in the short term, while
furthering our theoretical understanding. This “action-
oriented research” can be viewed as basic research on the
problem of how to design useful tools in partnership with
users on the job. Researchers focusing on these problems
believe that the fundamental problems are not just in the
realm of technology, but in understanding what workers are
doing and in changing work practice (Zuboff, 1988; Ehn,
1988; Wynn, 1991).

Research shifts to the design process:  learning how to
discuss designs with non-technical people, finding out how
work really gets done, promoting invention, resolving
organizational paralysis (Bannon, 1991). Central design
questions include:

1) How should new technology be co-designed with
users?

2) What program features would enhance
apprenticeship, non-routine problem solving, and
innovation?

3) What changes to organizational structures are required
by and would enhance the new tools?

Recently, anthropologists, sociolinguists, and human
factors specialists have been collaborating to invent new
ways of working with users, new uses of computers, and
new organizational structures (e.g., Zuboff, 1988; Kukla, et
al., 1990; Greenbaum and Kyng, 1991; Hughes, et al.,
1991). The role of ethnography is to provide a global view
of the workplace, to keep tool design integrated into the
dynamics of the workplace, and to know what other tools
should be built and how they are related to worker identity
and role. Social scientists in effect help to keep the project
honest. They ask, “Are we solving the most pressing
problem?  How does our technology relate to users’
priorities? What non-technical factors could lead to failure?”
This is similar to a “market analysis,” but based on looking
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at how people work together—more like investigative
journalism than psychological experimentation or surveys.

A key idea is rapid, incremental development in the
context of use. In effect, this entails redistributing
responsibility for design. Such a shift is facilitated by good
prototyping tools, so programmers are less committed to
early designs and other people have control over design
decisions (e.g., users, graphic designers, managers).  The
role of prototyping is not just a way of making
programming efficient, but a means of keeping
programmers and users open-minded, ameliorating the
investment in tedious work to implement any given design.
In effect, program design needs to be more like architectural
sketching than laying bricks in concrete. We need the
interface equivalent flexibility of moving around walls and
furniture, not nailing and sawing wood. This is the promise
of task-specific programming environments (Clancey and
Barbanson, 1991).

A new role for knowledge engineering is to help
ethnographers organize and model workplace observations.
Ethnography could benefit from a process-modeling
language (scripts, transition networks) for describing how
people interact. Notably, such models transcend individual
points of view. They describe what coordination between
people accomplishes as a whole, not individual “reasoning.”
They include pattern descriptions that many people in the
workplace itself might not recognize (Jordan and Alpert,
1991). They are patterns of interactions, not templates or
formal procedures. In effect, we can use qualitative
modeling techniques to analyze and share ethnographic
data—to model workplace interactions—without making
commitments to putting models in computer tools for
workers.

Specifically, qualitative work process models could:

❏ Organize data by classifications, state-transition
networks, and structure-function hierarchies (e.g.,
Jordan’s “typified action sequences”).

❏ Model job functions and schedules, representation
manipulation (e.g., how logbooks are modified and
shared), and interaction patterns. That is, qualitative
modeling can be used in the workplace to model
physical systems, reasoning, and communication
processes (Clancey, in press).

❏ Represent agent roles and interaction strategies. In
knowledge representation systems, we have
developed languages for describing roles that people
play and strategies they follow.

Such formal models could complement more prosaic
ethnographic descriptions, for example, by providing
multiple indices to a video library illustrating workplace
practice. In effect, representational languages and calculi
developed for knowledge engineering can be used broadly to
model the interaction of social, physical, and technological
systems.

Facilitate, don’t just automate conversations

Beyond new approaches to design, we should consider
radical changes in how computers are used. Most computer
programmers emphasize automation. They build tools
exclusively around formal descriptions of work
(“functionalism” (Kukla, et al., 1990)). Computer tools
have an individual orientation (the workstation view). These
biases are reinforced by the laboratory design approach, in
which basic research occurs apart from the application
setting; controls and idealizations distort the nature of
practice. Many of these ideas were first articulated in the AI
community by Winograd and Flores (1986), who added the
subtitle to their book, “A new foundation for design” to
emphasize the relation between a changed conception of
human reasoning and new ideas of how computers can be
used.

The information-processing view of people is quite
idealized. People are usually described one-dimensionally—
assumed to be on-task, rational, dedicated, and loyal to the
company. Although knowledge engineers pay lip service to
such ideas as “breaking down barriers to communication,”
they focus exclusively on access to information, leaving
out issues of identity and membership in the organization
(Wenger, 1990). What interactions occur outside the web of
information-processing computers and telecommunications
links? Work schedule, salaries and job scales, war stories,
role-defined “knowledge-making rights”  (Eckert, 1989) are
all important workplace considerations that computer tools
might take into account.

As an example, consider Kukla et al.’s (1990) study and
designs for process control communication in a Monsanto
plant. Kukla’s view of work is dynamic, always non-
routine, and intricately formed by a web of interactions
greatly distributed in space. Following Winograd and
Flores’ advice, Kukla modeled conversational interactions in
great detail. In contrast with traditional knowledge
engineering, Kukla’s proposed communication tool designs
take into account that people dynamically define what their
tasks are and reconceive what constitutes information for
doing their job.

But Kukla’s view is always oriented towards problem-
solving at the manufacturing task level. People are only
described as they exist “on task,” without any sense of the
dynamics of how roles get defined, how new people are
brought on board, how conflicting interpretations are
resolved, etc. Kukla designs are claimed to promote
innovation, but he doesn’t say how, except to say that the
right people are put in touch with each other, and they can
show each other what is happening (different views of the
work), at critical times.  How does learning occur? How are
contradictory goals of different organizations reconciled?
(Kling, 1991) Kukla’s proposed tools for the Monsanto
workers are strikingly different from most “automate
everything” systems. But by providing more details and
theoretical descriptions of what is happening, we might
further justify and improve these designs. A learning
perspective would focus more on how new practices are
introduced, rather than just how serious events are handled.
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For example, we should analyze what changes in people’s
interactions as a result of working through a difficult
situation together. In effect, we are designing for
communities of practice, not information processors
(Wynn, 1991; Wenger, 1990).

Given the distinctions between human knowledge,
practice, and representations I have laid out, we might
reformulate how we view qualitative modeling. Example
shifts in perspective:

❏ Represent patterns causing breakdown o f
models.

That is, to facilitate group interpretation of past
work, represent the cases on which the model fails
and rationalizations for the failures. View failure
annotations as ways of representing the boundaries of
a model; recognize that such boundaries always exist
and that modeling them is important for users.

❏ Don’t attempt to exhaustively model the
world in terms of patterns.

Rather than attempting to build an omniscient
program, capitalize on the program’s inability to
model every situation. For example, detect when
modeling exceptions occur and sound an alarm
(Byrnes, et al., 1990).

❏ Provide modeling tools for students and
workers to reflect on their practices.

View the computer tool not as doing someone’s job
for them, but as a means for them to represent
typical work practices, as well as the details of
specific situations, and reflect upon them (Rodolitz
and Clancey, 1989).

❏ Use computer models as tools for
mediating conversations.

 Rather than constructing a tutor to talk to an
individual student, conceive of the simulation model
as a means for students to experiment and explain
things to each other (Roschelle, 1990). How can an
expert system be used to facilitate a conversation
between a sales person and a client?  Between the
sales person and the in-house product designers?

To use expert systems appropriately, we must respect
how representations are continuously reinterpreted and
created in social interactions. We must abandon the idea that
the computer model is a kind of “correct,” once-and-for-all
view of the world. The representations people put in a
knowledge base are as much for people as for the program.
We must take into account how people continuously
construct and reinterpret their own models in the course of
their work (Wynn, 1991). Ethnographic studies (Linde,
1991; Jordan and Alpert, 1991; Kukla, et al, 1990) suggest
that computer tools might be based on the following
considerations:

❏ Enable forms of sharing:

—make resources (human and artifacts) more
available;

—allow people to see, copy, incorporate, possess,
modify, and become responsible for work in
new ways.

❏ Make tools accessible to everyone in the
group:

—support overlapping responsibilities;

—relate contributions, don’t isolate jobs;

—accommodate novices and experts, people familiar
or not with everyday situations.

❏ Map designs to problem-solving and
innovation phases:

—phases include orient, explore, collaborate,
coordinate, take action;

—allow non-routine processes to remain ad-hoc;
allow the invention and flexibility required for
dealing with difficult, emergency situations to still
take place.

Conclusion
Several ideas interweave in this analysis: Today’s computer
models are limited in capability relative to people;
qualitative modeling provides a new basis for tools of value
to business, science, and engineering; and social science
perspectives change the interpersonal dynamics of software
design. In essence, a new view of people relative to
computer models yields a new view of what tools can be,
and hence a new view of the tool design process (Winograd
and Flores, 1986). In this respect, the rhetoric of
Scandinavian design approaches (e.g, Ehn, 1988) appears
less harsh than it might first appear. Knowledge engineers
are called to participate with social scientists and workers in
the co-design of the workplace and tools for enhancing
worker capabilities. The emphasis is on augmenting human
capabilities, not merely automating what they do.
Significantly, this must be done in the context of use, to
maintain connection to non-technical factors such as
ownership of ideas, based on the worker’s sense of identity
and membership in a community.

In many respects, this research has just begun.  Some of
the open issues include:

❏ An evolutionary view of organizational
learning: What is the interplay of individual
insights, group trends, boundaries between
communities, multiple membership, and forms and
rights of participation (Bartlett, 1932; Wenger, 1990;
Eckert, 1989)?

❏ Computer tools to facilitate learning o n
the job: What designs provide for shared
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workspaces, allow improvisation, and coordinate
contributions? How can “intelligent tutoring”
systems be incorporated in job performance aids?

❏ Representation and meaning construction:
What are heuristics for promoting creativity,
encouraging creation and distribution of design
stories? What are new artifacts for communication
(e.g., electronic blackboards)?

In effect, knowledge engineering moves radically from its
original concern in “acquiring and representing expert
knowledge” to the larger arena of social and interactional
issues involved in collaboration and invention in everyday
work. We shift from the idea that a glass box design is an
inherent property of a device, to realize that transparency is
relative to the observer’s point of view, and this depends on
cultural setting (Wenger, 1990). We shift from the idea that
computer models are equivalent to habits and skills; rather
as representations they play a key role in reflection and
hence learning new ways of seeing and behaving (Schön,
1987). We shift from the idea that goals, meaning, and
information are fixed entities that are inherent in a task, to
helping people in their constant, everyday efforts to
construct their mutual roles, contributions, and identity
(Wynn, 1991). In all this, we see the role of knowledge
engineering not as “capturing knowledge” in a program that
is delivered by technicians to users.  Rather, we seek to
develop tools that help people in a community, in their
everyday practice of creating new understandings and
capabilities, new forms of knowledge.
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