
A n increasing number of Artificial Intelligence (Al)
programs are implemented on high-performance work-
stations with a bit-map display, a mouse, and a keyboard.
The programming environment (usually a dialect of Lisp)
generally provides support for displaying multiple windows
and using menus that can be selected with a mouse. Im-
portantly, a programmer can also specify arbitrary regions
of a window (e.g., text items) to be selectable with the
mouse. This means that a user can invoke an action by
pressing or releasing a mouse button while the mouse

cursor is in a selectable region. These features make it

possible to create a user interface that is efficient and easy

to use for viewing and browsing a complex system.
The GUIDON project at Stanford University is investi-

gating ways in which knowledge-based systems can provide
the basis for teaching programs. NEOMYCIN, a medical
consultation system, has been developed for this purpose.!
This article describes GUIDON-WATCH, a graphic inter-
face to NEOMYCIN that uses multiple windows and the
mouse to allow a user to browse through the NEOMYCIN
knowledge base and view reasoning processes during a

consultation. The results reported include methods for
providing multiple views of a database, techniques for
illustrating dynamic processes including a search strategy,
and some conclusions regarding automatic management of
a multiple window display.

Project goals

The capability of displaying and selecting information in
several windows allows people to control and observe the
behavior of an application program in an easy fashion. A
graphic interface to a knowledge-based system can serve

different kinds of users, including system designers, imple-
menters, domain experts, students, and other end users.

In the GUIDON project, the end users will be medical
students. We are currently collaborating with physicians

November 1985

rk cher

__~ bib_. mieQd1JigtSn1y1tR1f 30LZ e 1r__
__ _____Wi_1arkH.an icr

__~~~~L iz _2d_Stiam)Ulu"ane sib-__e, st b _ _s_

~~~~~~_ ___a _ 2r4 ssed ica c ns Ilti iE 7a't ab 4se an( s v
_ _ E QjIr ncAn sekrAi-n gicns A F;ta Aiodr. _ __

GUIDON-WATCH is a graphic interface that uses
multiple windows and a mouse to allow a student to
browse through a knowledge base and view reasoning
processes during diagnostic problem solving. This
article presents methods for providing multiple views of
hierarchical structures, overlaying results of a
search process on top of static structures to make the
strategy visible, and graphically expressing evidence
relations between findings and hypotheses. We demon-
strate the advantages of stating a diagnostic search
procedure in a well-structured, rule-based language,
separate from domain knowledge. A number of issues in
software design are also considered, including the
automatic management of a multiple-window display.

51

William J. Clancey
Richer, M. H. and Clancey, W. J. (1985). IEEE Computer Graphics and Applications 5 (11), 51–64.깱



and medical students to adapt NEOMYCIN, GUIDON-
WATCH, and other programs for medical instruction.
However, when this work began better tools were also
needed to maintain the NEOMYCIN knowledge base and
to debug program behavior. As a result, GUIDON-
WATCH evolved into a tool for both programmers and
medical students to use. We are just starting to make a

clean separation between the functionality that is useful for
students and that for programmers. We plan to develop
user profiles that determine the interface behavior in a

given situation. The current prototype can be customized
only by making changes at the programming level.
GUIDON-WATCH is based on established principles

for designing user interfaces on graphic workstations.2-5
The design criteria for GUIDON-WATCH emerged from
the conventional wisdom on the subject. The user interface
is viewed as a conversation consisting of two languages':
(1) the language in which the user retrieves or requests
information (with the mouse), and (2) the program's
display and its interpretation. We aim to maximize ex-

pressiveness, understandability, and efficiency for both
languages. The user should be able to retrieve all informa-
tion through one interface that is easy to understand and
efficient to use. The display should include all relevant
information, be easy to interpret, and quick to update
when a user makes a request.

Several GUIDON-WATCH users have found the inter-
face simple, consistent, and easy to use. However, those
unfamiliar with NEOMYCIN have difficulty realizing
exactly how and when the display can be useful. We have
found that the display is the best means we have for
explaining NEOMYCIN. Therefore, an on-line introduc-
tion to GUIDON-WATCH and NEOMYCIN is planned.

Informal evaluation with Stanford University medical
students is scheduled for the fall of 1985. Students will

Figure 1: The evolution of a knowledge-based system.
MYCIN evolved into EMYCIN, a domain-independent shell
for building knowledge-based systems. The GUIDON
tutoring system is a separate module that could be used
with any EMYCIN system. EMYCIN was not found to be
an adequate foundation for an instructional program.
Therefore, EMYCIN and the MYCIN knowledge base were
reconfigured into NEOMYCIN, a medical consultation
system designed for enhanced explanations and tutoring
capabilities. The domain-independent shell that NEO-
MYCIN is built with is called HERACLES. NEOMYCIN is
the basis for GUIDON-2, a tutoring system now in
development.

watch NEOMYCIN diagnose one or more patients. Data
records of actual patients will be stored in files that can be
accessed by NEOMYCIN during its questioning phase. A
student will use GUIDON-WATCH to observe NEO-
MYCIN's reasoning processes during the consultation.
NEOMYCIN will be able to explain in English why it
asked a question.6 Eventually, students will assist NEO-
MYCIN during a diagnosis in an apprenticeship setting.
The major results to date are summarized here:
1. Multiple windows can provide several concurrent

views of a knowledge-based system. They help users cope
with the complexity of the system by highlighting and
summarizing important reasoning events during a prob-
lem-solving session.

2. Several methods for highlighting facts and events
were found effective. These include using different font
styles, reverse video, boxing, flashing, and graying regions.
With these techniques, dynamic information associated
with a given patient can be overlaid on top of static
structures such as a disorder tree or a table of evidence.

3. Early results indicate that both programmers and
medical users prefer to have GUIDON-WATCH manage
screen space automatically. This includes the sizing, plac-
ing, and closing of windows. It is not trivial to do this with
a large number of windows, particularly during develop-
ment when changes to the system are frequent. A knowl-
edge-based approach to window management is suggested.

The development of NEOMYCIN

The GUIDON project evolved from the MYCIN experi-
ments of the 1970's (Figure 1).78 MYCIN is a rule-based
consultation program that recommends drug therapy for
certain infectious diseases (e.g., meningitis). Because much
of the functionality (e.g., the inference mechanism) of
MYCIN does not depend on medical knowledge, it was

possible to develop a domain-independent shell called
EMYCIN.9 MYCIN now consists of EMYCIN plus the
MYCIN medical knowledge base. EMYCIN was used to
develop several other knowledge-based systems and is the
basis for several commercial products.

In 1979 Clancey completed GUIDON,10 an intelligent
tutoring system that interfaces with EMYCIN. In theory,
GUIDON can teach a student the rules in an EMYCIN
knowledge base. However, Clancey1 found that the
MYCIN rules were often difficult to understand because
they combine a diagnostic procedure with medical facts in
an opaque manner. In a MYCIN rule the ordering of
conjunct clauses in the premise might implicitly contain a
strategy. For example, a rule might apply only if the
patient is an alcoholic. One MYCIN rule premise begins
with, "If the patient is over 18 years of age and an
alcoholic." The strategy that is implicitly represented in this
rule premise is "Don't ask a patient under 18 years of age if
they are alcoholic."

IEEE CG&A

NEOMYCIN - HERACLES * GUIDON2

MYCIN - EMYCIN * GUIDON

52



GUIDON demonstrated that satisfying the requirements
for expert performance is not necessarily sufficient for the
purpose of explanation and tutoring. Therefore, MYCIN
was significantly reconfigured into a new program called
NEOMYCIN' that represents a diagnostic strategy sepa-
rately from medical facts. For example, the diagnostic
strategy used in NEOMYCIN explicitly states that the
program should check for conditions that would make a
question inappropriate. The knowledge base has also been
expanded to include diseases that can be confused with
meningitis (this is important for instruction). NEOMYCIN
is the foundation for GUIDON-2, a new series of instruc-
tional programs. GUIDON-WATCH is the first component
of the GUIDON-2 system. Importantly, interactive
graphics makes knowledge and reasoning visible only to
the extent that the knowledge is represented explicitly in a
program. The well-structured and explicit design of
NEOMYCIN provides many opportunities for exposing
the program's reasoning to students and other users.
NEOMYCIN has led to a domain-independent system

called HERACLES. HERACLES is to NEOMYCIN as
EMYCIN is to MYCIN. In other words, NEOMYCIN
consists of HERACLES and a medical knowledge base
(Figure 2). HERACLES is a software tool applicable to
diagnostic problems in many domains. For example,
HERACLES was used to develop a knowledge base for
cast-iron fault diagnosis.11 The HERACLES program in-
cludes a diagnostic procedure represented in a rule-based
declarative language, rule interpreters, a set of domain
relations (e.g., causes, subtype, suggests), various software
tools for developing knowledge-based systems (many de-
rived from EMYCIN), an explanation facility, and
GUIDON-WATCH. To construct a specific consultation
program, the system designer adds a knowledge base of
facts and rules. All the examples in this article use the
NEOMYCIN knowledge base, but GUIDON-WATCH
will work with any HERACLES knowledge base.

Description of the GUIDON-WATCH display

This section details the windows and menus used in
GUIDON-WATCH. First, the programming environment
is briefly described to show the tools we used when we
began the project. Then, an overview of the interface is
provided. The third section describes the window display
facilities in detail.

Programming environment. GUIDON-WATCH is im-
plemented on Xerox 1100 Series workstations running
Interlisp-D. The black-and-white display screen is 1024
pixels wide by 808 pixels high, which provides approxi-
mately 75 pixels per inch of resolution. Interlisp-D provides
a window package that supports multiple overlapping
windows, scroll bars, and other window operations.12
Many graphics primitives are provided for drawing lines
and curves, mainpulating bit maps, filling and manipulating

regions, checking the state and position of the mouse, and
so on. In addition, a menu package, a package to display
trees, and several default window functions (e.g., scrolling
by repainting) are provided. It required only a page of code
to implement a simple pull-down menu package using the
window primitives.

Overview of the user interface. Pull-down menus and a
Prompt window appear at the top of the GUIDON-
WATCH display (Figure 3). The Prompt window is a
standard part ofthe Interlisp-D user interface that is used to
print messages. Currently there are three pull-down menus
of interest to a medical student: KB (Knowledge Base)
Windows, Consult, and Help. The KB Windows pull-
down menu displays a list of windows that can be opened
for browsing through the knowledge base or viewing a
consultation. The Consult menu is used to start and quit a
consultation. The Help menu allows the user to obtain
information on the contents of a window.

Figure 2: The HERACLES architecture. The relation be-
tween GUIDON-WATCH and three primary system
modules is illustrated here. The consultation system con-
sists of HERACLES, a knowledge base, and GUIDON-
WATCH. For instructional use, the GUIDON-2 module
(now in development) can be added. GUIDON-WATCH
provides an interface for instructional use, to run con-
sultations and to edit the knowledge base. Although there
are differences in the interface for each type of user, in
general, the interface is very similar and represents a
single program with several modes of behavior. (The
graphic editor interface is not described in this paper
because it has not been completely integrated with
HERACLES.)

November 1985 53



Use of the mouse. Xerox 1100 computers can be used equivalent to pressing the middle button on the three-

with either a two- or three-button mouse (selecting the left button mouse). In GUIDON-WATCH, the mouse is used

and right button at the same time on a two-button mouse is in a simple and consistent way. The left button is used to

KBrWindows Consult Help

WFiridings _
Hypotheses bout the atint

jMules lnjs yp a

DynTasks
Relatiorsto
|Causal Association NetworkII3 10:12:00]
b MetaStrategy t

IDitf.rerntial
flypotheses-With-lEvidenG8 Wbout the patient.
WPositive Findingsl
qTaskStack Age
Dynamir Task Tree
,Tlask Historyl
|1) '' Mary 42 YEARS

:2) Please describe the chief complaints:
1 HEADACHE

STIFF-NECK-ON-FLEXION
NAUSEA

|Continue Thru Last ? Userexec
iPageheight 0 Resize

Sex

FEMALE

3) For how long has Mary's headache lasted?
** 18 DAYS

4) How severe is Mary's headache (on a scale of 0 to 4
with 0 for very mild and 4 for very severe)?

l* 3

DIFFERENTIAL:
(VIRAL-MENINGITIS 200) (CHRONIC-MENINGITIS 200)

5) Does Mary have a fever?

[i.e. WHY are we asking whether Mary has a fever?]

[4.e] We are trying to decide whether Mary has infection.

Whether Mary has a fever is strongly associated with infection.

** WHYPRUNE

[i.e. WHY are we trying to decide whether Wary has infection?]

[s50] We are trying to get a general idea of the problem: categorize it

into one of several pathogenetic classes or disease locus, or both.

FINDING RULE(S) MAXCF NINCF If The patient has a fever CCU;CF
=EEWjt 1 HULE2Se 7ee Then If you are considering any- IHRONICMENINGITI 2ee

WE~~~~ RULE423 se disorder there is VIRAL_NENINGITISi ze0ANDS RULE350see suggestive evidence (.7)PeNS RULE35B e that the underlyiSg
BANDS RULE350 see eCti0logy of the patient's

illness is infectious-
process

HYPOTHESIS CF CIIMCF
MENINGITIS see 6ee
INFECTIoUS-PRnrFSS --- 0
ICHRONIC-MEINIEw6TIS 2ee
iVIRAL-YENIN61I 20I2ee
ACUTE-MENINGITIS 200

Figure 3: A GUIDON-WATCH display during consultation. The user is running a Consult, and the system has paused at
question 5. The user has opened several windows to get information about hypotheses being considered at this time.
The use of pull-down menus is also illustrated. The user has selected the KB windows and moved the mouse over the

menu item Taxonomy. If the user releases the mouse button now, the Taxonomy windows will be displayed.

Figure 4: The Causal Relations window. The user has selected the node SUBARACHNOID-HEMORRHAGE with the

left button and a pop-up menu displays options for additional information. This graph was automatically generated
from the NEOMYCIN knowledge base, edited by hand to fit on the screen, and then stored on a file. If the user wishes to

display the graph with a different root node, GUIDON-WATCH dynamically generates the graph at runtime.

54 IEEE CG&A

OTHER-IC-PRESSUJRE-CAUSES -INTRACEEBMAL PUS - BRAIN-ABSCESS - CHRONIC-LUNG-INIFECTION

INTRAC-ANIAL PUS / PI SU.oURAL EMPYRMA CHRONIC-BACTERIAL-SINUSITIS

METASTATIC TUMOR CHRONIC-EAR-INFECTION

INTRACRANIAL-PRESSURE INTRACRANIAL -MASS-LESION - -NTfAC1IATALT.MR <
P TPPRIMARY UMOR

EPI.SUBOURAL.HEMATOMA EPI-SUBOURAL-HEMORRHAGE HEAUTRAUMA
Subsumption Relations OMA
Causal Relations | INTRACFlERERL .EMATO0A - INTRACEREBRAL-HEMOARHAGE ~ HYPERTENSION

SUBARACHNOIO-HEMORRHAGE BRAIN-ANEUYSM CON-NITAL ANEUR-SM

AV-MALFORMATION MYCOTIC ANURYSM -MYCOTIC-INFECTION



select all menu items and text items in a window. For
example, in a window that displays a list of diseases, the
user can select the name of a disease using the left button.
A pop-up menu is displayed that allows a user to get more
information in another window (Figure 4). Only those
items that are currently relevant appear in the pop-up
menu.

It has not been decided whether or not students will be
asked to use more than the left button. In our current
programming environment, the right button is used in the
default manner provided by Interlisp-D, to manipulate
windows (e.g., reshaping, closing). The middle button is
sometimes used to display a pop-up menu with items that
apply to the entire data structure in a window. For
example, a user may want to highlight those items in a
window that have a certain property. We are considering
the use of icons in a window for operations besides
selecting menu or text items (e.g., closing a window).
Therefore, the student interface may use only one button.

On-line help. If the user selects Help window from the
Help pull-down menu, a Help icon attaches to the mouse
cursor. The user can get help about a window by moving
the Help icon into a window and buttoning the window. A
message associated with the selected window is printed in a
special help window.

Management of windows. The Interlisp-D graphics
package provides functions for prompting users to position
a ghost image of a window or to a shape of a window.
These prompts can be confusing to novices and distract
them from the task at hand. If it is possible to make a good
decision regarding the size and position of a window, we
can free the user from this chore. In addition, an automatic
window-management system can often optimize the use of
screen space better than a user can. This is true in
GUIDON-WATCH because there are a known set of
windows whose contents are constrained to a certain form
(e.g., a table).
To manage the window display, we divide the screen

conceptually into logical units. The GUIDON-WATCH
screen currently consists of top, middle, and bottom
sections. The top section contains the pull-down menus
and the Prompt window. The bottom and middle sections
display knowledge-base structures and have well-defined
lower borders. Another logical division of the GUIDON-
WATCH display provides vertical boundaries. For exam-
ple, the width of the screen can be divided into equal or
unequal regions. The current prototype uses three regions
with two equal and one slightly wider than the other two.
Furthermore, you can have a hierarchy of subdivisions
(i.e., regions). Each window in GUIDON-WATCH is
associated with one or more regions where it can be
displayed.
GUIDON-WATCH decides where to place a window

based on several considerations: (1) the default region of
the window, (2) the other windows that are displayed and

their position, and (3) the set of windows that the user
would most likely prefer to remain in view. While the
current window management is effective, we would like to
extend the flexibility of the interface. This would require a
more complex scheme. It might be necessary to consider
moving or reshaping windows that are already on the
screen. Note that window systems that provide this capa-
bility do not consider the semantics of the contents of
windows. Therefore, algorithms for scaling pictures and
changing the font size of text are not adequate when the
system must decide where windows should be placed and
which windows should be closed or covered.

Although the user relinquishes flexibility and control,
the benefits of automatic screen management seem to
outweigh potential disadvantages. Automatic window man-
agement saves the user time and maximizes the use of
screen space. It is possible to allow the user to turn off
automatic features, change defaults, or allow the user to
use the move and reshape facilities. Furthermore, menus or
icons can be used to allow the user to choose from a prede-
fined set of sizes, positions, fonts, and so on, but then the
implementation of the automatic window manager be-
comes increasingly complex. In our current implementa-
tion, when a window is displayed, a complex conditional in
the window's display function is evaluated. This code is
difficult to understand and modify. In addition, the situa-
tion is complicated by the need for different user profiles.
We are considering an approach where the behavior of the
interface is specified separately and declaratively using
knowledge-representation formalisms (e.g., rules) and ob-
ject-oriented programming.

Dynamic updating of the screen display. Displaying
dynamically changing information presents problems that
are not unique to our application. For example, how often
do you update the screen? Do you gray out regions that are
out of date or do you update them? Our philosophy is that
users should be able to open and close windows at any time
and that the display should accurately reflect the current
state of the system or gray-out regions that are not
continuously updated. Regions that are grayed out can
either be updated automatically at specified intervals or
manually updated by the user's simply buttoning the
window to redisplay itself.

The GUIDON-WATCH windows. Here we describe
many of the windows available to the GUIDON-WATCH
user and address important issues. What information in a
HERACLES knowledge base is most important to display
for programmers and for medical students? How can
dynamic information be displayed? In the next section we
focus on static knowledge structures and the way they are
displayed in GUIDON-WATCH. Subsequent sections dis-
cuss the display of dynamic consultation knowledge.

What is there to display in a knowledge base? A
HERACLES knowledge base (e.g., the NEOMYCIN

November 1985 55



medical knowledge base) includes findings, hypotheses,
rules, tasks, and relations. Findings are data that can be
requested or inferred from rules. Generally findings can be
observed or measured. Hypotheses can only be inferred
from rules. In NEOMYCIN, hypotheses include diseases
and pathophysiological states. Relations refer to predicate
calculus relations and in HERACLES include subtype,
causes, etc.

Static knowledge includes facts about findings and
hypotheses as defined by relations (e.g., meningitis is a

subtype of infection, headache is a finding, and so on). It
also includes the diagnostic procedure and domain rules
(e.g., if the patient has double vision, there is suggestive
evidence for intracranial pressure). Dynamic knowledge is
situation specific and refers to information that becomes
known only during a problem-solving session (e.g., Mary's
temperature is 102 degrees).
NEOMYCIN uses a diagnostic strategy known as heu-

ristic classification problem solving."3 Given an enumerated

ENDCONDITION: STOP-PURSUING

TASK-TYPE: SIMPLE

TASKGOAL: PURSUED

FOCUS: CURFOCUS

TASK-TRY-ALL?: T

ACHIEVED-BY: (RULE171 RULE590)

LOCALVARS: ($BETTERHYP)

Figure 5: The Task Property window. Here the properties
and values of the task Pursue-Hypothesis are displayed.

PURSUE-HYPOTHESIS

RULE171 RULE590

TEST-HYPOTHESIS REFINE-NODE

Figure 6: The Metarules window. Here the metarules that
the task Pursue-Hypothesis calls are displayed.

CONDITION: (REFINABLE? CURFOCUS)
ACTION: (TASK REFINE-NODE CURFOCUS)

set of solutions (e.g., diseases or possible diagnoses),
NEOMYCIN heuristically maps a set of findings onto one

or more possible solutions. This diagnostic procedure is
provided by HERACLES (or Heuristic Classification
Shell). It is represented as tasks, which are procedures that
are stated in a declarative rule-based language (Figure 5).
When a task is invoked, one or more of its metarules are

applied (Figures 6 and 7). Metarules in HERACLES are

similar to conditionals in a procedure, but they are ex-

pressed as abstract rules.
Windows that display static knowledge include the task,

metarules, and rule windows in Figures 5, 6, and 7. They
also include the Findings, Hypotheses, and Relations
windows, which simply display an alphabetical ordering.
Other windows display a graph to show the relationships
between groups of objects. The Causal Relations window
(Figure 4) is a lattice with causal and subtype links between
findings and hypotheses; the Diagnostic Strategy window
(Figure 8) shows the calling structure of the diagnostic
tasks; and the Taxonomy window (Figure 9) represents a

subtype hierarchy of disorders. In all of these windows the
user may select an item to get more information.

The Taxonomy and Causal Relations windows. An
important concept in medical diagnosis is the differential,
the set of competing hypotheses currently being considered.
The etiological taxonomy is a tree of possible diagnoses or

solutions in NEOMYCIN. The differential represents a cut
through this solution space. Boxing the hypotheses in the
Taxonomy window that are on the differential is a simple
way to make this cut visible (Figure 9).

Flashing and boxing nodes in the Taxonomy and Causal
Relations windows emphasize the dynamic search strategy.
Whenever a hypothesis is added to the differential, its
corresponding node label is flashed and then boxed.
Whenever the hypothesis is removed from the differential,
the box is redrawn with lighter lines, so that the hypotheses
that had been considered previously are still highlighted,
but the ones currently on the differential are more promi-
nent (Figure 9). A student can observe NEOMYCIN
looking up the disorder tree to group and compare cate-
gories of disorders before looking down to refine hypoth-
eses. In essence, we are reifying (i.e., making more concrete)
the process of problem solving.

Conclusions in a HERACLES consultation are asso-

ciated with certainty factors that represent a degree of
belief. They are not probabilities. In HERACLES, each
hypothesis has both a certainty factor (CF) and a cumula-
tive certainty factor (CUMCF). The CF represents the
combined certainty of all rules that have concluded directly
about the hypothesis. The CUMCF represents a combina-
tion of the CF of a given hypothesis (which may be zero)
with CFs of its descendants in the disorder taxonomy. For
example, evidence for meningitis (a positive CF) increases
the CUMCF of infectious process because meningitis is a

subtype of infectious process. (To be exact, negative CFs of

IEEE CG&A

Figure 7. The Rule window. Here a metarule of the task
Pursue-Hypothesis is displayed.

a60-0-90agi
I I

0el.r-s&qw t IMMGMaiu
0

millilm- m m I

56



Figure 8: The Diagnostic Task Tree window. When a task is selected in this window, a menu pops up that allows the
user to display either the properties of the task in the Task Property window (Figure 5) or the metarules that a task
applies in the Metarules window (Figure 6). During a consultation the user can also choose to see dynamic information
about task calls. This is described in the section on Dynamic Task windows.

Figure 9. The Taxonomy window. The boxing, flashing, and printing techniques used in this window make the dynamic
search strategy visible by displaying dynamic information on top of static knowledge structures, in this case the
etiological taxonomy. The differential shown here is NEOMYCIN's internal differential and may not correspond
precisely to a physician's differential. The differential shown to students may differ from NEOMYCIN's internal list. This
graph was generated, edited, and stored in the same manner as the graph in Figure 3. Note that Figures 9-12
correspond to the same state of the consultation as displayed in Figure 3.

ancestors are also combined; therefore, evidence against
infection can decrease the CUMCF of meningitis.)
When the CF or CUMCF is updated for a hypothesis,

new values are printed below the node label corresponding
to the hypothesis. The CF is printed on the left, the
CUMCF on the right if it differs. The figures in this article
show the CFs printed as integers from -1000 to +1000;
this is how they are represented internally. These numbers
are far from precise and should be interpreted as falling
into several categories: definite, strongly suggestive, sug-

gestive, weakly suggestive, or no evidence for (or against) a

hypothesis. For students the internal CF values will not be
printed; instead a graphic notation, such as zero to four
pluses or minuses, could be used to indicate the degree of
belief.

In the case in which a hypothesis window is not open,

the printing, boxing, and flashing of nodes is not done
immediately. However, whenever the Taxonomy or Causal
Relations window is opened during a consultation, the
window is updated so that all the hypotheses are appro-

priately boxed, and certainty factors are printed. Therefore,
the user is free to open these windows at any time. We
describe several other windows that display dynamic in-
formation.

The Consultation Typescript window (Figure 3). The
Consultation Typescript window is opened when a user

starts a consultation using the Consult menu. This window
displays the questions that are asked during a consultation.

November 1985

CONSUL T

MAKE -DAGHOSIS

IDEtTiTFY-PROBLEM REVIEW -DHFERETIRL COLLECT -INTO

FORWARO -REASON GEAERATE -QUESTIONS ESTABLISH -HPOTH SIS -SPACE REUIE -Dlff[REMTIAL GEMERATE -QUESTIOMIS PROCESS-HARD -DATA

ASK-GEMERAL -QUESTIONS ELABORATE-DATIO APPLSRULES fORWARD-REASON GROUP -AND -DIfFERETIATE EXPLORE-AND-REFIME ASH-GENERAL-QUESTIONS ASHFORHA9RD-DATA

Fl"DOOT FORWARO-REASON FORWARD-REASOM FiTIDOUT TEST-HWOTHESIS fINDOUT FORWARD-REASON PURSUE -POTHESIS FORWARD-REASON

I[ -HWOTHESIS TEST -IWOTHESIS REfIMENODE

APPTRULES REFINE-COMPICO-NODE REFINE-DIFFERENTIAL

APPITYRULE REFINE - DIFFERENTIAL

Ff-PIWRD -REASOM APPLWADRULES

.PPL-.tLLSDONTRACE

ANY-DISORDER

TOXIC-DISORDER VASCULAR-DISORDER AUTOIMMUNE-DISORDER INFECTIOUS-PROCESS TRAUMATIC-PROCESS CONGENITAL-DISORDER NEOPLASTIC PSYCHOGENIC

LEAD-ENCEPHALOPATHY CLUSTER-HEADACHE MIGRAINE HEADTRAUMA PRIMARY-TUMOR TENSION-HEADACHE

OTITIS-MEDIA MYCOTIC -INFECTION METASTATIC-TUMOR

CHRONIC-LUNG-INFECTION / J \\ENCEPHALITIS
CELLU'LITIS/ / CHRONIC-SINUSITIS CONGENITAL-ANEURYSM AV-MALFORMATIONCELLULITIS ~CHRONIC-SINUSITIS

MASTOIDITIS MASTOIDITIS
CONGENITAL -HEART -DISEASE

BRAIN -ABSCESS CHRONIC -EAR -INFECTION

=~~~~~~~~~ -
MENINGITIS

ACUTE-MENINGITIS CHRONIC-MENINGITIS

ACUTE-BACTERIAL -MENINGITIS MYC0BACTERIUM-TB-MENINGITIS FUNGAL-MENINGITIS PARTIALLY-TREATED-BACTERIAL-MENINGI.TIS

CRVPTOCOCCUS COCCIDIOIDES

UK-1-M-Niv

2ee

57



Each question is followed by a response that is either
supplied by the user or is retrieved automatically from a
patient data file. Before an answer is retrieved, the program
pauses. The user can then use the mouse to select items or
open any windows. A menu is provided that allows a user

FINDING RULE(S) MAXCF MINCF
TENSE-FONTANEL RULE060 800
SEIZURES RULE060 800
REDFLAG-CNS-FINOI RULE23 700
STIFF-NECK-ON-FE RULE424 500

RULE183 500
IHEAnACHE IRULE424 500
NEONATE IRULE183 500
WBC RULE131 -700
CSFCELLCOUNT RULE13i -700

RULE117 -800
CSFPROTEIN RULE1i7 -800

Figure 10. The Evidence window. The findings and hypo-
theses displayed in this window are ordered so that the
ones that may be most suggestive (have the highest
MAXCF) are on top.

If: 1) The patient has a stiff neck
on flexion, and

2) The patient has a headache
Then: If you are considering

infectious-process, there
is suggestive evidence
(.5) that the patient's
infection is meningitis

Figure 11: Here the Rule window displays a domain rule.

FNING VALUE CF
AGE 42
SEX FEMALE
RACE LATINO
HEADACHE YES
STIFF-NECK-ON-FLEXION YES
NAUSEA YES
HEADACHE-DURATION 10
HEADACHE-SEVERITY 3
CNS-FINDING YES
STIFF-NECK-SIGNS YES
HEADACHE-CHRONICITY CHRONIC 800

SUBACUTE 300
CNS-FINDING-DURATION 10

Figure 12: The Positive Findings window.

HYPOTHESIS CF CUNCF
VIRAL-MENINGITIS 200
FUNGAL-MENINGITIS ---

MYCOBACTERIUM-TB-MENINGITIS I---
PARTIALLY-TREATED-BACTERIAL-MENINGITIS ---

_.
Figure 13: The Differential window. This window is dis-
played several questions after the point shown in Figure 3.
Subsequent figures all show windows as displayed at this
later point.

to proceed one or more questions further, receive textual
explanations, resize the consultation window, and so on.

Evidence window (Figure 10). This window can be
displayed without running a consultation. However, during
a consultation dynamic information is overlaid onto static
knowledge structures to show the current evidence relations
between findings and hypotheses. All potential evidence for
a hypothesis is displayed as a table in this window. The first
column lists findings and hypotheses that suggest a hypoth-
esis. The second column lists the rules that use these
findings or hypotheses to make conclusions about the
hypothesis. The third column shows the maximum CF in
the rule's action, and the fourth column shows, if different,
the minimum CF in the rule's action. Findings, hypotheses,
and rules can be selected with the mouse to get more
information. For example, a rule's premise and conclusion
can be displayed in the Rule window (Figure 11).

During a consultation, GUIDON-WATCH employs
boldfaced text and grayed-over regions to provide the user
with additional information. The user may have displayed
the evidence of meningitis because it was boxed in the
Taxonomy window (Figure 9). Seeing that rule 424 suc-
ceeded (which is indicated by the bold text), the user can
display the rule's premise and conclusion in the Rule
window (Figure 11). A finding with a positive value is
displayed in bold; a negative finding is grayed over.
Analogously, rules that have succeeded are printed in bold;
rules that have failed are grayed over. Findings and rules
that appear in normal print have not been investigated yet.
This simple notation is an effective means of providing a
great deal of information in a concise and understandable
manner. Furthermore, it illustrates how dynamic informa-
tion can be displayed on top of static knowledge structures
that are displayed in a table format.

Positive Findings window (Figure 12). The Positive
Findings window displays all the findings that have a
positive value (i.e., the value is "yes," a number, or
symbolic). Findings are printed in the first column, values
in the second column, and CFs in the third (printed only if
less than 1000). Findings are selectable, and when buttoned
a pop-up menu is displayed. For example, a user may want
to select a finding to see which hypotheses the finding may
suggest.

In this window items are printed incrementally during a
consultation. If the Positive Findings window is open, new
positive findings are printed in the window as soon as they
are known. If the window is closed, the whole list of
positive findings is printed when the window is opened.
This feature provides flexibility for the user, who can open
or close the window at any time during a consultation.

Differential windows (Figure 13). Hypotheses on the
differential are boxed when they appear in certain windows.
However, the differential is such an important structure
that a special window is provided for its display (Figure 3).

IEEE CG&A

I ---- I

RaIMP-1
I

58



Hypotheses-with-Evidence windows (Figure 14). How-
ever, not all hypotheses for which there is positive evidence
are on the differential at a given time. This group includes
hypotheses for which there is direct evidence (i.e., at least
one rule concluded the hypothesis) and those for which
there is belief when propagation is included (i.e., the
CUMCF is above a certain threshold). Note that some of
these hypotheses may not be on the differential at a given
time, and additionally, hypotheses on the differential may
not have evidence supporting them.

In both the Differential and Hypotheses-with-Evidence
windows, hypotheses that have direct evidence supporting
them are printed in bold. These windows also contain
columns for CF and CUMCF values. As usual, the
hypotheses are selectable. These two windows, as well as

the Taxonomy and the Causal Relations windows, illustrate
how GUIDON-WATCH provides multiple views of the
same knowledge structures.

Dynamic Task windows. These windows provide users

with dynamic views of the diagnostic strategy as it is

instantiated during a consultation. This is a challenging
presentation problem because the abstract nature of the
diagnostic procedure as it is represented in the task and
metarules is not nearly as intuitive to people as are disorder
hierarchies, causal networks, domain rules, and lists of
findings. Although the goal is to provide a view of
NEOMYCIN's reasoning that is understandable to medical
students, the model of the diagnostic strategy is in the form
of a complex procedure that is intimately tied to basic
concepts of computing. For example, task calls are very
similar to procedure calls; a task may have a focus and
local variables. A focus consists of one or more findings,
hypotheses, or rules depending on the task. For example,
Test-Hypothesis may have meningitis or another disease as

a focus in NEOMYCIN. Tasks invoke other tasks in a

chain, similar to procedure calls.
The three windows described here provide a different

view of the dynamic diagnostic strategy by using three
different graphic formats: a stack, a tree, and a table.
Although it has not yet been decided how they will be
adapted for instruction, they are already very useful for
programmers trying to debug or understand NEO-
MYCIN's behavior. Programmers can use these windows
to find out exactly what NEOMYCIN is doing or has done
at a detailed strategic level. Consistent with Model's14
recommendations, these windows provide monitoring and
debugging tools at a level that corresponds to the program's
design (e.g., tasks and metarules). This is a great improve-
ment over examining the low-level Lisp stack, which
reflects the strategy only in a very indirect way.

Task Stack window (Figure 15). This window displays
the current stack of task calls, which is similar to a stack of
procedure calls. Its current design shows the tasks in the
order that they were called, with the first task printed at the

top of the window. If the task has a focus, it is printed in
square brackets after the task. The metarule that the task
successfully applied is printed below the task. Metarules
are attached to the task they invoke by a vertical line.
Different font faces are used to distinguish tasks, meta-
rules, and foci from one another. Every rule, finding, and
hypothesis in the Task Stack window is selectable so that
the user can quickly get more detailed information on an

item of interest.

HYPOTHESIS CF CUMCF
INFECTIOUS-PROCESS 700 880
MENINGITIS 500 600
CHRONIC-MENINGITIS 200
IVIRAL-MENINGITIS 200
ACUTE-MENINGITIS --- 200

Figure 14: The Hypotheses with Evidence window.

Figure 15: The Task Stack window. By examining the task
stack, the user can see that NEOMYCIN is testing the
hypothesis mycobacterium-TB-meningitis. As a result, a
rule was applied that led to a series of calls to the task
Findout. The last call with the focus "compromised"
finally resulted in a question to the user: "Is Mary a
compromised-host?" The user would see this in the Con-
sultation Typescript window.

November 1985

MAKE-DIAGNOSIS []

RULE384

COLLECT-INFO [ ]

RULE062
ESTABLISH-HYPOTHESIS-SPACE []

RULE5S86
EXPLORE-AND-REFINE []

RULEI 63
PURSUE-HYPOTHESIS

A,,VYCOBAC TEHRIUMA- TB- Me2ENING ITIS]
RULEI 71
TEST-HYPOTHESIS
A,YCOBACTERIUA- TB-M-NIENINGITIS]

RULE603
APPLYRULES [ R&LE366 FOLEG09 B&LE309
R&LE002 B&LE525]
RULE094
APPLYRULE! [ ROLE3O§9]

RULE095
FINDOUT [ STEROIDS ]

RULEI 53
FINDOUT [ IMMLONOSbPPRESSED]

RULEI 53
FINDOUT [ SVSTEMIC-COMPROMISED]

RULEI 53
FINDOUT [ COMPROMISED]

RULEI 69

59



FO[FEBRILE] Q5
AR! [RULE423] CF[FEBRILE]-FO[TEMPERATURE]-QO

TH[INFECTIOUS-PROCESS]-AR PF[FEBRILE]
| AR![RULE423] FR PH[INFECTIOUS-PROCESS] -AER[INFECTIOUS-PROCESS]

PF[TEMPERATURE ]-ARA<2AR E[RULE2518 FR< PF[LOW-GRADE -FEVER]

AR! [RULE323]-FO[REDFLAG-CNS-FINDING] PF[HIGHIGRADE FEVER]
G&D ,AR AR![RULE060]-FO[SEIZURES]

TH[MENINGITIS] \AR [RULE060] AR![RULE07R]
TH[MENINGITIS] AR FRAF!NEULA1E3ARDARO[ROLETE3]

\ TtMN NG Ti]\ARAR! RLE 83]-°t E°AT] AR,![RULE252 ]-FR-PF [NEONATE]-ARD-AR [RULE1t83 ]

TH[ACUTE-MEN ING ITIS ]-AR-AR! [RULE352 ]-FD[ PHOTOPHOB IA] -FO[ VISUAL-PROBLEMS]-Q7

Figure 16: The Dynamic Task Tree window. The node labels of tasks in this tree are abbreviated, but the user can see
the full name expanded when a node is selected. TH is short for Test-Hypothesis in this tree. This figure illustrates how
the user can see multiple calls of a task and the resulting events in the Dynamic Task Tree window.

The Task Stack window provides a view of the current
path through the diagnostic tree with metarules and foci
instantiated. By examining the task stack, the user can
understand the reason for the current strategy. For exam-
ple, the user may be interested in why a question is being
asked. Students will be able to get textual explanations
(Figure 3) that should satisfy their needs, but programmers
may want to examine the task stack to understand the
computational reasons for a data request at the task and
metarule level (see Figure 15).

Dynamic Task Tree window (Figure 16). This window
displays a graph that shows all or part of the dynamic
history of task calls. This allows a user to view the overall
structure of the diagnostic strategy that NEOMYCIN is
using during or at the end of a consultation. This capability
is useful because the static Diagnostic Task Tree window
(Figure 8) shows all possible paths in the task tree; this
window shows only the paths that are part of an actual
diagnosis and reveals patterns of multiple calls of the same
task.

Task History window (Figure 17). This window contains
a table of all the invocations of any given task during the
consultation. It provides an alternate view (i.e., a slice at a
time) of the information displayed in the Dynamic Task
Tree window. In the first column the invocation number of
the task is printed, with the digit 1 meaning the first time
the task was called. In the second column the focus of the
task call is printed; in the third column the metarule that

NO. FOCUS CALLER METARULE
1 INFECTIOUS-PROCESS G&D RULES93
2 MENINGITIS G&D RULE400
S MENINGITIS G&D RULE480
4 ACUTE-MENINGITIS G&D RULE400
5 CHRONIC-MENINGITIS PUH RULE171
6 MYCOBACTERIUM-TB-MEN PUH RULEi71

Figure 17: The Task History window.

60

invoked the task is printed; and in the fourth column the
calling task is printed. As usual, rules, findings, hypotheses,
and tasks are selectable. Additionally, the user can select an
invocation number to display more information on the
history of that task call. For example, the user can display
a dynamic task tree with the chosen task invocation as the
root.

Together, the three dynamic task windows provide a
powerful aid for inspecting the current and past diagnostic
strategy used during the consultation. It is clear that
medical students would need some instruction in these
concepts before the dynamic task windows would be
meaningful to them. Part of the problem is that many of
the task names are not commonly used in medicine. It is
hoped that some of the problem can be alleviated by
choosing names for the diagnostic tasks that are more
familiar to students. Additionally, some tasks may be
hidden from a student's view because they involve compu-
tational details of interest to a programmer only.

Prior and related work in graphic interfaces

GUIDON-WATCH was influenced by a diverse collec-
tion of work stretching back to Vannevar Bush's seminal
article, in which a desk-size, electronic information device
called a "memex" was proposed."5 Doug Engelbart and his
colleagues pioneered much of the early work on in-
formation-handling systems and provided the basis for the
user interfaces commonly found on today's worksta-
tions.16-19 Alan Kay led the Learning Research Group at
Xerox PARC that brought similar ideas to fruition on
personal workstations.20 Engelbart's group and the LRG
shaped a view of the computer as a communications
medium by which a user can store, retrieve, manipulate,
and transfer information with ease. The LRG's vision of a
dynabook2' 24 still remains an exciting dream in the spirit
of Bush's memex.
The 1970's also brought many advances in artificial

intelligence including the development of knowledge-based
systems such as MYCIN. Starting from a different point of

IEEE CG&A



view, Seymour Papert led a group at the Massachusetts
Institute of Technology that explored the use of computer
languages such as LOGO to teach subjects such as geome-
try and physics in a new way.25 Papert offers a provocative
view of Al and computers in education; he influenced us to
consider how we can provide students with conceptual and
software tools to explore computational models. John
Seely Brown further inspired us to understand the potential
of these ideas; his discussion of reifying the process of
problem solving is particularly relevant to GUIDON-
WATCH 26 GUIDON-WATCH makes the abstract diag-
nostic procedure used in NEOMYCIN more concrete and
visible.

Partly because bit-mapped raster displays have only
recently been integrated with Al programming environ-
ments, little has been written about graphic interfaces in Al
programs. Some notable exceptions include Model,'4
AIPS,27 the ONCOCIN projeCt2,29,30 and the STEAMER
project.?31 2 Model demonstrated that graphic displays can
facilitate the monitoring and debugging of complex pro-
grams (he used MYCIN for an early demonstration of his
work). Tsuji and Shortliffe investigated this idea further by
implementing several graphic tools for constructing,
monitoring, and debugging ONCOCIN's knowledge base
and inference procedures. (ONCOCIN is a system that
helps physicians administer experimental cancer therapy.)
The ONCOCIN group's strong commitment to the use of
interactive graphics has resulted in several graphic inter-
faces, including the ONCOCIN Interviewer,30 a program
that helps physicians enter patient data.
STEAMER, an instructional program about power-

plant operation, uses interactive color graphics in a
knowledge-based simulation. It is interesting to compare
the use of interactive graphics in STEAMER and
GUIDON-WATCH. STEAMER emphasizes the con-
struction of a visible, interactive, and inspectable simula-
tion. It displays the complex physical processes of a steam
propulsion plant. NEOMYCIN, on the other hand, is a
computational model of diagnostic reasoning. GUIDON-
WATCH provides a user with a visible, interactive, and
inspectable model of NEOMYCIN's reasoning processes.

Several knowledge-base browsers similar to GUIDON-
WATCH were developed more or less concurrently. For
example, ART, KEE, SRL+, LOOPS, S.1, and STROBE
provide interactive graphics displays that allow pro-
grammers to browse class hierarchies and other general
data structures.33 36 Sophisticated graphics editors may be
provided; for example, STROBE has an excellent
knowledge-base editor.37 However, the browsers provided
in these systems are very general and are too complex for
end users, because they require an understanding of the
underlying knowledge-representation framework. On the
other hand, KEE and LOOPS do provide support for
creating end-user iconic displays. These can be very useful
for displaying the state of a complex device.
GUIDON-WATCH differs from other browsing pro-

grams because it is tuned to display specific kinds of

knowledge structures (e.g., those found in a HERACLES
system). For example, GUIDON-WATCH can display
disease taxonomies, causal networks, evidence for a hy-
pothesis, and positive findings in a way that is appropriate
for end users such as medical students. Graphics techniques
described here illustrate an abstract diagnostic procedure
during its actual use. To paraphrase, if a knowledge base is
written for HERACLES, an effective user interface is
provided automatically.

Future work

A continuing decrease in the price of hardware will
provide more opportunities to use higher resolution screens,
interactive pictures, color, animation, and interactive video.
Certainly, we have only touched the surface in using
graphics for viewing a knowledge-based system. Interactive
and animated pictures can illustrate facts and processes.
However, implementing interactive graphics displays is
time-consuming. There is a need for high-level user
interface kits that provide most of the common features
that developers now have to implement over and over
again. It is probable that an object-oriented programming
system will be adopted as an extension to the Common
Lisp standard.38'39 This system could provide the basis for a
generic interface shell for Lisp environments. Two examples
of interface packages that successfully use the object-
oriented approach include MacApp40 and EzWin Al the
latter is written in flavors, the object-oriented language
within Zetalisp.2
The discussion so far has focused on what interactive

graphics can provide for Al systems. However, Al tech-
nology can contribute directly to more intelligent graphic
interfaces. Current research topics include user modeling,
intelligent presentation, and declarative languages for
describing graphical interaction. Mackinlay43 is investi-
gating some of these issues. For GUIDON-WATCH, we
decided how to present information and hand-coded it.
Instead, Mackinlay's program reasons on its own about
how to present information. For example, it can decide to
present data as a bar chart, a pie chart, a plot chart, a table,
or a graph. It can also design several alternative sophisti-
cated presentations from simpler ones and then use heuris-
tics to choose one to display to the user.
Another important aspect of Mackinlay's work is that it

uses a knowledge-based approach. Therefore, its reasoning
is represented in an explicit, declarative language and not
in opaque code. The use of a declarative representation
results in programs that are easier to understand and
modify. We found that the parts of our display code that are
trying to be smart, such as the management of windows,
are poorly represented in Lisp. The code fails to make the
underlying reasoning explicit, and it is difficult to modify.
Another advantage of using a declarative representation is
that it can be used in multiple ways. Mackinlay's current
work addresses only the intelligent presentation problem,

November 1985 61



but eventually programs may be able to explain why a
particular presentation was chosen. The graphics designer
using an intelligent computer aid would want a justification
for some design decisions. In a teaching program it would
be useful if a program could automatically generate ques-
tions regarding a presentation on the screen.

The problems involved in developing intelligent inter-
faces are certainly very difficult, but if they are going to be
solved, it seems likely that user-interface behavior must be
represented separately in a declarative language or a
database. Because the user interface is becoming an in-
creasingly complex and important component of a soft-
ware system, there are compelling reasons to make a clean
separation between the user interface and the rest of a
software system.27'44'45 There are several reasons to support
such highly modular systems:

* they are easier to maintain and debug;
* they can be customized more easily;
* domain independence is possible; and
* an intelligent reasoning component can be interfaced

with less difficulty.
In general, programs can be more attuned to individual

users. Some users may prefer different configurations of
the screen. The size of the fonts chosen in a window may be
too small for some users. Optimizing screen space must not
interfere with other concerns such as readability of the
screen. Future versions ofGUIDON-WATCH should allow
users to customize the display to their liking while still
providing automatic window-management facilities. User
models can play a role in smart interfaces that infer a user's
preferences. However, a program must have an explicit
model of the user to reason about the user's preferences.
We believe that a knowledge-based approach (i.e., using
declarative representations) is necessary if an intelligent
interface must combine general knowledge about presen-
tation with specific knowledge about a user. This is an area
for long-term interdisciplinary research in several areas of
computer science, psychology, linguistics, communications,
education, and graphic design.

Conclusions

GUIDON-WATCH allows a user to view a knowledge-
based consultation system in an efficient way. The program
demonstrates how multiple windows, menus, and a mouse

can be used to achieve this goal. It also demonstrates that
stating a diagnostic procedure in a well-structured rule-
based language facilitates developing a graphic interface
for viewing and inspecting diagnostic problem-solving
behavior. The most important principles learned from this
effort are as follows:

1. Providing multiple views of the same knowledge or

behavior can help a user understand a complex system.
Tables, trees, pictures, animation, and other graphic for-
mats can offer these different views. The current prototype

ofGUIDON-WATCH has made extensive use of trees and
tables to display information in multiple, meaningful ways.
Hierarchical relationships are naturally represented as
trees, and lists of records with several fields are displayed as
tables effectively. There are several important events in
NEOMYCIN such as changes in the differential, conclu-
sions about findings and hypotheses, and the task calls.
Several windows with different formats can provide dif-
ferent views of these events. However, different classes of
users may vary with regard to what constitutes an effective
user interface.

2. The use of bold fonts, boxing and graying items, and
other graphics techniques can maximize information con-
tent and highlight facts and events in a way that is quickly
understandable. The use of these simple techniques in the
Taxonomy and Evidence windows illustrates their effec-
tiveness (Figures 9 and 10).

3. In well-constrained situations it is possible to manage
the display and placement of windows automatically.
Screen space is a precious resource, and each window must
be designed, sized, and placed to use space efficiently.
However, this is a job that can be cumbersome for a user.
Additionally, we want to avoid having a user concentrate
on the motor activity of using the mouse to move and place
windows on the screen. We believe that there is a funda-
mental difference between the constrained information-
retrieval task that GUIDON-WATCH is designed to per-
form and more creative and open-ended tasks such as
programming or writing. For the latter category, the
availability of overlapping windows that are usually shaped
and positioned under the user's control may be more

desirable.
By displaying information in multiple ways and allowing

a user to browse the dynamic state of a consultation
interactively, we have taken a first step toward reifying the
process of reasoning during a NEOMYCIN consultation.
Subsequent instructional programs now under develop-
ment will ask students to explain, debug, and augment
their own and program-generated problem-solving be-
havior. They will use graphic displays like GUIDON-
WATCH to compare and contrast alternative solutions to

problems. U

Acknowledgments

Diane Warner Hasling, Julie Thompson Richer, Ted
Crovello, and the CG&A reviewers contributed valuable
comments to earlier drafts of this article. Curt Kapsner
and John Macias are helping us adapt NEOMYCIN and
GUIDON-WATCH for use with medical students. Their
feedback is helping us determine how GUIDON-WATCH
and other programs can best benefit medical students.

This research has been supported in part by ONR and
ARI Contract N00014-79C-0302 and more recently by the
Josiah Macy Jr. Foundation (grant B852005). Computa-
tional resources have been provided by the SUMEX-AIM

IEEE CG&'62



facility (NIH grant RR00785). This article appeared as
Technical Report KSL-85-20, sponsored by the Knowledge
Systems Laboratory at Stanford University.

References

1. W. J. Clancey and R. Letsinger, "NEOMYCIN: Re-
configuring a Rule-based Expert System for Applica-
tion to Teaching," in Readings in Medical Artificial
Intelligence: The First Decade, W. J. Clancey and E. H.
Shortliffe, eds., Addison-Wesley, Reading, Mass.,
1984, pp. 361-381.

2. D. H. H. Ingalls, "Design Principles Behind Smalltalk,"
Byte, Vol. 6, No. 8, Aug. 1981, pp. 286-298.

3. L. Tesler, "The Smalltalk Environment," Byte, Vol. 6,
No. 8, Aug. 1981, pp. 90-147.

4. S. K. Card and A. Newell, The Psychology ofHuman-
Computer Interaction, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1983.

5. J. D. Foley, V. L. Wallace, and P. Chan, "The Human
Factors of Computer Graphics Interaction Tech-
niques," IEEE Computer Graphics and Applications,
Vol. 4, No. 11, Nov. 1984, pp. 13-49.

6. D. W. Hasling, W. J. Clancey, and G. Rennels, "Stra-
tegic Explanations for a Diagnostic Consultation
System," Intl J. Man-Machine Studies, Vol. 20, 1984,
pp. 3-19.

7. E. H. Shortliffe, Computer-Based Medical Consulta-
tions: MYCIN, Elsevier, New York, 1976.

8. B. G. Buchanan and E. H. Shortliffe, Rule-Based
Expert Systems, Addison-Wesley, Reading, Mass.,
1984.

9. V. Van Melle, System Aids in Constructing Consulta-
tion Programs, UMI Research Press, Ann Arbor,
Mich., 1981.

10. W. J. Clancey, "Overview of Guidon," J. Computer-
Based Instruction, Vol. 10, No. 1 and 2, summer 1983,
pp. 8-15. (Also in The Handbook of Artificial Intelli-
gence, Vol. 2, A. Barr and E. Feigenbaum, eds.
William Kaufmann Inc., Los Altos, Calif., 1982.

11. T. F. Thompson and W. J. Clancey, "The CASTER
System: An Experiment in Knowledge Acquisition
Within a Generic Expert System Shell," tech. report
KSL-85-32, Knowledge Systems Laboratory, Stanford
University, Aug. 1985.

12. Xerox Corporation, Interlisp Reference Manual, 1983.

13. W. J. Clancey, "Classification Problem Solving," Proc.
Nat'l Conference on AI, Austin, Tex., Aug. 1984, pp.
49-55.

14. M. Model, "Monitoring System Behavior in a Com-
plex Computation Environment," tech. report STAN-

CS-79-701, Computer Science Dept., Stanford Univer-
sity, Jan. 1979.

15. V. Bush, "As We May Think," Atlantic Monthly, July
1945, pp. 101-108.

16. D. C. Engelbart, "A Conceptual Framework for the
Augmentation of Man's Intellect," in Vistas in In-
formation Handling, P. W. Howerton and D. C.
Weeks, eds., Spartan Books, Washington, D.C., 1963,
pp. 1-29.

17. W. K. English and D. C. Engelbart, "Display-Selection
Techniques for Text Manipulation," IEEE Trans.
Human Factors in Electronics, Vol. HFE-8, No. 1,
Mar. 1967, pp. 5-15.

18. D. Engelbart, "Advanced Intellect-Augmentation
Techniques," SRI project 7079, final report, July 1970.

19. D. C. Engelbart, "Toward High-Performance Knowl-
edge Workers," Proc. AFIPS Office Automation
Conf:, Apr. 1982, pp. 279-290.

20. A. Kay, "Microelectronics and the Personal Com-
puter," Scientific American, Vol. 237, No. 3, Sept.
1977, pp. 230-244.

21. A. Goldberg, "Educational Uses of a Dynabook,"
Computers & Education, Vol. 3, 1979, pp. 247-266.

22. A. Borning, "Thinglab A Constraint-Oriented Simu-
lation Laboratory," tech. report SSL-79-3, Xerox Palo
Alto Research Center, Palo Alto, Calif., July 1979.

23. S. Weyer and A. Borning, "A Prototype Electronic
Encyclopedia," tech. report 84-08-01, Computer Sci-
ence Dept., University of Washington, Seattle, Aug.
1984.

24. L. Gould and W. Finzer, "Programming by Rehearsal,"
tech. report SCL-84-1, Xerox Palo Alto Research
Center, May 1984.

25. S. Papert, Mindstorms: Children, Computers, and
Powerful Ideas, Basic Books, Inc., New York, 1980.

26. J. S. Brown, "Process Versus Product-A Perspective
on Tools for Communal and Informal Electronic
Learning," Education in the Electronic Age, July 1983.
(Proceedings of a conference sponsored by the Educa-
tional Broadcasting Corporation, WNET/Thirteen
Learning Lab, pp. 41-58.)

27. F. Zdybel, N. Greenfield, M. Yonke, and J. Gibbons,
"An Information Presentation System," Proc. Seventh
Int'l Joint ConfJ Artificial Intelligence, Aug. 1981,
pp. 978-984.

28. S. Tsuji and E. Shortliffe, "Graphical Access to the
Knowledge Base of a Medical Consultation System,"
Proc. AAMSI(American Assoc. for Medical Systems
and Informatics) Congress 83, May 1983, pp. 551-555.

29. S. Tsuji and E. H. Shortliffe, "Graphical Access to
Medical Expert Systems: I. Design of a Knowledge
Engineer's Interface," tech. report KSL-85-1 1,

November 1985 63



Knowledge Systems Laboratory, Stanford University,
July 1985.

30. C. Lane, J. Differding, and E. Shortliffe, "Graphical
Access to Medical Expert Systems: II. Design of an
Interface for Physicians," tech. report KSL-85-15,
Knowledge Systems Laboratory, Stanford University,
July 1985.

31. J. D. Hollan, E. L. Hutchins, and L. Weitzman,
"STEAMER: An Interactive Inspectable Simulation-
Based Training System," The AI Magazine, Vol. 5,
No. 2, 1984, pp. 15-27.

32. A. Stevens, B. Roberts, and L. Stead, "The Use of a
Sophisticated Graphics Interface in Computer-assisted
Instruction," IEEE Computer Graphics and Applica-
tions, Vol. 3, No. 2, Mar./Apr. 1983, pp. 25-31.

33. M. Stefik, D. G. Bobrow, S. Mittal, and L. Conway,
"Knowledge Programming in Loops: Report on an
Experimental Course," The Al Magazine, Vol. 4, No.
3, fall 1983, pp. 3-13.

34. J. C. Kunz, T. P. Kehler, and M. D. Williams, "Appli-
cations Development Using a Hybrid Al Development
System," Al Magazine, Vol. 5, No. 3, fall 84, pp. 41-54.

35. C. Williams, "Software Tool Packages: The Expertise
Needed to Build Expert Systems," Electronic Design,
Vol. 32, No. 16, Aug. 9, 1984, pp. 153-167.

36. M. H. Richer, "Evaluating the Existing Tools for
Developing Knowledge-Based Systems," tech. report
KSL-85-19, Knowledge Systems Laboratory, Stanford
University, May 1985.

37. E. Schoen and R. G. Smith, "Impulse, a Display-
Oriented Editor for Strobe," Proc. Natl Conf: on Al,
American Assoc. for Artificial Intelligence, Aug. 1983,
pp. 356-358.

38. D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M.
Stefik, and F. Zdybel, "COMMONLOOPS-Merging
COMMON LISP and Object-Oriented Programming,"
tech. report ISL-85-8, Xerox Palo Alto Research
Center, Palo Alto, Calif., Aug. 1985.

39. G. L. Steele, Common LISP-The Language, Digital
Press, Burlington, Mass., 1984.

40. L. Tesler, ed., MacApp, Release 0.1, Apple Computer,
Inc., Cupertino, Calif., 1985.

41. H. Lieberman, "There's More to Menu Systems Than
Meets the Screen," Computer Graphics, Vol. 19, No. 3,
July 1985, pp. 181-189.

42. D. Weinreb and D. Moon, Lisp Machine Manual,
Symbolics Inc., Cambridge, Mass., 1981.

43. J. Mackinlay, "Intelligent Presentation: The Genera-
tion Problem for User Interfaces," tech. report HPP-
83-34, Computer Science Dept., Stanford University,
Mar. 1983.

44. R. G. Smith, G. M. E. Lafue, E. Schoen, and S. C.
Vestal, "Declarative Task Description as a User-Inter-
face Structuring Mechanism," Computer, Vol. 17, No.
9, Sept. 1984, pp. 29-38.

45. E. Ciccarelli, "Presentation-Based User Interfaces,"
tech. report AI-TR-794, Artificial Intelligence Labora-
tory, Massachusetts Institute Technology, Aug. 1984.

Mark H. Richer is a scientific programmer III
with the Knowledge Systems Laboratory of
the Computer Science Department at Stan-
ford University. Previously he coordinated a
microcomputer lab at a public elementary

Vs | @ school. He has designed and implemented
educational software, developed computer

f ' -i~curriculum materials, and taught students
and teachers how to use computers. His

current interests include knowledge-based systems, graphic in-
terfaces, and instructional software systems.

Richer received the MS in computer science and the MA in
interactive educational technology, both from Stanford Univer-
sity. He is a member of the IEEE, the ACM, and the AAAI.

William J. Clancey is a senior research asso-
ciate in computer science at the Knowledge
Systems Laboratory of Stanford University.
He has been active in expert systems research
since he joined the MYCIN project in 1975,
for which he was codeveloper of the antibiotic
therapy and question-answering programs.
His interests lie in computational modeling of
problem solving and the design of architec-

tures for expert systems to facilitate construction, explanation,
and multiple use. Clancey has published widely on tutoring and
expert system methodology and is the coauthor (with E. H.
Shortliffe) of Readings in Medical Artifcial Intelligence: The
First Decade.
He received the BA degree in mathematical sciences from Rice

University in 1974 and the PhD in computer science from
Stanford University in 1979. He is associate editor (Expert
Systems) of IEEE Transactions on Pattern Analysis and Machine
Intelligence. He is also a cofounder and member of the Technical
Advisory Board for Teknowledge, Inc.

The authors' address is Stanford University Knowledge Sys-
tems Laboratory, Department of Computer Science, 701 Welch
Rd., Palo Alto, CA 94304.

IEEE CG&A64


