Knowledge Systems Laboratory ' April 1986

Working Paper No. 86-34

Guidon-Debug: The student as knowledge engineer

William J. Clancey, Mark Richer, David C. Wilkins, Steve Barnhouse,
" Curt Kapsner, David Leserman, John Macias, Arif Merchant, and Naomi Rodolitz
Stanford Knowledge Systems Laboratory
701 Welch Road, Building C
Palo Alto, CA 94304

Abstract

GUIDON-DEBUG is an instructional program in which a student learns by debugging a
knowledge base. We attempt to teach specific medical facts, as well as general principles for
critiquing and improving diagnostic reasoning. The knowledge base to be debugged is provided
by NEOMYCIN. The student communicates with GUIDON-DEBUG by editing the ordered record
of questions asked by NEOMYCIN during a consultation, and by editing the patient-specific
model that explains abnormal findings. GUIDON-DFBUG evaluates changes for consistency with
NEOMYCIN's idealized diagnostic procedure and assists the student in generating and testing
domain model revisions. Thus, ;he student takes on the role of knowledge engineer, with the
aid of powerful tools for inspecting and modifying the diagnostic process. In contrast with
other intelligent tutoring systems, every effort has been made to expose "the machine behind
the curtain,” enabling the student to become engaged in our modeling methodology, rather than

imposing upon him a predetermined view of the world.

1. Introduction

Since the 1950s, the idea of using the computer as a communication medium has inspired the
development of instructional programs (Sleeman and Brown, 1982, Clancey, 1982a, Wenger 86,
1986). Besides the obvious approach of selectively presenting text and problems to a student,
computer simulations are widely used, allowing the student to explore how some physical
system works (Hollan, et al., 1984). Another approach has been to teach programming itself,
with the view that exploring computational models in geometry, physics, music, etc. teaches
general problem-solving or metacognitive skills (Papert, 1980, Goldberg, 1979). Although
several Al-based instructional programs are designed as "omniscient” tutors that strongly guide
interaction with the student (Stevens and Collins, 1977, Clancey, 1982b, Reiser, et al., 1985), the
trend is towards balancing guidance and feedback with open-ended exploration (Brown, 1976,
diSessa, 1984).

The GUIDON-2 family of instructional programs integrates different instructional apprdaches,
including knowledge-based simulation, tutoring, and exploratory programming. The foundation
for these programs is the NEOMYCIN consultation system (Clancey and Letsinger, 1984). Two
programs in this series have been implemented: (1) GUIDON-WATCH (Richer and Clancey, 1985),
a graphic interface that allows a student to watch and inspect diagnostic reasoning, and (2)
GUIDON-DEBUG, the program described in this paper. Within the context of GUIDON-DEBUG,
the student uses GUIDON-WATCH as a debugging tool to inspect the program's diagnostic

reasoning, playing the role of knowledge en'gineer.

Part of the controversy concerning how to effectively use a computer for instruction derives
from the limitations of knowledge bases: (1) They often implicitly represent knowledge we
want to teach (Clancey, 1983a, Swartout, 1981); (2) they are often not based on a model of how
humans organize knowledge and solve problems (Goldberg, 1973); (3) they generally have a
fixed, single model of the world which may differ from the student's model (Stevens and

Collins, 1978). We address these issues in our research.

In contrast to MYCIN (Shortliffe, 1976), NEOMYCIN is based on a model of how physicians
diagnose patients (Clancey, 1984). lIts diagnostic procedure is represented explicitly, separate
from medical facts and heuristics. [n general, the NEOMYCIN knowledge base significantly
reconfigures'and augments the original MYCIN program: Causal and subtype relations among
patient data, pathophysiologic states, and diseases are explicitly represented. The domain is
broadened to include diseases that might be confused with meningitis, such as subarachnoid

hemorrhage, migraine, and tension headache, providing an opportunity for teaching differential

diagnosis.

NEOMYCIN's clean separation between medical facts, procedure, and their encoding is exploited
in GUIDON-WATCH by providing interactive graphic displays. The interface enables students to
browse and edit the knowledge base and view reasoning processes at any point in a
consultation. Thus, to a significant degree we have realized the conception of a "glass-box"
expert (Goldstein and Papert, 1977), finally made possible by advances in modeling,

representing, and displaying expertise.

The single, fixed model of the world encoded in knowledge bases is a particularly important
limitation for instruction. A student is not a blank slate to which we can copy over or
transi’er_ expertise from a program. The predominant view is that effective teaching benefits
from—and may require—understanding the student's model of the world and relating it to the
teacher’s view. Thus, research in the past decade has studied the alternative models of the
world that people have (Gentner and Stevens, 1983, Rouse and Morris, 1985) and how a

program might construct a model of a student’s understanding (Clancey, 1986a).

Viewing the student's learning task in terms of model-building, we provide instructional tools
for building, reifying, and debugging models. The ODYSSEUS modeler (Wilkins, et al,, 1986)
described in this paper helps the student compare his understanding of the diagnostic process
to NEOMYCIN's. Thus, the student can improve the knowledge base we provide and extend it
according to his own understanding and interests. GUIDON-DEBUG, by providing guidance and
feedback in a student-centered task, avoids the problems of a "lock-step” tutor, which must

correctly understand the student at each moment.

Many research themes come together in this approach to teaching: Apprentice learning by
debugging (Mitchell, et al, 1985); exploiting the symmetry between student modeling and
knowledge acquisitiox{ (Barr, 1979a); emphasizing the reasoning process instead of its product
(Dewey, 1964, Brown et al., 1977, Schoenfeld, 1981); reifying the reasoning process by graphics
techniques (Brown, 1983, Hollan, et al,, 1984, Richer and Clancey, 1985); and thinking about
diagnosis and knowledge bases as models (Patil, 1981, Clancey, 1986b). These are considered
briefly in Section 4.

2. Scenario
GUIDON-DEBUG is intended to be used by medical students who are beginning clincal training
or clerkships. The patient cases presented to students are taken directly from actual patient

charts and are entered in a patient data file.

An interaction with GUIDON-DEBUG has the following form:
o Run NEOMYCIN:

o A patient case along with a set of knowledge base changes is selected;

o NEOMYCIN runs the case in "quiet mode,” i.e., nothing is displayed until the
final diagnosis is presented;

«.Browse:

o The student is given the typescript of question and answer pairs in a
scrollable window (Figure 2-1);

o Using GUIDON-WATCH, the student inspects the program'’s reasoning and beliefs
via menus and selectable items on the screen;

« Annotate and Edit:

o The student can annotate NEOMYCIN's typescript to indicate questions to add,
delete, or reorder (Figure 2-1);

o To indicate additional changes to the knowledge base, the student edits
NEOMYCIN's patient-specific model graph (Figure 2-3);

« Evaluate:

o The ODYSSEUS modeling system evaluates the student’s annotations for
consistency with the diagnostic procedure (Figure 2-2);

o The student re-runs the case to examine the effect of his changes.

Details are provided in the sections below.

2.1. Bug curriculum

The first step in using GUIDON-DEBUG is to run a NEOMYCIN consultation using a ‘buggy’
knowledge base. Each case is associated with one or more modifications to the knowledge base
that will manifest in an observable bug in either the program's typescript of questions and
answers or as a missing or incorrect link in the patient-specific model graph. ‘The bugs are
always missing, additional, or modified domain rules or relations. It is much more difficult

(and unusual) to modify the diagnostic procedure, so this is not currently considered.

Commands

Edit Model Evaluate Restart

Show Madel

Explain
Show Task Stack Quit

Guidon Debug Typescript (Q14)
§) What is the duration of Susanne’s seizures?

** 1 HOUR

18) Does Susanne have an abnormal fundoscopic exam?
* ok ND

11) Does Susanne have focal neurological signs?

*

12) Does Susanne have double vision?
ok ND

13) ¥hat 1s the duration of Susanne’s focal signs?
*% UNKNOWN

14) Do Susanne’s headaches have precipitating or
agnravating factors?
ERd hD

Missing Question: Should ask about SYNCOPE here.

15) Does Susanne have a history of polycystic kidney

G SSESSSF IS SSSISSSIISSISSIETEIEISLILFESESEIIESS

GUIDON-DEBUG

R i3882ee L2 RERR200820202220022882220322222

Unnecessary Question
Out of Order
Missing Question

Comrnent \
Delete Annotation

FINDING

the patient has a
subarachnoid hemorrhage

RULE(S)

C3F-BLODOY
FETINAL-HEMORRHAGE
HEADACHE-CHRONIGITY
HEADACHE-ONSET
HEADACHE-SEVERITY
HE&DACHE-PHYS ICAL-EXERTION
HEADACHE -FRENUENCY
STIFF-NECK-ON-FLEXIOR
SYNCOPE

BANDS

CSFCELLCOUNT

DEFPOLY

RULEZ33

RULELED
RULE323
RULE323
RULE358
RULEZ91
RULE3Z2
RULE3S7
RULE3S?

RULES23

PAE-DIAGNOSTS []

RULEISY

COLLECT-DFO {]

RULEG62

ESTABLISH-HWPOTHES IS-SPACE []
RULESSE

DIPLIRE-AO-REFDE []
RULE 167

PURSUE-HYPOTHESTS [
SHEARH,HNT L6~ HEMRRRNAIE]

2 RULF[l'.v‘l

TEST-HVPOTHESTS {

SUEARACHNG 10-HEWWFRRASE]

LE'>.‘~03
PPPLYRIRES [RIRESSY ALESZS RLE3ZS]
RILEA3S

CSFPROTEIN RULEZSF PPLRRED [RULESES]

wei RULE222 .

PHNS RULEZ2Z RUREOIS

FRROUT [READACHE-FRYS ICAL-ERERTION)

disease?
** HNO

16) Does Susanne have a family history of polycystic
kidney disease?
** NO

HYPOTHESIS RULE(S)
INCREASED-INTRACRANIAL-PRESSURE FULEZ24

RULE153
SO { HEADACNE-PRECFACTORS]

Explanation ¥Window .
(Refarring to guestion #14) 1€: 1} The patient hazs a headache
cauzed in part by physical
[i.e. WHY are we asking whether Susanne’s headaches have exertion, and
precipitating or aggravaring facrors?] 2) The freguency with which the
patient experiences
headaches is first-time
There is suggestive evidence
that the patient has a
subarachnoid hemorrhage

We are trying to determine whether Susanne has a headache caused
in part by physical exertioh,

& headache caused by physical exertion ig more specific than the
finding we are asking about,

(Referring to question #1d)

[i.e. WHY are we trying to determine whether Susanne has a headache
caused in part by physical exertion?]

We are trying to decide whether Susanne bas & subarachneid
heaorrhage.

Figure 2-1: General layout of GUIDON-DEBUG
2.2. Browsing

The student can use- the GUIDON-WATCH interface to browse the knowledge base and examine
the program's reasoning history. Specifically, the student can browse a disease taxonomy, causal
networks, evidence relations, and a history of the diagnostic strategy. Students can also "roll
back” the process by selecting a question number (by buttoning the typescript) and displaying

windows, which are revised to show their state at that time.

NEOMYCIN's explanation system is also an important tool for the student because it condenses
lines of reasoning, omitting many of the details the student can see in the various windows
(Figure 2-1) (Hasling, 1984). "WHY" explanations indicate only changes in focus (eg.,

considering a new hypothesis) and skip over tasks focusing on domain rules.

2.3. Annotation

The way in which a student annotates the typescript is illustrated in Figure 2-1. In this
example, the student has selected a question, examined the state of the consultation as it
appeared at the time that question was asked, and indicated that the program should have asked
about syncope at that point. In having a student annotate a typescript, we are giving him a
tool for organizing his analysis of the buggy knowledge base: What questions seem out of place
or are missing? What is the program trying to do? What domain facts is it using?
Secondarily, the student may discover correct portions of the typescript that he does not

understand. The same tools will help him learn about the program's model.

Domain-Level Interpretation (of the Odysseus Modsler
ARACHNOID=HEMORRHAGE] ———————— AR{[RULE294]
CRANIAL -MASS -LESION] —————————— AR![RULE239]
T ~INTRACRANIAL~ 1 '
TH[OTHER-IC-PRESSURE-CAUSES] ARIRULE203] = HIINCREASED -INTRA! PRESSURE | AR![RULE373] / FO[DIPLOPIA]
// FO[DIPLOPIA-DURATION

“MASS-LESION |

ARI[RULEZSD]\g\
ya T—.

ARI[RULE294]

~HEMORRHAGE] THINCREASED -INTRACRANIAL ~-PRESSURE)

_F‘-F‘-‘-'-/‘- .

PRESSURE =CAUSES]— AR![RULE303]

J FO[DIPLOPIA | i FR EE CF[FOCALSIGNS] g FO[FOCALSIGNS-DURATION] —m\

FO[DIPLOPIA-DURATION]””

THLTENSION-HEABACHE]— AR![RULE318]—FO[HEADACHE-EMOTIONAL]

TH[MIGRAINE]— ARI[RULE 190]—FO[HEADACHE-VISUAL -PRODROME] FO[HEADACHE-PRECFACTORS] _m/
B—m—a— el | —

FO[HEADACHE-PHYSICAL -EXERTION]
" .

"

m!(nutazs]

_——"
TH{AV-MALFORMATION}— AR![RULE275]—_ 1 TH{SUBARACHNGID-HEMORRHAGE]

PUH[SUBARACHNO!D -HEMORRHAGE]

TH{BRAIN-ANEURYSM]— ARI[RULE 469} .
FO[SYNCOPE-DURATION]—FO[SYNCOPE]—Q15

m
o T —— T (O —

——M\N~ TH[PEKD) AR![RULE361] FO[FAMILY -HX-PCKD] g

Figure 2-2: ODYSSEUS' parse of a student's edited typescript

2.4. Interpretation

After a student adds, deletes and reorders the questions of a NEOMYCIN consultation using the
annotation facility, the modified typescript is critiqued by the ODYSSEUS modeling program.
Figure 2-2 reflects the insertion of syncope after question 14. The inverted nodes indicates
ODYSSEUS' parse of questions 12-17 using NEOMYCIN's procedure. Node "Q15" is not inverted
because OYSSEUS could not find a consistent interpretation for the syncope question. Further
dialogue with the student could determine that the student believes that subarachnoid

hemorrhage causes syncope.

For the purpose of teaching, we can view the annotated typescript as showing what the
student would have done, if he had solved the problem himself. The program attempts to
parse the sequence of questions, that is, to determine if they are consistent with NEOMYCIN's
diagno;tic strategy. A gap in the parse suggests an underlying strategic or doma.in difference
betweei{‘ the student and NEOMYCIN, resolved by asking the student to explain his reasoning and

comparing it to the program (see Section 3).

2.5. Editing the PSM

The patient-specific model (PSM) reveals how NEOMYCIN's hypotheses "explain” the abnormal
patient findings (Patil, 1981, Clancey, 1986b). As shown in Figure 2-3, the most specific
hypotheses or diagnoses are displayed at the top of the graph and the patient findings at the
bottom. A window below the PSM lists the findings that are not yet explained by the program

(not shown in figure).

The user can edit the PSM to create or modify causal and subtype relations in the knowledge
base. Editing is accomplished by direct manipulation of the PSM using the mouse. The user
can (1) add a link between a disorder hypothesis and one or more abnormal findings or
another hypothesis, (2') add an hypothesis or an abnormal finding, or (3) delete a link between
any pair of nodes. The graph editor will automatically generate, delete, or modify rules in the
knowledge base. As a convenience, the name of a finding or hypothesis may be buttoned and
copied from another open window, such as the disease taxonomy or the unexplained findings
window. Although other systems allow users to graphically edit a knowledge base, this
represents the first system where a student debugs a knowledge base by graphically editing a

dynamic domain model, that is, the PSM.

In Figure 2-3, a link is added between acute bacterial meningitis and seizures; a rule is added

to the knowledge base, and the user is prompted for his degree of belief in this rule. In the

Student's Patient-Specific Madel
IACUTE~E.1\CTEHI&L#«‘.ENINGITIS'

+ 4+

RULER2?

MEMIFIRITIT

4+

RULE 424

RULE323

HIGH-GRADE -FEVER CNS-FINDING-DURATION

RULE144

-~

(12 hours) T

RULE22Y

RULE4O3 RULES63
N

Definit2 {+ + + +)
Strongly Suggestive Evidence (+ + +)
Suggestive Evidence (+ +)
weakly Suggestive Evicence (+)
RULESTE

RULE4&9

ISL‘BQFH\CHl{DIO'HEMIZIRHH.':GElx

+ 4+

/_/_/""-"’7 ~
. N . —
RULE 358 BULE 322 N JHCRERSEDNTRoCRetiaL-FRES SUF
o™ ~ +
N
AN
— N
N
N
CSFPROTEIN CSFPOLY GCSFCELLTOUNT AN AULEZ8Z
(40OMG/OL) (95%) (38007 MM3) N N
) N
A
N

SEIZUAI

ES

Figure 2-3:

Editing NEOMYCIN's patient-specific model

current system, changes made via the PSM are not evaluated by GUIDON-DEBUG.

3. Implementation: How this is possible

Here we briefly describe the representation and analysis ideas that make GUIDON-DEBUG's

display and interpretation features possible.

3.1. Neomycin: Abstract diagnostic strategy

To understand the advantages of NEOMYCIN, consider why a similar instructional program

cannot be constructed from MYCIN:

« MYCIN does not represent causal and subtype relationships among diseases and

patient findings explicitly.

network in terminology familiar to the medical student.

Therefore, its diagnosis cannot be shown as a support

« MYCIN's diagnostic strategy is implicit in its parameters and rules (Clancey, 1983a).
Therefore, the disease model cannot be edited independently of how it is used by
the program. Furthermore, the abstract, functional model of strategy in NEOMYCIN
(Clancey, 1983b, Clancey, 1986a), enables ODYSSEUS to infer new medical relations
by examining the strategic context in which questions are asked. This same

approach is used in the MACSYMA ADVISOR (Genesereth, 1982a).

e MYCIN's implicit strategy omits most of the diagnostic strategies used by people,
such as "triggering a hypothesis,” "grouping hypotheses” and "asking a follow-up
question™ (Clancey, 1984). Therefore, a tutor based on MYCIN can neither recognize

nor articulate these strategies.

In summary, these considerations make it possible for a person to understand NEOMYCIN and
make 1t possible for us to construct programs that can understand NEOMYCIN (for display,

explanation, and modeling).

Because GUIDON-DEBUG depends only on the language of the diagnostic procedure, it can be
used for any knowledge base encoded in this representation (called HERACLES, for "heuristic
classification shell”). In particular, GUIDON-DEBUG can be used with CASTER (Thompson and
Clancey, 1986), a diagnostic program for sandcasting that uses the same procedure as

NEOMYCIN,

3.2. Odysseus

In evaluating a student's annotated typescript, ODYSSEUS must be able to recognize that a
certain question is strategically equivalent to what NEOMYCIN did. For example, in testing a
particular hypothesis, there may be several findings that could be requested in any order.
Reordering these quesﬁons will in turn move entire subsequences of questions, resulting from
follow-ups and forward reasoning that triggered other lines of inquiry. Thus, it is not just a

matter of reordering questions, but hierarchially reparsing the entire sequence.

The ODYSSEUS modeling cycle can be summarized as follows. For each question in sequence,

ODYSSEUS:

1. Generates a set of interpretations of the action, that is, a bottom-up analysis of all

possible reasons for asking the question;

2. Tests interpretations for plausibility (consistency with beliefs about the problem

solver's domain knowledge and existence of top-down strategy parse), and

3. If no viable interpretation remains, searches for a change of goal (diagnostic task

and/or focus), flawed interpretation, or missing or discrepant domain knowledge.

For example, assume that the student has indicated that question 14 should be, "Has the
patient experienced syncope?” The program notes that the preceding task is test-hypothesis
with a focus of subarachnoid hemorrhage. Since no rule relating syncope and subarachnoid
hemorrhage is in the knowledge base, ODYSSEUS searches for a possible change of focus. None

leads to a line of reasoning that is consistent with the context and the diagnostic procedure.

If tile_re is a clear surrounding context, as in the example (Figure 2-2), the program then asks
the student if he is considering a relation between the established focus and his question. That

is, does-he believe that syncope causes or is caused by subarachnoid hemorrhage?

If this fails, the program considers the bottom-up parse, which is based on domain relations
known to NEOMYCIN. If the student acknowledges that he has one of these interpretations in
mind, the program explains why the diagnostic procedure does not generate that line of
reasoning. Otherwise, the program asks the student what domain relation he has in mind, and
determines whether adding this to the knowledge base results in a consistent parse. If not,

there is a strategic difference as well.

4. Implications
Here we go beyond the operation of GUIDON-DEBUG to discuss the theory behind its design

and relation to other research.

4.1. Instructional programs

The development of GUIDON-WATCH was influenced by Brown's ideas about "reifying the
process,” emphasizing the use of graphics for making the reasoning process concrete (Brown,
1983). We view a diagnosis as an object (the PSM) that is transformed over time by operators
(NEOMYCIN’s tasks), analogous to operators for transforming an algebraic equation. The PSM
serves as an argument or proof showing the support for alterhative hypotheses. We were
influenced by Anderson's use of a graph for displaying the proof of a theorem (Anderson, et
al., 1985), which sh>ows a complete or partial solution as the theorem to be proved supported by
axioms, other theorems and given information. With this kind of graph, different

opportunities for completing or debugging a solution become visible. Together this research

10

demonstrates that making a partial solution concrete—reifying the product—is crucial for
understanding the process in domains that lack a written notation for a partial solution.
Without such a written notation in medical diagnosis, a teacher might not question how certain
facts were explained, especially if the solution (e.g., a disease name) is correct, thus failing to
detect bugs. Thus, GUIDON-DEBUG provides a notation that facilitates instruction, providing a

new form of communication.

4.2. Critiquing model for knowledge acquisition

Tutorial programs typically have the student solve a problem and critique his solution. The
critiquing model of consultation programs is similar: The user supplies his own answers and
the program indicates important differences from what it would do (Clancey, 1978, Miller, et.
al., 1983, Langlotz andd Shortliffe, 1983). This form of interaction keeps the user engaged in
solving’ the problem, can be instructive, and places responsibility for the final decision with the
user. GUIDON-DEBUG extends the critiquing model, by allowing the user to edit the typescript.

Thus, the process by which the problem is solved can be criticized as well as the final product.

GUIDON-DEBUG builds on the approach used in TIERESIAS of debugging a knowledge base,
providing additional tools for examining a program's reasoning. The windows separate out
what would be a continous tracing requiring dozens of pages into different perspectives for
understanding the reasoning procelss. The PSM in particular shows the support structure for
the solution that TEIRESIAS could only implicitly unravel through a tedious rule and goal
debugging trail. A particularly useful tool is the ability to "roll back” the windows to view the
state of the program at any point. Finally, the structured knowledge base and graphics
facilities allow the user to directly edit the knowledge base by simply adding and deleting links
in graphs. In short, rather than directly specifying the details of how to solve the problem (by

writing rules), the student or expert can show NEOMYCIN what the solution should look like.

4.3. Model of learning

GUIDON-DEBUG implements and extends the instructional paradigm proposed by Goldstein
and Papert (Goldstein and Papert, 1977, Papert, 1980), particularly the concepts of "a glass-box
expert,” "an articulate learner,” and "learning by debugging. The PSM and the procedural
language of NEOMYCIN provide a special opportunity for formalizing a model of learning based

on debugging, which enables us to relate learning, student modeling, and knowledge acquistion.

The student's process of debugging NEGMYCIN, generally called knowledge acquisition, is

11

similar to how a teacher might reason about a student. The approach is to account for the
student's problem-solving behavior by inferring his knowledge and reasoning procedure. In
debugging NEOMYCIN, the student asks the same questions GUIDON-DEBUG, the teacher, asks:
"Why wouldn't I solve the problem that way? What do I know that he does not know?" The
first-order approach is to transform this question to be, "What would 1 have to change in my
model to solve the problem his way?” Thus, ODYSSEUS infers new domain relations that would
be consistent with the student's annotated typescript. This approach of debugging by
explaining has been demonstrated in knowledge acquisition (TEIRESIAS (Davis, 1976)), student
modeling (MACYSMA ADVISOR (Genesereth, 1982a)), and learning (LEAP (Mitchell, et al., 1985)).

Broadly speaking, the concept has also been called "failure-driven learning” (Schank, 1981).

By baéing debugging on the form of a solution, we are describing a special kind of learning
procedure. The problem solver can realize gaps in his knowledge, that is to focus on what we
are attempting to teach him, by critiquing the form of the partial solution:

1. Solutions are models of a certain form (i.e., a graph, perhaps on multiple levels of

detail, describing the process that caused the abnormal findings).

2. Problem solving moves forward, in part, by critiquing the form of the partial

solution (i.e., gaps in the PSM).

3. Deficiencies of form are translated into incomplete reasoning processes (i.e.,

NEOMYCIN's model-manipulation tasks).

4. Failed or incomplete tasks are related to domain relations, which if present would
have allowed the model transformation to take place (i.e., failed premises of

metarules).

For example, given the observed deficiency of an unexplained finding under a secondary
hypothesis, possible processes to resolve the deficiency are:
« Seek additional support for this hypothesis to make it the primary explanation.
o Attempt to rule out this hypothesis.

« Construct some explanation for the finding under the primary hypothesis.

Thus, the form of the partial solution suggests what to do: knowledge to apply, to infer, or to
seek from an outside source. In this way, we can give the student a knowledge base that is

missing the facts we want to be sure he knows, providing a context and tools that will enable

12

him to apply his background knowledge to detect and fill in the gaps. Even if he doesn’t
recall the missing facts, the incorrect form of the typescript or PSM will help the student ask
good questions. For example, seeing that seizures is not connected to the most likely
hypothesis, the student might ask, "Could meningitis cause seizures?” Or, "Could meningitis
cause increased intracranial pressure?” In short, the program helps a student realize what he
does not know, in a context that strongly motivates the need to learn. Our hypothesis is that
using GUIDON-DEBUG will make the student aware that such a general critiquing procedure
exists, and encourage him to use it when trying to understand his teacher or colleagues, or

when reflecting on the state of his own problem solving (Schoenfeld, 1981, Barr, 1979b).

To summarize, the PSM can be used by the student in several ways:

. as an explanation aid, to determine NEOMYCIN's support for a particular hypothesis;
« as a debugging aid, to detect gaps in its diagnostic explanation; and

e as a learning aid, to detect new and relevant domain relations (and to a lesser

degree diagnostic strategy) that he might want to study.

Furthermore, the PSM provides a basis for GUIDON-DEBUG to debug the student's knowledge,
by detecting gaps that he introduces or fails to fill in. The PSM perspective also suggests a
way of designing a curriculum for GUIDON-DEBUG. Bugs can be ordered according to
difficulty, based on whgther the findings and hypotheses mentioned by the missing rule appear
in the PSM.

Finally, note that some of DEBUGGY's weak problem-solving strategies for resolving impasses
in subtraction refer to the form of the subtraction notation (VanLehn, 1982). (For example,
there should be no spaces between numbers in the answer.) Thus, our model of debugging is
in general terms compatible with the idea of impasses and repairs. However, we explain
repairs in terms of reasoning about the correct procedure and postulating new domain
relations. In subtraction, the emphasis is reversed; the impasse generally occurs because of a

gap in the procedure rather than the domain relations, the math facts.

13

5. Limitations

GUIDON-DEBUG is based on the idea that missing knowledge can be added by a student,
avoiding the problem of a fixed tutor with one model of the world to teach. However, the
forms of assistance the program can provide and what can be expressed in NEOMYCIN naturally

limit its usefulness. These limitations fall into two broad categories:

« Procedural abstraction Extensions to ODYSSEUS to enable recognition of alternate
strategies in terms of metarule modifications would require making explicit the pre-
conditions and post-conditions of tasks, as well as the basis of metarule ordering
(Clancey, 1984, Clancey, 1985). To make the meaning of tasks more explicit, we
could also relate them to more abstract control constructs, such as "generators” and

"filters."

« Model semantics To formalize the learning procedure (Section 4.3), to provide
assistance to the student, additional causal knowledge must be represented for
generating or justifying plausible PSM links. However, the amount of knowledge to
be added is well beyond what we can consider at this ‘time. This should be
contrasted with formal or artifactual domains, such as programming and electronics,
or those with much more circumscribed models such as geology, which are limited
enough to be represented and used for automated learning (Genesereth, 1982b,
Johnson and Soloway, 1984, Mitchell, et al., 1985, Smith, 1985).

Even within the range of what NEOMYCIN permits, much more can be done to use guidon-
debug for studying knowledge acquisition and learning. We have run two types of experiments
to date: (1) several medical students used GUIDON-WATCH, and (2) we collected protocols of
students diagnosing someone acting as a patient. Further empirical studies are planned to

investigate the advantages and limitations of GUIDON-DEBUG.

6. Conclusions
We have described an instructional program in which a student plays the role of knowledge
engineer in improving a domain model, and presumably his own understanding, by debugging a

knowledge-based program.

To recapitulate the main points:

« GUIDON-DEBUG exploits and develops Al methods for formalizing a problem-solving

model, enabling reasoning to be studied and incrementally modified.

14

« Debugging focuses learning. It provides practical experience on actual cases, while
reducing a large curriculum to manageable, incremental steps. Such a "workbench"
approach gives more control to the student, avoiding the limitations and difficulties

of developing an "omniscient tutor.”

o The well-structured form of NEOMYCIN allows significant flexibility for reifying the
reasoning process, contextually relating data requests to domain knowledge, and

simplifying knowledge base editing.

« The idea of a patient-specific model makes concrete the explanation nature of

diagnosis and the model-manipulation character of diagnostic tasks.

Much work remains to be done on evaluating the instructional benefit of the debugging
scenarto, providing tutoring assistance, enhancing the explanation capability, and extending the

program’s causal knowledge.

15

References

Anderson, ' JR., Boyle, C.F., Yost, G. The geometry tutor, in Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, pages 1-7, August, 1985. Volume
1. : ‘

Barr, A., Bennett, J., and Clancey, W. Transfer of expertise: a theme for Al research. Working
Paper HPP-79-11, Stanford University, 1979.

Barr, Avron. Meta-knowledge and Cognition, in IJCAI-79, pages 31-33, February, 1979.

Brown, J. S. and Rubenstein, R. and Burton, R. Reactive learning environment for computer=
aided electronics instruction. Technical Report 3314, Bolt Beranek and Newman, 1976.

Brown, J. S. Process versus product--a perspective on tools for communal and informal
electronic learning, in Education in the Electronic Age, proceedings of a conference
sponsored by the Educational Broadcasting Corporation, WNET /Thirteen, July, 1983.

Brown,-J. S. and Collins, A. and Harris, G. Artificial intelligence and learning- strategies. In
O'Neill (editor), Learning Strategies, . Academic Press, New York, 1977.

Clancey, W.J., An Antibiotic Therapy Selector Which Provides For Explanations. Technical
Report, Stanford Heuristic Programming Project, 1978. Working Note HPP-78-26.

Clancey, W. I. Applications-oriented Al research: Education. In Barr and Feigenbaum (editors),
The Handbook of Artificial Intelligence, pages 223-294. William Kaufmann, Inc, Los
Altos, 1982.

Clancey, W. J. GUIDON. In Barr and Feigenbaum (editors), The Handbook of Artificial
Intelligence, chapter Applications-oriented Al research: Educationpages 267-278. William
Kaufmann, Inc., Los Altos, 1982.

Clancey, W. J. The epistemology of a rule-based expert system: A framework for explanation.
Artificial Intelligence, 1983, 20(3), 215-251. '

Clancey, W. J. The advantages of abstract control knowledge in expert system design, in
Proceedings of the National Conference on Al, pages 74-78, Washington, D.C., August,
1983.

Clancey, W. 1. Acq@uiring, representing, and evaluating a competence model of diagnosis.
HPP Memo 84-2, Stanford University, February 1984. (To appear in M. Chi, R. Glaser,
and M. Farr (Eds.), Contributions to the Nature of Expertise, in preparation.).

Clancey, W. J. Representing control knowledge as abstract tasks and metarules. (To appear in
Computer Expert Systems, eds. M. J. Coombs and L. Bolc, Springer-Verlag, in
preparation).

Clancey, W.J. Qualitative student models. In L??? (editors), Annual Review of Computer Science,
Annual Reviews, Inc., 1986.

Clancey, W.J. The engineering of qualitative models. In preparation, to be submitted to
AAAI-86.

Clancey, W. J. and Letsinger, R. NEOMYCIN: Reconfiguring a rule-based expert system for
application to teaching. In Clancey, W. J. and Shortliffe, E. H. (editors), Readings in
Medical Artificial Intelligence: The First Decade, pages 361-381. Addison-Wesley,

16

Reading, 1984.

Davis R. Applications of meta-level knowledge to the construction, maintenance, and use of
large knowledge bases. HPP Memo 76-7 and Al Memo 283, Stanford University, July
1976.

Dewey, J. The process and product of reflective activity: Psychological process and logical
form. In R.D. Archambault (editor), John Dewey on Education: Selected Writings, pages
243-259. Random House, Inc., New York, 1964.

diSessa, A.A. The third revolution in computers and education. A report for the Committee on
Mathematics, Science and Technology Education; Commission on Behavioral and Social
Sciences and Education; National Academy of Sciences.

Genesereth, M. R. The role of plans in intelligent teaching systems. In D. Sleeman and J. S.
Brown (editors), Intelligent Tutoring Systems, pages 137-155. Academic Press, New York,
1982.

Genesereth, M. R. Diagnosis using hierarchical design models, in Proceedings of the National
Conference on Al, pages 278-283, Pittsburgh, PA, August, 1982.

Gentner, D. and Stevens, A. (editors). Mental models. Hillsdale, NJ: Erlbaum 1983.

Goldberg, A. Computer-Assisted Instruction: The Application of Theorem-Proving to Adaptive
Response Analysis. Technical Report 203, IMSSS, Stanford University, 1973.

Goldberg. Educational uses of a dynabook. Computers & Education, 1979, 3, 247-266.

Goldstein, LP., and S. Papert. Artificial Intelligence, Language and the Study of Knowledge.
Cognitive Science, 19717, 1(1), 17?

Hasling, D. W, Clancey, W. J., Rennels, G. R. Strategic explanations in consultation. The
International Journal of Man-Machine Studies, 1984, 20(1), 3-19. Also in Development
in Expert Systems, ed. M.J. Coombs, Academic Press, London.

Hollan, J. D., Hutchins, E. L., and Weitzman, L. STEAMER: An interactive inspectable
simulation-based training system. The Al Magazine, 1984, 5(2), 15-27.

Johnson, W. Lewis, and Elliot Soloway. /ntention-Based Diagnosis of Programming Errors, in
Proceedings of the National Conference on Al, pages 162-168, Austin, TX, August, 1984.

Langlotz, C.P. and Shortliffe, E.H. Adapting a consultation system to critique user plans.
International Journal of Man-Machine Studies, 1983, 19(5), 479-496.

Miller, P.L., M.D., Ph.D, Anger, D., M.D., Marks, MS, Sudan, M.D,, and Tanner, G., M.D.
Teaching with "attending”: A practical way to "debug” an expert knowledge base, in
Proceedings of the AAMSI Congress 83, pages 87-91, Bethesda, 1983. Volume 1,

Mitchell, T.M., Mahadevan, S., Steinberg, L.I. LEAP: A learning apprentice for VLSI design, in
Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pages
573-580, Los Angeles, August, 1985.

Papert, S. Mindstorms: Children, Computers, and Powerful ldeas. : Basic Books, inc. 1980.

Patil, R. S., Szolovits, P., and Schwartz, W. B. Causal understanding of patient illness in
medical diagnosis, in Proceedings of the Seventh [nternational Joint Conference on
Artificial Intelligence, pages 893-899, August, 1981.

17

Reiser, B.J., Anderson, J.R,, and Farrell, R.G. Dyhamic student modelling in an intelligent tutor
for lisp programming, in Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, pages 8-14, August, 1985. Volume 1.

Richer, M.H. andd Clancey, W.J. GUIDON-WATCH: A graphic interface for viewing a
knowledge-based system. [EEE Computer Graphics and Applications, November 1985,
5(11), 51-64.

Rouse, W.B. and Morris, N.M. On looking into the black box: prospects and limits in the
search for mental models. Technical report 85-2, School of Industrial and Systems
Engineering, Georgia Institute of Technology, May 1985.

Schank, R. C. Failure-driven memory. Cognition and Brain Theory, 11981, 4(1), 41-60.

Schoenfeld, A. H. Episodes and executive decisions in mathematical problem solving. Technical
Report, Hamilton College, Mathematics Department, 1981. Presented at the 1981 AERA
Aqmjal Meeting, April 1981.

Shortliffe, E. H. Computer-based medical consultations: MYCIN. New York: Elsevier 1976.

Sleeman, D. and Brown, J. S. (editors). Intelligent Tutoring Systems. New York: Academic
Press 1982.

Smith, B. Models in expert systems, in Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 1308-1309, 1985.

Stevens, A. L. and Collins, A. The goal structure of a Socratic tutor. Technical Repoft 35'18:
BBN, 1977.

Stevens, A. L., and Collins, A. Multiple conceptual models of a complex system. In Snow, R,
Federico, P., and Mantague, W. (editors), Aptitude, Learning and Instruction: Cognitive
Process Analysis, . 177, 1978.

Swartout W. R. Explaining and justifying in expert consulting programs, in Proceedings of the
Seventh International Joint Conference on Artificial Intelligence, pages 815-823, August,
1981.

Thompson, T. and Clancey, W. J. A qualitative modeling shell for process diagnosis. /EEE
Software, March 1986, 3(2), 6-15.

VanlLehn, K. Empirical studies of procedural flaws, impasses, and repairs in procedural
skills. Technical Report ONR-8, LRDC, University of Pittsburgh, March 1982.

Wenger, Etienne. Knowledge communication systems, an artificial ihte//z'gence approach to
computer-aided instruction. Los Altos, CA: Morgan and Kaufman Inc. 1986.

Wilkins, D.C., Clancey, W.J.,, and Buchanan, B.G. An overview of the Odysseus learning
apprentice. In T.M. Mitchell, J.G. Carbonell, and R.S. Michalski (editors), Machine
Learning: a Guide to Current Research, . Academic Press, 1986. '

