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ABSTRACT 

A broad range of heuristic programs-embracing forms of diagnosis, 
catalog selection, and skeletal planning-accomplish a kind of well- 
structured problem solving called classification. These programs have a 
characteristic inference structure that systematically relates data to a 
pre-enumerated set of solutions by abstraction. heuristic association, 
and refinement. This level of description specifies the knowledge 
needed to solve a problem. independent of its representation in a 
particular computer language. The classification problem-solving 
model provides a useful framework for recognizing and representing 
similar problems, for designing representation tools, and for 
understanding why non-classification problems require different 
problem-solving methods.* 

I INTRODUCTION 

Over the past decade a variety of heuristic programs have been 
written to solve problems in diverse areas of science, engineering, 
business, and medicine. Yet, presented with a given “knowledge 
engineering tool,” such as EMYCIN (van Melle, 1979), we are still 
hard-pressed to say what kinds of problems it can be used to solve well. 
Various studies have demonstrated advantages of using one 
representation language instead of another-for ease in specifying 
knowledge relationships, control of reasoning, and perspicuity for 
maintenance and explanation (Clancey, 1981. Swartout, 1981, Aiello, 
1983, Aikins, 1983, Clancey, 1983a). Other studies have characterized 
in low-level terms why a given problem might be inappropriate for a 
given language, for example, because data are time-varying or 
subproblems interact (Hayes-Roth et al.. 1983). Rut dttempts to 
describe kinds of problems in terms of shared features have not been 
entirely satisfactory: Applications-oriented descriptions like 
“diagnosis” are too general (e.g., the program might not use a device 
model), and technological terms like “rule-based” don’t describe what 
problem is being solved (Hayes, 1977, Hayes, 1979). Logic has been 
suggested as a tool for a “knowledge level” analysis that would specify 
what a heuristic program does, independent of its implementation in a 
programming language (Nilsson, 1981. Newell, 1982). However, we 
have lacked a set of terms and relations for doing this. 

In an attempt to specify in some canonical terms what many heuristic 
programs known as “expert systems” do, an analysis was made of ten 
rule-based systems (including MYCIN, SACON. and The Drilling 
Advisor), a frame-based system (GRUNGY) and a program coded 
directly in LISP (SOPHIE III). There is a striking pattern: These 
programs proceed through easily identifiable phases of data abstraction, 
heuristic mapping onto a hierarchy of pre-enumerated solutions, and 
refinement within this hierarchy. In short, these programs do what is 
commonly called classification. 
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Focusing on content rather than representational technology, this 
paper proposes a set of terms and relations for describing the 
knowledge used to solve a problem by classification. Subsequent 
sections describe and illustrate the classification model in the analysis of 
MYCIN, SACON, GRUNDY. and SOPHIE III. Significantly, a 
knowledge level description of these programs corresponds very well to 
psychological models of expert problem solving. I‘his suggests rhat the 
classification problem solving model captures genera1 principles of how 
experiential knowledge is organir.ed dnd used, dnd thus generalizes 
some cognitive science results. There are several strong implications for 
the practice of building expert systems and continued resedrch in this 
feld. 

II CLASSIFICATION PROBLEM SOLVING DEFINED 

We develop the idea of classification problem solking by starting 
with the common sense notion and relating it to the reasoning that 
occurs in heuristic programs. 

A. Simde classification 

As the name suggests, the simplest kind of classification problem is to 
identify some unknown object or phenomenon as a member of a known 
class of objects or phenomena. Typically, these classes are stereotypes 
that are hierarchically organized, and the process of identification is one 
of matching observations of an unknown entity against features of 
known classes. A paradigmatic example is identification of a plant or 
animal, using a guidebook of features, such as coloration, structure, and 
si7e. 

Some terminology we will find helpful: The problem is the object or 
phenomenon to be identified; dafa are observations describing this 
problem; possible sofufions are patterns (variously called schema, 
frames or units): each solution has a set offiarures (slots or facets) that 
in some sense describe the concept either categorically or 
probabilistically; solutions are grouped into a specialization hierarchy 
based on their features (in general. not a smgle hierarchy, but multiple, 
directed acyclic graphs): a hypothesis is a solution that is under 
consideration; evidence is data that partially matches some hypothesis: 
the outpuf is some solution. 

I‘he essential characteristic of a classlficdtion problem is that the 
problem solver selects from a set of pre-enumerated solutions. This 
does not mean, of course, that the “right answer” is necessarily one of 
these solutions, just that the problem solver will only attempt to match 
the data against the known solutions, rather than construct a new one. 
Evidence can be uncertain and matches partial, so the output might be 
a ranked list of hypotheses. 

Besides matching, there are several rules of‘ fnfirence for making 
assertions about solutions. For example. evidence for a class is indirect 
evidence that one of its subtypes is present. Conversely, given a closed 
world assumption, evidence against all of the subtypes 1s ecidence 
against a class. Search operators for finding a solution also capitalize on 
the hierarchical structure of the solution gpace. I’hese operators 
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include: refining a hypothesis to a more specific classification; 
caregorizing the problem by considering superclasses of partially 
matched hypotheses: and discriminaring among hypotheses by 
contrasting their superclasses (Patil, 1981, Pople, 1982. Clancey, 1984). 
For simplicity, we will refer to the entire process of applying these rules 
of inference and operators as refinemenf. The specification of this 
process-a control strategy-is an orthogonal issue which we will 
consider later. 

6. Data abstraction 

In the simplest problems, data are solution features, so the matching 
and refining process is direct. For example, an unknown organism in 
MYCIN can be classified directly given the supplied data of gram stain 
and morphology. 

For many problems, solution features are not supplied as data, but 
are inferred by data abstraction. There are three basic relations for 
abstracting data in heuristic programs: 

l quafitafive abstraction of quantitative data (“if the patient is 
an adult and white blood count is less than 2500, then the 
white blood count is low”): 

a definitional abstraction (“if the structure is one-dimensional 
of network construction, then its shape is a beam”); and 

l generalization in a subtype hierarchy 
judge, then he is an educated person”). 

(“if the client is a 

These interpretations are usually made by the program with 
certainty; thresholds and qualifying contexts are chosen so the 
conclusion is categorical. It is common to refer to this knowledge as 
“descriptive. ” “factual,” or “definitional.” 

C. Heuristic classification 

In simple classification, the data may directly match the solution 
features or may match after being abstracted. In heuristic classification, 
solution features may also be matched heuristically. For example, 
MYCIN does more than identify an unknown organism in terms of 
features of a laboratory culture: It heuristically relates an abstract 
characterization of the patient to a classification of diseases. We show 
this inference structure schematically, followed by an example (Figure 
1). 

Basic observations about the patient are abstracted to patient 
categories, which are heuristically linked to diseases and disease 
categories. While only a subtype link with Ecoli infection is shown 
here, evidence may actually derive from a combination of inferences. 
Some data might directly match Ecoli by identification. 
Discrimination with competing subtypes of gram-negative infection 
might also provide evidence. As stated earlier, the order in which these 
inferences are made is a matter of control strategy. 

The important link we have added is a heuristic association between 
a characterization of the patient (“compromised host”) and categories 
of diseases (“gram-negative infection”). Unlike the factual and 
hierarchical evidence propagation we have considered to this point, this 
inference makes a great leap. A heuristic relation is based on some 
implicit, possibly incomplete, model of the world. This relation is often 
empirical, based just on experience: it corresponds most closely to the 
“rules of thumb” often associated with heuristic programs 
(Feigenbaum, 1977). 

Heuristics of this type reduce search by skipping over intermediate 
relations (this is why we don’t call abstraction relations “heuristics”). 
These associations are usually uncertain because the intermediate 
relations may not hold in the specific case. Intermediate relations may 
be omitted because they are unobservable or poorly understood. In a 
medical diagnosis program, heuristics typically skip over the causal 
relations between symptoms and diseases. 
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DATA 
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REFINEMENT 
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Figure 1: Inference structure of MYCIN 

To repeat, classification problem solving involves heuristic 
association of an abstracted problem statement onto features that 
characterize a solution. This can be shown schematically in simple 
terms (Figure 2). 

HEURISTIC MATCH 

Data Abstractions 

DATA 

t 
ABSTRACTION 

* Solution Abstractions 

REFINEMENT 

Solutions 

Figure 2: Classification problem solving inference structure 

This diagram summarizes how a distinguished set of terms (data. data 
abstractions, solution abstractions, and solutions) are related 
systematically by different kinds of relations and rules of inference. 
This is the structure of inference in classification problem solving. 

In a study of physics problem solving, Chi (Chi, et al., 1981) calls 
data abstractions “transformed” or “second order problem features.” 
In an important and apparently common variant of the simple model, 
data abstractions are themselves patterns that are heuristically matched. 
In essence, there is a sequence of classification problems. GRUNDY. 
analyzed below, illustrates this. 

50 



D. Search in classification problem solvinq 

The issue of search is orthogonal to the kinds of inference we have 
been considering. “Search” refers to how a network made up of 
abstraction, heuristic, and refinement relations is interpreted, how the 
flow of inference actually might proceed in solving a problem. 
Following Hayes (Hayes, 1977) we call this the process strucfure. There 
are three basic process structures in classification problem solving: 

1. Data-direcfed search: The program works forwards from 
data to abstractions, matching solutions until all possible (or 
non-redundant) inferences have been made. 

2. Solution- or Hypothesis-directed search: The program works 
backwards from solutions. collecting evidence to support 
them, working backwards through the heuristic relations to 
the data abstractions and required data to solve the 
problem. If solutions are hierarchically organized, then 
categories are considered before direct features of more 
specific solutions. 

3. Opportunistic search: The program combines data and 
hypothesis-directed reasoning (Hayes-Roth and Hayes- 
Roth, 1979). Data abstraction rules tend to be applied 
immediately as data become available. Heuristic rules 
“trigger” hypotheses, followed by a focused, hypothesis- 
directed search. New data may cause refocusing. By 
reasoning about solution classes, search need not be 
exhaustive. 

Data- and hypothesis-directed search are not to be confused with the 
implementation terms “forward” or “backward chaining.” Rl provides 
a superb example of how different implementation and knowledge 
level descriptions can be. Its rules are interpreled by forward-chaining, 
but it does a form of hypothesis-directed search. systematically setting 
up subproblems by a fixed procedure that focuses reasoning on spatial 
subcomponents of a solution (McDermott, 1982). 

The degree to which search is focused depends on the level of 
indexing in the implementation and how it is exploited. For example, 
MYCIN’s “goals” are solution classes (e.g., types of bacterial 
meningitis), but selection of rules for specific solutions (e.g., Ecoli 
meningitis) is unordered. Thus. MYCIN’s search within each class is 
unfocused (Clancey, 1983b). 

The choice of process structure depends on the number of solutions, 
whether they can be categorically constrained, usefulness of data (the 
density of rows in a data/solution matrix), and the cost for acquiring 
data. 

ill EXAMPLES OF CLASSIFICATION PROBLEM SOLVING 

Here we schematically describe the architectures of SACON. 
GRUNDY, and SOPHIE III in terms ofclassification problem solving. 
These are necessarily very brief descriptions, but reveal the value of this 
kind of analysis by helping us to understand what the programs do. 
After a statement of the problem. the general inference structure and an 
example inference path are given, followed by a brief discussion. 

A. SACON 

Problem: SACON (Bennett, et al., 1978) selects classes of behavior 
that should be further investigated by a structural analysis simulation 
program (Figure 3). 

Analysis Program 

t 

DATA 

HEURISTIC MATCH ABSTRACTION 
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+ 
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DATA 
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t 
DEFINITIONAL 

I Fatigue 
Deflection + Material 

+ 

HEURISTIC I QUALITATIVE 

Size I 
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t 
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DEFINITIONAL 
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Figure 3: Inference structure of SACON 

Discussion: SACON solves two problems by classification- 
analyzing a structure and then selecting a program. It begins by 
heuristically selecting a simple numeric model for analyzing a structure 
(such as an airplane wing). The model produces stress and deflection 
estimates, which the program then abstracts in terms of features that 
hierarchically describe different configurations of the MARC 
simulation program. There is no refinement because the solutions to 
the first problem are just a simple set of possible models, and the 
second problem is only solved to the point of specifying program 
classes. ( In another software configuration system we and14 led, specific 
program input parameters are inferred in a refinement step.) 

B. GRUNDY 

Problem: GRUNDY (Rich, 1979) heuristically classifies a reader’s 
personality and selects books he might like to read (Figure 4). 
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Figure 4: Inference structure of GRUNDY 



Discussion: GRUNDY solves two classification problems 
heuristically. Illustrating the power of a knowledge level analysis, we 
discover that the people and book classifications are not distinct in the 
implementation. For example, “fast plots” is a book characteristic, but 
in the implementation “likes fast plots” is associated with a person 
stereotype. The relation between a person stereotype and “fast plots” is 
heuristic and should be distinguished from abstractions of people and 
books. One objective of the program is to learn better people 
stereotypes (user models). The classification description of the user 
modeling problem shows that GRUNDY should also be learning better 
ways to characterize books, as well as improving its heuristics. If these 
are not treated separately, learning may be hindered. This example 
illustrates why a knowledge level analysis should precede 
representation. 

It is interesting to note that GRUNDY does not attempt to perfect 
the user model before recommending a book. Rather, refinement of 
the person stereotype occurs when the reader rejects book suggestions. 
Analysis of other programs indicates that this multiple-pass process 
structure is common. For example, the Drilling Advisor makes two 
passes on the causes of sticking, considering general. inexpensive data 
first, just as medical programs commonly consider the “history and 
physical” before laboratory data. 

C. SOPHIE Ill 

Problem: SOPHIE III (Brown. et al., 1982) classifies an electronic 

circuit in terms of the component that is causing faulty behavior (Figure 
5). 
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Figure 5: Inference structure of SOPHIE 

Discussion: SOPHIE’s set of pre-enumerated solutions is a lattice of 
valid and faulty circuit behaviors. In contrast with MYCIN, solutions 
are device states and component flaws, not stereotypes of disorders, and 
they are related causally, not by features. Data are not just external 
device behaviors, but include internal component measurements 
propagated by the causal analysis of the LOCA13 program. Reasoning 
about assumptions plays a central role in matching hypotheses. In spite 
of these differences, the inference structure of abstractions, heuristic 
relations, and refinement fits the classification model, demonstrating its 
generality and usefulness for describing complex reasoning. 

IV CAUSAL PROCESS CLASSIFICATION 

To further illustrate the value of a knowledge level analysis, we 
describe a generic inference structure common to medical diagnosis 
programs, which we call causal process cfassificafion, and use it to 
contrast the goals of electronic circuit and medical diagnosis programs. 

In SOPHIE, valid and abnormal device states are exhaustively 
enumerated, can be directly confirmed, and are causally related to 
component failures. None of this is generally possible in medical 
diagnosis, nor is diagnosis in terms of component failures alone 
sufficient for selecting therapy. Medical programs that deal with 
multiple disease processes (unlike MYCIN) do reason about abnormal 
states (called pathophysiologic slates, e.g., “increased pressure in the 
brain”), directly analogous to the abnormal states in SOPHIE. But 
curing an illness generally involves determining the cause of the 
component failure. These “final causes” (called diseases, syndromes, 
etiologies) are processes that affect the normal functioning of the body 
(e.g., trauma, infection, toxic exposure, psychological disorder). Thus, 
medical diagnosis more closely resembles the task of computer system 
diagnosis in considering how the body relates to its environment (Lane, 
1980). In short, there are two problems: First to explain symptoms in 
terms of abnormal internal states, and second to explain this behavior in 
terms of external influences (as well as congenital and degenerative 
component flaws). This is the inference structure of programs like 
CASNET (Weiss, et al., 1978) and NEOMYCIN (Clancey, 1981) 
(Figure 6). 

HEURISTIC HEURISTIC 
(CAUSED BY) (CAUSED BY) 

Patient a 
Abstractions 

DATA 
ABSTRACTION 

t 
Patient Data 

Pathophysiologic a Disease 
States and Classes Classes 

I REFINEMENT 

Diseases 

Figure 6: Inference structure of causal process classification 

A network of causally related pathophysiologic states causally relates 
data to diseases**. The causal relations are themselves heuristic 
because they assume certain physiologic structure and behavior, which 
is often poorly understood and not represented. In contrast with 
pathophysiologic states, diseases are abstractions of processes--causal 
stories with agents, locations, and sequences of events. Disease 
networks are organized by these process features (e.g., dn organ system 
taxonomy organizes diseases by location). A more general term for 
disease is disorder stereotype. In process confrol problems, such as 
chemical manufacturing, the most general disorder stereotypes 
correspond to stages in a process (e.g., mixing, chemical reaction, 
filtering, packaging). Subtypes correspond to what can go wrong at 

each stage (Clancey, 1984). 

**Programs differ m whether they treat pathophyslologlc states as Independent 
solutions (NEOMYCIN) or find the causal path that best accounts for the data 
(CASNET) Moreover. a causal explanation of the data requires finding a state network, 
mcludmg normal states. that IS Internally consistent on multiple levels of detail 
Combmatorial problems, as well as elegance. argue agamst pre-enumeratmg solutions, so 
such a network must be constructed. as m ABEL (Panl. 1981) In SOPHIE. the LOCAI 
program deals with most of the state mteractions at the component level. others are 
captured In the exhaustive hierarchy of module behablors A more general solution 1s to 
use a structure/function device model and general dlagnostlc operatorc. as In DAR r 
(Genesereth. 1982) 
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To summarize, a knowledge level analysis reveals that medical and Whether the solution is taken off the shelf or is pieced together has 
electronic diagnosis programs are not all trying to solve the same kind 
of problem. Examining the nature of solutions. we see that in a 
electronic circuit diagnosis program like SOPHIE solutions are 
component flaws. Medical diagnosis programs like CASNET attempt a 
second step, causal process classification, which is to explain abnormal 
states and flaws in terms of processes external to the device or 
developmental processes affecting its structure. It is this experiential 
knowledge-what can affect the device in the world-that is captured 
in disease stereotypes. This knowledge can’t simply be replaced by a 
model of device structure and function, which is concerned with a 
different level of analysis. 

V WHAT IS NON-CLASSIFICATION PROBLEM SOLVING? 

important computational implications for choosing a representation. In 
particular, construction problem-solving methods such as constraint 
propagation and dependency-directed backtracking have data structure 
requirements that may not be easily satisfied by a given representation 
language. For example-returning to a question posed in the 
introduction-applications of EMYCIN are generally restricted to 
problems that can be solved by classification. 

VI KNOWLEDGE LEVEL ANALYSIS 

As a set of terms and relations for describing knowledge (e.g, data, 
solutions, kinds of abstraction, refinement operators, the meaning of 
“heuristic”), the classification model provides a knowledge level analysis 
of programs, as defined by Newell (Newell, 1982). It “serves as a 

We first summarize the applications we have considered by 
observing that all classification problem solving involves selection of a 
solution. We can characterize kinds of problems by what is being 
selected: 

l diagnosis: solutions are faulty components (SOPHIE) or 
processes affecting the device (MYCIN); 

specification of what a reasoning system should be able to do.” Like a 
specification of a conventional program, this description is distinct from 
the representational technology used to implement the reasoning 
system. Newell cites Schank’s conceptual dependency structure as an 
example of a knowledge level analysis. It indicates “what knowledge is 
required to solve a problem... how to encode knowledge of the world in 
a representation.” 

l user model: solutions are people stereotypes in terms of 
their goals and beliefs (first phase of GRUNDY); 

0 catalog selection: solutions are pro;lucts, services, or 
activities, e.g., books, personal computers, careers. travel 
tours, wines, investments (second phase of GRUNDY); 

l theoretical analysis: solutions are numeric models (first 
phase of SACON); 

After a decade of “explicitly” representing knowledge in AI 
languages, it is ironic that the pattern of classification problems should 
have been so difficult to see. In retrospect, certain views were 
emphasized at the expense of others: 

l Procedureless languages. In an attempt to distinguish 
heuristic programming from traditional programming, 
procedural constructs are left out of representation 
languages (such as EMYCIN. OPS, KRL (Lehnert and 
Wilks, 1979)). Thus, inference relations cannot be stated 
separately from how they are to be used (Hayes. 1977, 
Hayes, 1979). 

l Heuristic nature of problem solving. Heuristic association 
has been emphasized at the expense of the relations used in 
data abstraction and refinement. In fact. some expert 
systems do only simple classification: they have no 
heuristics or “rules of thumb,” the key idea that is supposed 
distinguish this class of computer programs. 

l skeletaal planning: solutions are plans, such as packaged 
sequences of programs and parameters for running them 
(second phase of SACON, also first phase of experiment 
planning in MOLGEN (Friedland. 1979)). 

A common misconception is that the description “classification 
problem” is an inherent property of a problem, opposing, for example. 
classification with design (Sowa, 1984). However, classification 
problem solving, as defined here, is a description of how a problem is 
solved. If the problem solver has a priori knowledge of solutions and 
can relate them to the problem description by data abstraction, heuristic 
association, and refinement, then the problem can be solved by 
classification. For example, if it were practical to enumerate all of the 
computer configurations Rl might select, or if the solutions were 
restricted to a predetermined set of designs, the program could be 
reconfigured to solve its problem by classification. 

l Implementation terminology. In emphasizing new 
implementation technology, terms such as “modular” and 
“goal directed” were more important to highlight than the 
content of the programs. In fact, “goal directed” 
characterizes any rational system and says very little about 
how knowledge is used to solve a problem. “Modularity” is 
a representational issue of indexing. 

Furthermore, as illustrated by ABEL, it is mcorrcct to say that 
medical diagnosis is a “classification problem.” Only ruutme medical 
diagnosis problems can be solved by classification (Pople, 1982). When 
there are multiple, interacting diseases, there are too many possible 
combinations for the problem solver to have considered them all 
before. Just as ABEL reasons about interacting states, the physician 
must construct a consistent network of interacting diseases to explain 
the symptoms. The problem solver formulates a solution; he doesn’t 
just make yes-no decisions from a set of fixed alternatives. For this 
reason, Pople calls non-routine medical diagnosis an ill-structured 
problem (Simon, 1973) (though it may be more appropriate to reserve 
this term for the theory formation task of the physician-scientist who is 
defining new diseases). 

In summary, a useful distinction is whether a solution is selected or 
constructed. To select a solution, the problem solver needs experiential 

Nilsson has proposed that logic should be the lingua franca for 
knowledge level analysis (Nilsson, 1981). Our experience with the 
classification model suggests that the value of using logic is in adopting 
a set of terms and relations for describing knowledge (e.g., kinds of 
abstraction). Logic is valuable as a tool for knowledge 
because it emphasizes relations, not just implication. 

level dnalysis 

While rule-based languages do not make important knowledge level 
distinctions, they have nevertheless provided an extremely successful 
programming framework for classification problem solving. Working 
backwards (backchaining) from a pre-enumerated set of solutions 
guarantees that only the relevant rules are tried dnd useful data 
considered. Moreover. the program desrgner 1s encouraged to use 
means-ends analysis, a clear framework for organizing rule wrtting. 

(“expert”) knowledge in the form of patterns of problems and solutions 
and heuristics relating them. To construct a solution, the problem 
solver applies models of structure and behavior, by which objects can 
be assembled, diagnosed, or employed in some plan. 
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VII RELATED ANALYSES 

Several researchers have described portions of the classification 
problem solving model, influencing this analysis. For example, in 
CRYSALIS (Engelmore and Terry, 1979) data and hypothesis 
abstraction are clearly separated. The EXPERT rule language (Weiss, 
1979) similarly distinguishes between “findings” and a taxonomy of 
hypotheses. In PROSPECTOR (Hart, 1977) rules are expressed in 
terms of relations in a semantic network. In CENTAUR (Aikins, 1983) 
a variant of MYCIN, solutions are explicitly prototypes of diseases. 
Chandrasekaran and his associates have been strong proponents of the 
classification model: “The normal problem-solving activity of the 
physician... (is) a process f 1 0 c assifying the case as an element of a 
disease taxonomy” (Chandrasekaran and Mittal, 1983). Recently, 
Chandrasekaran and Weiss and Kulikowski have generalized the 
classification schemes used by their programs (MDX and EXPERT) to 
characterize problems solved by other expert systems (Chandrasekaran, 
1984, Weiss and Kulikowski, 1984). 

A series of knowledge representation languages beginning with KRL 
have identified structured abstraction and matching as a central part of 
problem solving (Bobrow and Winograd, 1979). Building on the idea 
that “frames” are not just a computational construct, but a theory about 
a kind of knowledge (Hayes, 1979), cognitive science studies have 
described problem solving in terms of classification. For example, 
routine physics problem solving is described by Chi (Chi, et al., 1981) as 
a process of data abstraction and heuristic mapping onto solution 
schemas (“experts cite the abstracted features as the relevant cues (of 
physics principles)“). The inference structure of SACON, heuristically 
relating structural abstractions to numeric models, is the same. 

Related to the physics problem solving analysis is a very large body 
of research on the nature of schemas and their role in understanding 
(Schank, 1975, Rumelhart and Norman, 1983). More generally, the 
study of classification, particularly of objects, also called categonzation, 
has been a basic topic in psychology for several decades (e.g., see the 
chapter on “conceptual thinking” in (Johnson-Laird and Wason, 
1977)). However, in psychology the emphasis has been on the nature of 
categories and how they are formed (an issue of learning). The 
programs we have considered make an identification or selection from a 
pre-existing classification (an issue of memory retrieval). In recent 
work, Kolodner combines the retrieval and learning process in an 
expert system that learns from experience (Kolodner, 1982). Her 
program uses the MOPS representation, a classification model of 
memory that interleaves generalizations with specific facts (Kolodner, 
1983). 

VIII CONCLUSIONS 

A wide variety of problems can be described in terms of heuristic 
mapping of data abstractions onto a fixed. hierarchical network of 
solutions. This problem solving model is supported by psychological 
studies of human memory and the role of classification in 
understanding. There are significant implications for expert systems 
research: 

a The model provides a high-level structure for decomposing 
problems, making it easier to recognize and represent similar 
problems. For example, problems can be characterized in 
terms of sequences of classification problems. Catalog 
selection programs might be improved by incorporating a 
more distinct phase of user modelling, in which needs or 
requirements are classified first. Diagnosis programs might 
profitably make a stronger separation between device- 
history stereotypes and disorder knowledge. A generic 
knowledge engineering tool can be designed specifically for 
classification problem solving. The advantages for 
knowledge acquisition carry over into explanation and 
teaching. 
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l The model provides a basis for choosing application 
problems. For example, problems can be selected that will 
teach us more about the nature of abstraction and how 
other forms of inference (e.g.. analogy, simulation. 
constraint posting) are combined with classification. 

#The model provides a foundation for describing 
representation languages in terms of epistemologic adequacy 
(McCarthy and Hayes, 1969), so that the leverage they 
provide can be better understood. For example, for 
classification it is advantageous for a language to provide 
constructs for representing problem solutions as a network 
of schemas. 

l The model provides a focus for cognitive studies of human 
categorization of knowledge and search strategies for 
retrieval and matching, suggesting principles that might be 
used in expert programs. Learning research might similarly 
focus on the inference and process structure of classification 
problem solving. 

Finally, it is important to remember that expert systems are 
programs. Basic computational ideas such as input, output, and 
sequence, are essential for describing what they do. The basic 
methodology of our study has been to ask, “What does the program 
conclude about? How does it get there from its input?” We 
characterize the flow of inference, identifying data abstractions, 
heuristics, implicit models and assumptions, and solution categories 
along the way. If heuristic programming is to be different from 
traditional programming, a knowledge level analysis should always be 
pursued to the deepest levels of our understanding, even if practical 
constraints prevent making explicit in the implemented program 
everything that we know. In this way, knowledge engineering can be 
based on sound principles that unite it with studies of cognition and 
representation. 
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