
CLASSIFICATION PROBLEM SOLVING

William J. Clancey
Heuristic Programming Project
Computer Science Department

Stanford University
Stanford. CA 94305

ABSTRACT

A broad range of heuristic programs-embracing forms of diagnosis,
catalog selection, and skeletal planning-accomplish a kind of well-
structured problem solving called classification. These programs have a
characteristic inference structure that systematically relates data to a
pre-enumerated set of solutions by abstraction. heuristic association,
and refinement. This level of description specifies the knowledge
needed to solve a problem. independent of its representation in a
particular computer language. The classification problem-solving
model provides a useful framework for recognizing and representing
similar problems, for designing representation tools, and for
understanding why non-classification problems require different
problem-solving methods.*

I INTRODUCTION

Over the past decade a variety of heuristic programs have been
written to solve problems in diverse areas of science, engineering,
business, and medicine. Yet, presented with a given “knowledge
engineering tool,” such as EMYCIN (van Melle, 1979), we are still
hard-pressed to say what kinds of problems it can be used to solve well.
Various studies have demonstrated advantages of using one
representation language instead of another-for ease in specifying
knowledge relationships, control of reasoning, and perspicuity for
maintenance and explanation (Clancey, 1981. Swartout, 1981, Aiello,
1983, Aikins, 1983, Clancey, 1983a). Other studies have characterized
in low-level terms why a given problem might be inappropriate for a
given language, for example, because data are time-varying or
subproblems interact (Hayes-Roth et al.. 1983). Rut dttempts to
describe kinds of problems in terms of shared features have not been
entirely satisfactory: Applications-oriented descriptions like
“diagnosis” are too general (e.g., the program might not use a device
model), and technological terms like “rule-based” don’t describe what
problem is being solved (Hayes, 1977, Hayes, 1979). Logic has been
suggested as a tool for a “knowledge level” analysis that would specify
what a heuristic program does, independent of its implementation in a
programming language (Nilsson, 1981. Newell, 1982). However, we
have lacked a set of terms and relations for doing this.

In an attempt to specify in some canonical terms what many heuristic
programs known as “expert systems” do, an analysis was made of ten
rule-based systems (including MYCIN, SACON. and The Drilling
Advisor), a frame-based system (GRUNGY) and a program coded
directly in LISP (SOPHIE III). There is a striking pattern: These
programs proceed through easily identifiable phases of data abstraction,
heuristic mapping onto a hierarchy of pre-enumerated solutions, and
refinement within this hierarchy. In short, these programs do what is
commonly called classification.

*This research has been supported In part by O\R and AR1 Contract
NOOO14-79C-0302. Computational resources have been provided by the SLMFX-AIM
facdlty (NIH grant RRO0785). .Many of the ideas presented here were sumulated by
discussIons wtth Denny Brown in our attempt to develop a framework for teachmg
knowledge engineering. I am also grateful to Tom Dlettench. Steve Hard\, and Peter
Szolov~ts for their suggestions and encouragement The Dnlhng Ad\ lsor mentloned
herein IS a product of Teknowledge, Inc

Focusing on content rather than representational technology, this
paper proposes a set of terms and relations for describing the
knowledge used to solve a problem by classification. Subsequent
sections describe and illustrate the classification model in the analysis of
MYCIN, SACON, GRUNDY. and SOPHIE III. Significantly, a
knowledge level description of these programs corresponds very well to
psychological models of expert problem solving. I‘his suggests rhat the
classification problem solving model captures genera1 principles of how
experiential knowledge is organir.ed dnd used, dnd thus generalizes
some cognitive science results. There are several strong implications for
the practice of building expert systems and continued resedrch in this
feld.

II CLASSIFICATION PROBLEM SOLVING DEFINED

We develop the idea of classification problem solking by starting
with the common sense notion and relating it to the reasoning that
occurs in heuristic programs.

A. Simde classification

As the name suggests, the simplest kind of classification problem is to
identify some unknown object or phenomenon as a member of a known
class of objects or phenomena. Typically, these classes are stereotypes
that are hierarchically organized, and the process of identification is one
of matching observations of an unknown entity against features of
known classes. A paradigmatic example is identification of a plant or
animal, using a guidebook of features, such as coloration, structure, and
si7e.

Some terminology we will find helpful: The problem is the object or
phenomenon to be identified; dafa are observations describing this
problem; possible sofufions are patterns (variously called schema,
frames or units): each solution has a set offiarures (slots or facets) that
in some sense describe the concept either categorically or
probabilistically; solutions are grouped into a specialization hierarchy
based on their features (in general. not a smgle hierarchy, but multiple,
directed acyclic graphs): a hypothesis is a solution that is under
consideration; evidence is data that partially matches some hypothesis:
the outpuf is some solution.

I‘he essential characteristic of a classlficdtion problem is that the
problem solver selects from a set of pre-enumerated solutions. This
does not mean, of course, that the “right answer” is necessarily one of
these solutions, just that the problem solver will only attempt to match
the data against the known solutions, rather than construct a new one.
Evidence can be uncertain and matches partial, so the output might be
a ranked list of hypotheses.

Besides matching, there are several rules of‘ fnfirence for making
assertions about solutions. For example. evidence for a class is indirect
evidence that one of its subtypes is present. Conversely, given a closed
world assumption, evidence against all of the subtypes 1s ecidence
against a class. Search operators for finding a solution also capitalize on
the hierarchical structure of the solution gpace. I’hese operators

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

include: refining a hypothesis to a more specific classification;
caregorizing the problem by considering superclasses of partially
matched hypotheses: and discriminaring among hypotheses by
contrasting their superclasses (Patil, 1981, Pople, 1982. Clancey, 1984).
For simplicity, we will refer to the entire process of applying these rules
of inference and operators as refinemenf. The specification of this
process-a control strategy-is an orthogonal issue which we will
consider later.

6. Data abstraction

In the simplest problems, data are solution features, so the matching
and refining process is direct. For example, an unknown organism in
MYCIN can be classified directly given the supplied data of gram stain
and morphology.

For many problems, solution features are not supplied as data, but
are inferred by data abstraction. There are three basic relations for
abstracting data in heuristic programs:

l quafitafive abstraction of quantitative data (“if the patient is
an adult and white blood count is less than 2500, then the
white blood count is low”):

a definitional abstraction (“if the structure is one-dimensional
of network construction, then its shape is a beam”); and

l generalization in a subtype hierarchy
judge, then he is an educated person”).

(“if the client is a

These interpretations are usually made by the program with
certainty; thresholds and qualifying contexts are chosen so the
conclusion is categorical. It is common to refer to this knowledge as
“descriptive. ” “factual,” or “definitional.”

C. Heuristic classification

In simple classification, the data may directly match the solution
features or may match after being abstracted. In heuristic classification,
solution features may also be matched heuristically. For example,
MYCIN does more than identify an unknown organism in terms of
features of a laboratory culture: It heuristically relates an abstract
characterization of the patient to a classification of diseases. We show
this inference structure schematically, followed by an example (Figure
1).

Basic observations about the patient are abstracted to patient
categories, which are heuristically linked to diseases and disease
categories. While only a subtype link with Ecoli infection is shown
here, evidence may actually derive from a combination of inferences.
Some data might directly match Ecoli by identification.
Discrimination with competing subtypes of gram-negative infection
might also provide evidence. As stated earlier, the order in which these
inferences are made is a matter of control strategy.

The important link we have added is a heuristic association between
a characterization of the patient (“compromised host”) and categories
of diseases (“gram-negative infection”). Unlike the factual and
hierarchical evidence propagation we have considered to this point, this
inference makes a great leap. A heuristic relation is based on some
implicit, possibly incomplete, model of the world. This relation is often
empirical, based just on experience: it corresponds most closely to the
“rules of thumb” often associated with heuristic programs
(Feigenbaum, 1977).

Heuristics of this type reduce search by skipping over intermediate
relations (this is why we don’t call abstraction relations “heuristics”).
These associations are usually uncertain because the intermediate
relations may not hold in the specific case. Intermediate relations may
be omitted because they are unobservable or poorly understood. In a
medical diagnosis program, heuristics typically skip over the causal
relations between symptoms and diseases.

HEURISTIC MATCH

Patient Abstractions * Disease Classes

DATA

t

REFINEMENT
ABSTRACTION

Patient Data Diseases

HEURISTIC

Compromised Host j Gram-Negative Infection

GENERALIZATION

t 1

SUBTYPE

lmmunosuppressed E.coli Infection

GENERALIZATION

t
Leukopenia

DEFINITIONAL

t
Low WBC

QUALITATIVE

t
WBC < 2.5

Figure 1: Inference structure of MYCIN

To repeat, classification problem solving involves heuristic
association of an abstracted problem statement onto features that
characterize a solution. This can be shown schematically in simple
terms (Figure 2).

HEURISTIC MATCH

Data Abstractions

DATA

t
ABSTRACTION

* Solution Abstractions

REFINEMENT

Solutions

Figure 2: Classification problem solving inference structure

This diagram summarizes how a distinguished set of terms (data. data
abstractions, solution abstractions, and solutions) are related
systematically by different kinds of relations and rules of inference.
This is the structure of inference in classification problem solving.

In a study of physics problem solving, Chi (Chi, et al., 1981) calls
data abstractions “transformed” or “second order problem features.”
In an important and apparently common variant of the simple model,
data abstractions are themselves patterns that are heuristically matched.
In essence, there is a sequence of classification problems. GRUNDY.
analyzed below, illustrates this.

50

D. Search in classification problem solvinq

The issue of search is orthogonal to the kinds of inference we have
been considering. “Search” refers to how a network made up of
abstraction, heuristic, and refinement relations is interpreted, how the
flow of inference actually might proceed in solving a problem.
Following Hayes (Hayes, 1977) we call this the process strucfure. There
are three basic process structures in classification problem solving:

1. Data-direcfed search: The program works forwards from
data to abstractions, matching solutions until all possible (or
non-redundant) inferences have been made.

2. Solution- or Hypothesis-directed search: The program works
backwards from solutions. collecting evidence to support
them, working backwards through the heuristic relations to
the data abstractions and required data to solve the
problem. If solutions are hierarchically organized, then
categories are considered before direct features of more
specific solutions.

3. Opportunistic search: The program combines data and
hypothesis-directed reasoning (Hayes-Roth and Hayes-
Roth, 1979). Data abstraction rules tend to be applied
immediately as data become available. Heuristic rules
“trigger” hypotheses, followed by a focused, hypothesis-
directed search. New data may cause refocusing. By
reasoning about solution classes, search need not be
exhaustive.

Data- and hypothesis-directed search are not to be confused with the
implementation terms “forward” or “backward chaining.” Rl provides
a superb example of how different implementation and knowledge
level descriptions can be. Its rules are interpreled by forward-chaining,
but it does a form of hypothesis-directed search. systematically setting
up subproblems by a fixed procedure that focuses reasoning on spatial
subcomponents of a solution (McDermott, 1982).

The degree to which search is focused depends on the level of
indexing in the implementation and how it is exploited. For example,
MYCIN’s “goals” are solution classes (e.g., types of bacterial
meningitis), but selection of rules for specific solutions (e.g., Ecoli
meningitis) is unordered. Thus. MYCIN’s search within each class is
unfocused (Clancey, 1983b).

The choice of process structure depends on the number of solutions,
whether they can be categorically constrained, usefulness of data (the
density of rows in a data/solution matrix), and the cost for acquiring
data.

ill EXAMPLES OF CLASSIFICATION PROBLEM SOLVING

Here we schematically describe the architectures of SACON.
GRUNDY, and SOPHIE III in terms ofclassification problem solving.
These are necessarily very brief descriptions, but reveal the value of this
kind of analysis by helping us to understand what the programs do.
After a statement of the problem. the general inference structure and an
example inference path are given, followed by a brief discussion.

A. SACON

Problem: SACON (Bennett, et al., 1978) selects classes of behavior
that should be further investigated by a structural analysis simulation
program (Figure 3).

Analysis Program

t

DATA

HEURISTIC MATCH ABSTRACTION

Abstract Structure

+

Quantitative Prediction
of Material Behavior

DATA
ABSTRACTION

Structure Description

Inelastic-Fatigue
Program

t
DEFINITIONAL

I Fatigue
Deflection + Material

+

HEURISTIC I QUALITATIVE

Size I

Beam + Support * Stress and Deflection

t

Distribution Magnitude

DEFINITIONAL

One-dimensional
and Network

Figure 3: Inference structure of SACON

Discussion: SACON solves two problems by classification-
analyzing a structure and then selecting a program. It begins by
heuristically selecting a simple numeric model for analyzing a structure
(such as an airplane wing). The model produces stress and deflection
estimates, which the program then abstracts in terms of features that
hierarchically describe different configurations of the MARC
simulation program. There is no refinement because the solutions to
the first problem are just a simple set of possible models, and the
second problem is only solved to the point of specifying program
classes. (In another software configuration system we and14 led, specific
program input parameters are inferred in a refinement step.)

B. GRUNDY

Problem: GRUNDY (Rich, 1979) heuristically classifies a reader’s
personality and selects books he might like to read (Figure 4).

HEURISTIC MATCH

Self-Description
and Behavior

HEURISTIC

People
Classes

Book
Classes

REFINEMENT

*
Books

HEURISTIC

Watches No TV * Educated * Books with Intelligent
Person Main Character
Stereotype

SUBTYPE

t
“Earth Angels”

Figure 4: Inference structure of GRUNDY

Discussion: GRUNDY solves two classification problems
heuristically. Illustrating the power of a knowledge level analysis, we
discover that the people and book classifications are not distinct in the
implementation. For example, “fast plots” is a book characteristic, but
in the implementation “likes fast plots” is associated with a person
stereotype. The relation between a person stereotype and “fast plots” is
heuristic and should be distinguished from abstractions of people and
books. One objective of the program is to learn better people
stereotypes (user models). The classification description of the user
modeling problem shows that GRUNDY should also be learning better
ways to characterize books, as well as improving its heuristics. If these
are not treated separately, learning may be hindered. This example
illustrates why a knowledge level analysis should precede
representation.

It is interesting to note that GRUNDY does not attempt to perfect
the user model before recommending a book. Rather, refinement of
the person stereotype occurs when the reader rejects book suggestions.
Analysis of other programs indicates that this multiple-pass process
structure is common. For example, the Drilling Advisor makes two
passes on the causes of sticking, considering general. inexpensive data
first, just as medical programs commonly consider the “history and
physical” before laboratory data.

C. SOPHIE Ill

Problem: SOPHIE III (Brown. et al., 1982) classifies an electronic

circuit in terms of the component that is causing faulty behavior (Figure
5).

HEURISTIC MATCH

Qualitative Values a
of Ports

DATA
ABSTRACTION

t
Quantitative
Circuit Behavior

CAUSAL
PROPAGATION

t

Local Circuit Measurements

Behavior at Some Port
of Some Module in
Behavior Lattice

I

REFINEMENT

Component Fault

HEURISTIC

(VOLTAGE Nil N14) j Variable Voltage
is High Reference is High or OK

QUALITATIVE

t 1

CAUSE

(VOLTAGE Nl 1 N14) > 31 V Q5 Collector Open

Figure 5: Inference structure of SOPHIE

Discussion: SOPHIE’s set of pre-enumerated solutions is a lattice of
valid and faulty circuit behaviors. In contrast with MYCIN, solutions
are device states and component flaws, not stereotypes of disorders, and
they are related causally, not by features. Data are not just external
device behaviors, but include internal component measurements
propagated by the causal analysis of the LOCA13 program. Reasoning
about assumptions plays a central role in matching hypotheses. In spite
of these differences, the inference structure of abstractions, heuristic
relations, and refinement fits the classification model, demonstrating its
generality and usefulness for describing complex reasoning.

IV CAUSAL PROCESS CLASSIFICATION

To further illustrate the value of a knowledge level analysis, we
describe a generic inference structure common to medical diagnosis
programs, which we call causal process cfassificafion, and use it to
contrast the goals of electronic circuit and medical diagnosis programs.

In SOPHIE, valid and abnormal device states are exhaustively
enumerated, can be directly confirmed, and are causally related to
component failures. None of this is generally possible in medical
diagnosis, nor is diagnosis in terms of component failures alone
sufficient for selecting therapy. Medical programs that deal with
multiple disease processes (unlike MYCIN) do reason about abnormal
states (called pathophysiologic slates, e.g., “increased pressure in the
brain”), directly analogous to the abnormal states in SOPHIE. But
curing an illness generally involves determining the cause of the
component failure. These “final causes” (called diseases, syndromes,
etiologies) are processes that affect the normal functioning of the body
(e.g., trauma, infection, toxic exposure, psychological disorder). Thus,
medical diagnosis more closely resembles the task of computer system
diagnosis in considering how the body relates to its environment (Lane,
1980). In short, there are two problems: First to explain symptoms in
terms of abnormal internal states, and second to explain this behavior in
terms of external influences (as well as congenital and degenerative
component flaws). This is the inference structure of programs like
CASNET (Weiss, et al., 1978) and NEOMYCIN (Clancey, 1981)
(Figure 6).

HEURISTIC HEURISTIC
(CAUSED BY) (CAUSED BY)

Patient a
Abstractions

DATA
ABSTRACTION

t
Patient Data

Pathophysiologic a Disease
States and Classes Classes

I REFINEMENT

Diseases

Figure 6: Inference structure of causal process classification

A network of causally related pathophysiologic states causally relates
data to diseases**. The causal relations are themselves heuristic
because they assume certain physiologic structure and behavior, which
is often poorly understood and not represented. In contrast with
pathophysiologic states, diseases are abstractions of processes--causal
stories with agents, locations, and sequences of events. Disease
networks are organized by these process features (e.g., dn organ system
taxonomy organizes diseases by location). A more general term for
disease is disorder stereotype. In process confrol problems, such as
chemical manufacturing, the most general disorder stereotypes
correspond to stages in a process (e.g., mixing, chemical reaction,
filtering, packaging). Subtypes correspond to what can go wrong at

each stage (Clancey, 1984).

**Programs differ m whether they treat pathophyslologlc states as Independent
solutions (NEOMYCIN) or find the causal path that best accounts for the data
(CASNET) Moreover. a causal explanation of the data requires finding a state network,
mcludmg normal states. that IS Internally consistent on multiple levels of detail
Combmatorial problems, as well as elegance. argue agamst pre-enumeratmg solutions, so
such a network must be constructed. as m ABEL (Panl. 1981) In SOPHIE. the LOCAI
program deals with most of the state mteractions at the component level. others are
captured In the exhaustive hierarchy of module behablors A more general solution 1s to
use a structure/function device model and general dlagnostlc operatorc. as In DAR r
(Genesereth. 1982)

52

To summarize, a knowledge level analysis reveals that medical and Whether the solution is taken off the shelf or is pieced together has
electronic diagnosis programs are not all trying to solve the same kind
of problem. Examining the nature of solutions. we see that in a
electronic circuit diagnosis program like SOPHIE solutions are
component flaws. Medical diagnosis programs like CASNET attempt a
second step, causal process classification, which is to explain abnormal
states and flaws in terms of processes external to the device or
developmental processes affecting its structure. It is this experiential
knowledge-what can affect the device in the world-that is captured
in disease stereotypes. This knowledge can’t simply be replaced by a
model of device structure and function, which is concerned with a
different level of analysis.

V WHAT IS NON-CLASSIFICATION PROBLEM SOLVING?

important computational implications for choosing a representation. In
particular, construction problem-solving methods such as constraint
propagation and dependency-directed backtracking have data structure
requirements that may not be easily satisfied by a given representation
language. For example-returning to a question posed in the
introduction-applications of EMYCIN are generally restricted to
problems that can be solved by classification.

VI KNOWLEDGE LEVEL ANALYSIS

As a set of terms and relations for describing knowledge (e.g, data,
solutions, kinds of abstraction, refinement operators, the meaning of
“heuristic”), the classification model provides a knowledge level analysis
of programs, as defined by Newell (Newell, 1982). It “serves as a

We first summarize the applications we have considered by
observing that all classification problem solving involves selection of a
solution. We can characterize kinds of problems by what is being
selected:

l diagnosis: solutions are faulty components (SOPHIE) or
processes affecting the device (MYCIN);

specification of what a reasoning system should be able to do.” Like a
specification of a conventional program, this description is distinct from
the representational technology used to implement the reasoning
system. Newell cites Schank’s conceptual dependency structure as an
example of a knowledge level analysis. It indicates “what knowledge is
required to solve a problem... how to encode knowledge of the world in
a representation.”

l user model: solutions are people stereotypes in terms of
their goals and beliefs (first phase of GRUNDY);

0 catalog selection: solutions are pro;lucts, services, or
activities, e.g., books, personal computers, careers. travel
tours, wines, investments (second phase of GRUNDY);

l theoretical analysis: solutions are numeric models (first
phase of SACON);

After a decade of “explicitly” representing knowledge in AI
languages, it is ironic that the pattern of classification problems should
have been so difficult to see. In retrospect, certain views were
emphasized at the expense of others:

l Procedureless languages. In an attempt to distinguish
heuristic programming from traditional programming,
procedural constructs are left out of representation
languages (such as EMYCIN. OPS, KRL (Lehnert and
Wilks, 1979)). Thus, inference relations cannot be stated
separately from how they are to be used (Hayes. 1977,
Hayes, 1979).

l Heuristic nature of problem solving. Heuristic association
has been emphasized at the expense of the relations used in
data abstraction and refinement. In fact. some expert
systems do only simple classification: they have no
heuristics or “rules of thumb,” the key idea that is supposed
distinguish this class of computer programs.

l skeletaal planning: solutions are plans, such as packaged
sequences of programs and parameters for running them
(second phase of SACON, also first phase of experiment
planning in MOLGEN (Friedland. 1979)).

A common misconception is that the description “classification
problem” is an inherent property of a problem, opposing, for example.
classification with design (Sowa, 1984). However, classification
problem solving, as defined here, is a description of how a problem is
solved. If the problem solver has a priori knowledge of solutions and
can relate them to the problem description by data abstraction, heuristic
association, and refinement, then the problem can be solved by
classification. For example, if it were practical to enumerate all of the
computer configurations Rl might select, or if the solutions were
restricted to a predetermined set of designs, the program could be
reconfigured to solve its problem by classification.

l Implementation terminology. In emphasizing new
implementation technology, terms such as “modular” and
“goal directed” were more important to highlight than the
content of the programs. In fact, “goal directed”
characterizes any rational system and says very little about
how knowledge is used to solve a problem. “Modularity” is
a representational issue of indexing.

Furthermore, as illustrated by ABEL, it is mcorrcct to say that
medical diagnosis is a “classification problem.” Only ruutme medical
diagnosis problems can be solved by classification (Pople, 1982). When
there are multiple, interacting diseases, there are too many possible
combinations for the problem solver to have considered them all
before. Just as ABEL reasons about interacting states, the physician
must construct a consistent network of interacting diseases to explain
the symptoms. The problem solver formulates a solution; he doesn’t
just make yes-no decisions from a set of fixed alternatives. For this
reason, Pople calls non-routine medical diagnosis an ill-structured
problem (Simon, 1973) (though it may be more appropriate to reserve
this term for the theory formation task of the physician-scientist who is
defining new diseases).

In summary, a useful distinction is whether a solution is selected or
constructed. To select a solution, the problem solver needs experiential

Nilsson has proposed that logic should be the lingua franca for
knowledge level analysis (Nilsson, 1981). Our experience with the
classification model suggests that the value of using logic is in adopting
a set of terms and relations for describing knowledge (e.g., kinds of
abstraction). Logic is valuable as a tool for knowledge
because it emphasizes relations, not just implication.

level dnalysis

While rule-based languages do not make important knowledge level
distinctions, they have nevertheless provided an extremely successful
programming framework for classification problem solving. Working
backwards (backchaining) from a pre-enumerated set of solutions
guarantees that only the relevant rules are tried dnd useful data
considered. Moreover. the program desrgner 1s encouraged to use
means-ends analysis, a clear framework for organizing rule wrtting.

(“expert”) knowledge in the form of patterns of problems and solutions
and heuristics relating them. To construct a solution, the problem
solver applies models of structure and behavior, by which objects can
be assembled, diagnosed, or employed in some plan.

53

VII RELATED ANALYSES

Several researchers have described portions of the classification
problem solving model, influencing this analysis. For example, in
CRYSALIS (Engelmore and Terry, 1979) data and hypothesis
abstraction are clearly separated. The EXPERT rule language (Weiss,
1979) similarly distinguishes between “findings” and a taxonomy of
hypotheses. In PROSPECTOR (Hart, 1977) rules are expressed in
terms of relations in a semantic network. In CENTAUR (Aikins, 1983)
a variant of MYCIN, solutions are explicitly prototypes of diseases.
Chandrasekaran and his associates have been strong proponents of the
classification model: “The normal problem-solving activity of the
physician... (is) a process f 1 0 c assifying the case as an element of a
disease taxonomy” (Chandrasekaran and Mittal, 1983). Recently,
Chandrasekaran and Weiss and Kulikowski have generalized the
classification schemes used by their programs (MDX and EXPERT) to
characterize problems solved by other expert systems (Chandrasekaran,
1984, Weiss and Kulikowski, 1984).

A series of knowledge representation languages beginning with KRL
have identified structured abstraction and matching as a central part of
problem solving (Bobrow and Winograd, 1979). Building on the idea
that “frames” are not just a computational construct, but a theory about
a kind of knowledge (Hayes, 1979), cognitive science studies have
described problem solving in terms of classification. For example,
routine physics problem solving is described by Chi (Chi, et al., 1981) as
a process of data abstraction and heuristic mapping onto solution
schemas (“experts cite the abstracted features as the relevant cues (of
physics principles)“). The inference structure of SACON, heuristically
relating structural abstractions to numeric models, is the same.

Related to the physics problem solving analysis is a very large body
of research on the nature of schemas and their role in understanding
(Schank, 1975, Rumelhart and Norman, 1983). More generally, the
study of classification, particularly of objects, also called categonzation,
has been a basic topic in psychology for several decades (e.g., see the
chapter on “conceptual thinking” in (Johnson-Laird and Wason,
1977)). However, in psychology the emphasis has been on the nature of
categories and how they are formed (an issue of learning). The
programs we have considered make an identification or selection from a
pre-existing classification (an issue of memory retrieval). In recent
work, Kolodner combines the retrieval and learning process in an
expert system that learns from experience (Kolodner, 1982). Her
program uses the MOPS representation, a classification model of
memory that interleaves generalizations with specific facts (Kolodner,
1983).

VIII CONCLUSIONS

A wide variety of problems can be described in terms of heuristic
mapping of data abstractions onto a fixed. hierarchical network of
solutions. This problem solving model is supported by psychological
studies of human memory and the role of classification in
understanding. There are significant implications for expert systems
research:

a The model provides a high-level structure for decomposing
problems, making it easier to recognize and represent similar
problems. For example, problems can be characterized in
terms of sequences of classification problems. Catalog
selection programs might be improved by incorporating a
more distinct phase of user modelling, in which needs or
requirements are classified first. Diagnosis programs might
profitably make a stronger separation between device-
history stereotypes and disorder knowledge. A generic
knowledge engineering tool can be designed specifically for
classification problem solving. The advantages for
knowledge acquisition carry over into explanation and
teaching.

54

l The model provides a basis for choosing application
problems. For example, problems can be selected that will
teach us more about the nature of abstraction and how
other forms of inference (e.g.. analogy, simulation.
constraint posting) are combined with classification.

#The model provides a foundation for describing
representation languages in terms of epistemologic adequacy
(McCarthy and Hayes, 1969), so that the leverage they
provide can be better understood. For example, for
classification it is advantageous for a language to provide
constructs for representing problem solutions as a network
of schemas.

l The model provides a focus for cognitive studies of human
categorization of knowledge and search strategies for
retrieval and matching, suggesting principles that might be
used in expert programs. Learning research might similarly
focus on the inference and process structure of classification
problem solving.

Finally, it is important to remember that expert systems are
programs. Basic computational ideas such as input, output, and
sequence, are essential for describing what they do. The basic
methodology of our study has been to ask, “What does the program
conclude about? How does it get there from its input?” We
characterize the flow of inference, identifying data abstractions,
heuristics, implicit models and assumptions, and solution categories
along the way. If heuristic programming is to be different from
traditional programming, a knowledge level analysis should always be
pursued to the deepest levels of our understanding, even if practical
constraints prevent making explicit in the implemented program
everything that we know. In this way, knowledge engineering can be
based on sound principles that unite it with studies of cognition and
representation.

References

Aiello, N. A comparative study of control strategies for expert systems:
AGE implementation of three variations of PUFF, in Proceedings
of the National Conference on AI. pages l-4. Washington, D.C.,
August, 1983.

Aikins J. S. Prototypical knowledge for expert systems. Artt3ciaf
Intelligence, 1983, 20(2), 163-210.

Bennett, J., Creary, L., Englemore, R., and Melosh, R. SACUN: A
knowledge-based consultant for structural analysis.
STAN-CS-78-699 and HPP Memo 78-23. Stanford University,
Sept 1978.

Bobrow, D. and Winograd, T. KRL: Another perspective. Cognitive
Science, 1979, 3,29-42.

Brown, J. S., Burton, R. R., and de Kleer, J. Pedagogical, natural
language, and knowledge engineering techniques in SOPHIE I,
II, and III. In D. Sleeman and J. S. Brown (editors), intelligent
Tutoring Systems, pages 227-282. Academic Press, 1982.

Chandrasekaran, B. Expert systems: Matching techniques to tasks. In
W. Reitman (editor), AI Applications for Business, pages 116-132.
Ablex Publishing Corp., 1984.

Chandrasekaran, B. and Mittal, S. Conceptual representation of
medical knowledge. In M. Yovits (editor), Advances in
Computers, pages 217-293. Academic Press, New York, 1983.

Chi, M. T. H., Feltovich, P. J., Glaser, R. Categorization and
representation of physics problems by experts and novices.
Cognitive Science, 1981, 5, 121-152.

Clancey, W. J. and Letsinger, R. NEOMYCIN: Reconfiguring a rule-
based expert system for application to teuching, m Proceedings of
the Seventh International Joint Conference on A rt rficral
Intelligence, pages 829-836, August, 1981. (Revised version to
appear in Clancey and Shortliffe (editors), Readmgs in Medical
Artificial Intelligence: The First Decade, Addison-Wesley, 1983).

Clancey, W. J. The advantages of abstract control knowledge in expert
system design. in Proceedings of the National Conference on AI,
pages 74-78, Washington, D.C., August, 1983.

Clancey, W. J. The epistemology of a rule-based expert system: A
framework for explanation. Artificial Intelligence, 1983, 20(3),
215-251.

Clancey, W. J. Acquiring, representing, and evaluuting a competence
model of diagnosis. HPP Memo 84-2, Stanford University.
February 1984. (To appear in Chi, Glaser, and Farr (Eds.), The
Nature of Expertise, in preparation.).

Engelmore, R. and Terry, A. Structure and function of the CR YSAL.IS
system, in Proceedings of the Sixth International Joint Conference
on Artificial Intelligence, pages 250-256, August, 1979.

Feigenbaum, E. A. The art of artificial intelligence: I. Themes and case
studies of knowledge engineering, in Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, pages
1014- 1029, August, 1977.

Friedland, P. E. Knowledge-based experiment design in molecular
genetics. Technical Report STAN-CS-79-771, Stanford
University, October 1979.

Cienesereth, M. R. Diagnosis using hierarchical design models, in
Proceedings of the National Conference on AI, pages 278-283,
Pittsburgh, PA, August, 1982.

Hart, P. E. Observations on the development of expert knowledge-based
systems, in Proceedings of the Fifrh International Joint Conference
on Artificial Intelligence, pages lOOl- 1003, August, 1977.

Hayes, P.J. In defence of logic, in Proceedings of the Fifrh International
Joint Conference on Art$cial Intelligence, pages 559-565, August,
1977.

Hayes, P. The logic of frames. In D. Metzing (editor), Frame
Conceptions and Text Understanding, pages 45-61. de Gruyter,
1979.

Hayes-Roth, B. and Hayes-Roth, F. A cognitive model of planning.
Cognitive Science, 1979, 3, 275-310.

Hayes-Roth, F., Waterman, D., and Lenat, I). (eds.). Building expert
systems. New York: Addison- Wesley 1983.

Johnson-Laird, P. N. and Wason, P. C. Thinking: Readings in Cognitive
Science. Cambridge: Cambridge University Press 1977.

Kolodner, J. L. The role of experience in development of expertise, in
Proceedings of the National Conference on AI, pages 273-277,
Pittsburgh, PA, August, 1982.

Kolodner, J. Maintaining organization in a dynamic long-term
memory. Cognitive Science, 1983, 7, 243-280.

Lane, W. G. Input/output processing. In Stone, H. S. (editor),
Introduction to Computer Architecture, 2nd Edition, chapter 6.

Science Research Associates, Inc., Chicago, 1980.

Lehnert, W., and Wilks, Y. A critical perspective on KRL. Cognitive
Science, 1979,s. l-28.

McCarthy, J. and Hayes, P. Some philosophical problems from the
standpoint of Artificial Intelligence. In B. Meltzer and D. Michie
(editors), Machine Intelligence 4, pages 463-502. Edinburgh
University Press, 1969.

McDermott, J. Rl: A rule-based configurer of computer systems.
Artificial Intelligence, 1982, 19(f), 39-88.

Newell, A. The knowledge level. Artificial Intelligence, 1982, 18(l),
87-127.

Nilsson, N. J. The interplay between theoretical and experimental
methods in Artificial Intelligence. Cognition and Brain Theory,
1981, 4(l), 69-74.

Patil, R. S., Szolovits. P., and Schwartz, W. B. Causal understanding of
patient illness in medical diagnosis, in Proceedings of the Seventh
international Joint Conference on Artificial Intelligence. pages
893-899, August, 1981.

Pople, H. Heuristic methods for imposing structure on ill-structured
problems: the structuring of medical diagnostics. In P. Szolovits
(editor), Artificial Intelligence rn Medicine, pages 119- 190.
Westview Press, 1982.

Rich, E. User modeling via stereotypes. Cognitive Science, 1979, 3,
355-366.

Rumelhart, D. E. and Norman, D. A. Representation in memory.
Technical Report CHIP-116, Center for Human Information
Processing, University of California, June 1983.

Schank, R. C., and Abelson, R. P. Scripts, Plans, Goals, and
Understanding. Hillsdale. NJ: Lawrence Erlbaum Associates
1975.

Simon, H. A. The structure of ill structured problems. Artificial
tntelligence, 1973, 4, 18 l-20 1.

Sowa, J. F. Conceptual Structures. Reading, MA: Addison-Wesley
1984.

Swartout W. R. Explaining and just&ins in expert consulting programs,
in Proceedings of the Seventh International Joint Conference on
Artificial /ntelligence, pages 815-823, August. 1981.

van Melle. W. A domain-independent production rule system for
consultation programs. in Proceedings of the Sixth International
Joint Conference on Artificial intelligence, pages 923-925. August,
1979.

Weiss, S. M. and Kulikowski, C. A. EXPERT: A sysiem for developing
consultation models, in Proceedings of the Sixth fnternational
Joint Conference on Artificial Intelligence, pages 942-947, August.
1979.

Weiss, S. M. and Kulikowski, C. A. A Practical Guide IO Designing
Expert Systems. Totowa, NJ: Rowman and Allanheld 1984.

Weiss, S. M., Kulikowski, C. A., Amarel. S.. and Safir, A. A model-
based method for computer-aided medical decision making.
Artificial Intelligence, 1978, Il. 145-172.

55

