A Practical Authoring Shell for
Apprenticeship Learning

William J. Clancey
Kurt Joerger
Institute for Research on Learning
Cimflex Teknowledge, Inc.

In Toward a Scientific Practice of Science Education, Gardner, et al., eds,
Hillsdale: Lawrence Erlbaum, 1988, pp. 141-161. Revised from Proceedings of ITS-88,
Montreal, June 1988.

Abstract

A novel, practical authoring and tutoring program is described that enables a teacher to adapt
an existing expert system for use in teaching. The expert system is run in a normal manner
by a student, typically using predetermined cases selected by the teacher. The expert system
stops at breakpoints set during the authoring phase, and invokes a general tutoring program
that probes the student’'s understanding of relevant data and intermediate conclusions. The
authoring program analyzes the knowledge base and helps the teacher determine which
breakpoints will produce meaningful interactions. Breakpoints can be varied for different
cases and a library of cases can be built into a sequenced lesson curriculum. The authoring
and tutoring systems are both rule-based programs, written in the same language as the
knowledge base, making them easy to change and easy to interface with the expert system.

1. Introduction

One of the greatest instructional advances in the past decade has been the development of
knowledge-based models of expert reasoning. For the first time, we are able to capture and
replicate part of the process by which an experienced problem solver gathers information about
a problem, forms intermediate abstractions summarizing the problem situation (e.g., diagnoses,
design specifications) and relates this understanding to possible courses of action (eg., repair
plans, hrocess control plans). In knowledge-based tutoring, a general instructional program can
be used to interact with students using different kﬁowledge bases (Clancey. 1987). Separating
the domain knowledge base from the teaching knowledge provides tremendous engineering

efficiency, allowing the teaching knowledge to be more clearly formalized, evaluated, and
reused.

However, the knowledge-based tutoring paradigm has several --actical difficulties. Among the
most important is the requirement that the knowledge base be well-formed in order to
interface properly with the general instructional program. Although knowledge acquisition
programs might one day semi-automate this process, the reality today is that the endeavor is
one that only experienced programmers (or experts trained to be programmers) can accomplish
after many months of tedious design and debugging. Indeed, research of the past decade has
only further increased our standards of knowledge representation desireable for teaching, while
tools for constructing such programs lag far behind or are not generally available.

This leaves us with an immense practical problem for meeting the potential of knowledge-
based tutoring. Are teachers simply to wait until knowledge acquisition programs become
smarter? Can anything be done to provide useful capability on commercially available and
supported tools, encouraging a more rapid application of our research, particularly in the
universities? Is there a practical method for exploiting Al research in a simple way, perhaps

compromising some of the current research concerns focusing on knowledge representation and
explanation capability, but nevertheless providing something useful for teachers in classrooms
today?

With these questions in mind, we sought to develop a novel means for using expert systems
for teaching, gaining some of the benefits right away for teachers with minimal resources or
knowledge engineering capability. Based on other reported research (Bahill, 1986), that
demonstrated that teachers were ready to develop programs for their classes, we decided to
develop a shell for simple, rule-based expert systems. In particular, we sought to avoid the
problems encountered in GUIDON, which required such a rule base to be well-formed, and put
aside the ideals of NEOMYCIN (Clancey, 1986), which imposed epistemological distinctions that
go beyond most teachers’ experience and programming capabilities. We wanted an authoring
program that could cope with messy knowledge bases--containing arbitrary program code in
places--yet still carry on a meaningful interaction with a student.

Furthermore, based on requests from industrial users of expert systems, we sought to provide
a mode for running a expert system that would enable to user to learn on the job, in the
course of his routine operation of the program. The goal is to convey to the user some of the
routine problem-solving knowledge in the program so he can use the program responsibly as a
tool--better understanding how it operates--and buxld on the program's methods through his
own experience. This is one form of apprent:ceshtp learning, an instructional approach that
emphasizes the importance of learning in the context of actual ‘problems (Collins, et al., 1986).
As will be seen, the environment we have designed provides other features of apprenticeship
learning, including modeling the process of expert reasoning, helping the student through

difficult areas (scaffolding), and sequencing problems and support over time (fading) (Collins,
et al.,, 1986).

The key idea of our approach is to have a running expert system invoke the tutoring system
at breakpoints set by a human teacher, in a way that can be customized for individual cases
and students. That is, we transfer some of the burden of adapting the expert system to the
teacher, who selects and orders the concepts and example cases that will be discussed with the
students. On the other hand, the authoring program handles the technical details of
determining which rules are compatible with the teaching program and preparing the necessary
code that enables an interruption to occur during the expert system's operation. Furthermore,
the teaching program handles all details concerning the form of probing appropriate to the
situation, adapting to the role of the chosen concept in the current case and the student's
response to its questions. Questioning itself follows a simple Socratic format, involving
probing in more detail for incorrect responses, as applied in SCHOLAR and GUIDON.

This design is implemented in a working program called Training Express (tm).l The
program is implemented in the M.l (tm) knowledge base language and provides a teaching
interaction with domain knowledge encoded in arbitrary M.1 knowledge bases, subject to some
limits discussed below. The program has been integrated with a database system, dbase III+,
which the authoring program uses to store a "curriculum” or library of cases to be run by a
student, as well as records of student performance. An important part of the design is that the
teacher can vary breakpoints from case-to-case, >wing probing to vary with problem
difficulty. Furthermore, cases need only be partially >pecified, so a student can vary the input,
exploring how the expert system behaves in different situations, while still being probed in a
manner the teacher found compatible with the prespecified, fixed inputs.

Sections that follow pr- ‘de scenarios of teacher and student interaction, a discussion of the
novelties, advantages, and limitations of the approach, a discussion of the status and future

development of the product, and conclusions about the practical devclopmeni of Al research.

2. Scenarios: Teacher and Student Interactions

In this section we describe the basic operation of iraining Express. For simplicity, we will
continue to refer to the "authoring program” and the "teaching program,” which are in fact
completely separate pieces of code, implemented as two M.1 knowledge bases (see Figure 1). In

this section, we _first establish some basic terminology, describe the flow of control, and
provide working examples of the program.

2.1. Basic operation

When a student using Training Express runs a new or canned case, the expert system invokes
the teaching program at what we call breakpoints. Each breakpoint corresponds to a concept
in the knowledge base (e.g., "the name of the disease requiring therapy,” "the shape of the
structure being analyzed”). Breakpoints are set by the human teacher in an interactive program
called the authoring system2 This program reads the domain knowledge base and prepares a
secondary knowledge base, which contains cross-index information--declarations written in the
M.1 language that cause breakp..nts to occur. When the teaching program is invoked, it asks

1Trademark of Teknowledge, Inc. Patents pending. The program runs on personal computers with a color monitor

in 640K of resident memory. Interfaces are coded in "C.”

IM.1 uses an expression-value language. Therefore an expression bundles an object (e.g., "structure being analyzed”)

with an attribute (e.g., "the shape™). This simplifies the knowledge representation task.

the student questions, which we call probes: What conclusions can be made now? What factors
support these conclusions? What value for a given factor is consistent with the conclusions?
The teaching program indicates which student answers are correct, wrong, Or missing, probing
in more detail when mistakes are made. Domain rules are referenced by name, so the student
can examine the knowledge base, using already available M.1 commands like "list” and new
commands supplied with the tutor, such as "evidence.”

In summary, with more detail, the two M.l programs constituting Training Express do the
following:

« The authoring system:

o interacts with a human teacher to determine which concepts (expressions)
should be discussed with the student (breakpoints)

o analyzes rules concluding these expressions
o creates a secondary knowledge base with breakpoints marked

o enables the teacher to edit and store text that introduces individual cases,
explains the significance of individual breakpoints, provides a synonym for

referring to the knowledge base concept, and defines the meaning of the
knowledge base concept.

» enables the teacher to store a library of cases, to be sequenced in a particular
way, called a curriculum, for presentation to a student.

o enables the teacher to examine and maintain a database of student records
- pertaining to their performance and knowledge exhibited when using the
teaching program.

« The teaching program:

» loads the domain knowledge base and secondary knowledge base created
through interaction with the teacher

o interacts with the student to select an appropriate case

o interacts with the student during the expert system consultation to probe his
understanding and provide definitions and explanations upon request.

o stores a record of the student's performance and knowledge.

It is important to realize that an M.l domain knowledge base can be used without changes.
Furthermore, in the authoring system, the teacher simply selects breakpoints from a single
multiple choice question. Everything else is handled automatically. Besides the secondary
knowledge base, which provides cross-index information making the teaching program more
efficient, the interface between the domain knowledge base and tutor consists of a single M.1
statement for each breakpoint, eg.,

whenfound(wine = X) = whenfoundtutor(wine).

KNOWLEDGE
ENGINEER

TEACHER

STUDENT -

Figure 2-1:

<>

<>

«—>

—5FeAT SYSTEM |
M.1 KNOWLEDGE
SYSTEM
SHELL
DOMAIN
KNOWLEDGE
BASE
M.1 KNOWLEDGE
AUTHORING NaTEM
PROGRAM A
CASE FILE
SECONDARY p——
DOMAIN CASE A AgE
KNOWLEDGE BREAKPOINTS SATA
BASE
T M1 KNOWLEDGE
TEACHING _ : SYSTEM
PROGRAM s SHELL
1
RECORD OF
STUDENT'S
KNOWLEDGE &
PERFORMANCE

Basic flow of control: A knowledge engineer or teacher
interacting with the M.1 shell creates a domain knowledge base; this
knowledge base is loaded and analyzed by the authoring system, which
interacts with the human teacher to set breakpoints, define cases, and
provide additional text explanations; these files are then available to the
teaching system, which interacts with a student while the expert system is

in the normal course of solving a problem.

This specifies that when the M.1 expression "wine” has been determined by the expert system
in the context of a particular case, with any value (indicated by the variable, X, but the
conclusion cannot be “unknown”), the M.1 expression "whenfoundtutor(wine)” should be sought
as the next goal. Thus an interruption occurs during the normal processing of the expert
system. Rules concluding “whenfoundtutor(ANY)" match the new goal (here
"whenfoundtutor(wine)™). These rules interact with the student, probing him about the
expression "wine." Thus there are really two M.1 knowledge bases running together, the

domain expert system and the teaching program. Before going into more detail, we present an
example.

2.2. Authoring System Example Dialogue

- Thre following examples demonstrate Training Express using a simplified version of sacon
(Bennett, 1979), an expert system developed to aid civil engineers in setting up a complex

software package that performs structural analysis (stress and deflection analysis of structure

behaviors under particular loads). The task of SACON is to abstract the structure being

analyzed, use heuristic rules to approximate the structure's behavior, and select one or more
computer programs that will provide more detailed analysis of the expected behaviors.

R s e - - W P WM G 4m R wm e w w w w —

M.1> author sacon :
Loading the sacon knowledge base...done.

Analyzing the knowledge base for
expressions concluded by rules...done.

Which expressions would you like the
tutor to discuss with the student?

1. alphaegamma(SS)

2. analysis+class(STRUCTURE)

3 analysiserecs(STRUCTURE)

4, cannot-provide-advice({STRUCTURE)

5. conclusions+printed

6. consultationeover

7. deflection(STRUCTURE)

8. deflection«bound(LOADING)

9. deflectionestressemagnitudes(LOADCOMP)

10. density(SS)

11, displayac{STRUCTURE)

12. displayar(STRUCTURE)

13. einertia(Ss)

14. errorclass

15. ewidth(SS)

16. idata

17. length([X|L])

18. 1lengthewidtheratio(SS)

19. maximum(A,B)

20. ndedeflection(SS)

21. ndestress(SS)

22. nonlinearity(STRUCTURE)

23. rms{NUMLIST)

24. shapa(SUBSTRUCTURE;
25, snvtnd~du+psrnsglc
26. ssedeflection(S
27. ssnonlinearity(SS)
28, ssestress SS%
29. stress(STRUCTURE
30. stress+~bound(LOADING)
31. stress+criterion(SUBSTRUCTURE)
32. sum([FIRST|REST])
33. sumsquares(FIRST!REST])
34. youngs+modulus(SS
>> 2,24,26,27,28
Reading the rules for analysiseclass(STRUCTURE)...
rule-10...
rule-11...
rule-12.. .Error: Ignoring listof(stress{STRUCTURE))
rule~-13..
rule-64...
rule-27...
done.

Reading the rules for shape(SUBSTRUCTURE)
rule-54.

rule-55.

ru1e-56...

done.

Read1ng the rules for ss«deflection(SS)..
rule-58.

rule-59.

rule-60...

rule-50...Error: Ignoring listof(DB, loading(SS) = L and
_ deflectlon*bound(L) = DB) .
rule-53...Error: Ignoring SQ/L

Error: Unable to find values for variable
on right hand side of rule-53

<€ section omitted >>

Save secondary knowledge basae?
>>y
Saving the secondary knowledge base...done.

To run the tutor in a fresh M.1, load TREX.KB,
and give the command, "teach sacon."

D n Y . - n - e - e W A G

Notice that the authoring program indicates which domain rules cannot be sucéessfully
analyzed and why not. With this information, the teacher can decide to omit the breakpoint
or, if it is something important to teaching, rewrite or seek help for rewriting the offending
rules. In practice, the offending rules or rule clauses concern a computation which is an
artifact of the implementation; it can often be hidden by defining an intermediate expression
whose value summarizes the computation. Indeed, we find an obvious correspondence: the
clean, easily analyzed parts of the knowledge base tend to contain the basic associations we
wish to convey to a student. The procedural and computational parts can be ignored by the
teaching program. This strategy works especially well, given the approach of interrupting the

working expert system. That is, breakpoints can be deliberately defined to bypass difficult to
explain computations and to focus on the essential domain facts and associations.

The specific limitations of the authoring system change over time as we add new capabilities
to the analysis rules and as M.l itself becomes more complex with new constructs that make
analysis more difficult. The program has fairly extensive capability to deal with numeric
computations involving variables, as occur in SACON. In the current version, the chief
restrictions involve list manipulation. For example, rules concluding a value that is a list are

flagged by the analysis program. A break will still occur, but the teaching program states
conclusions, rather than probing.

Note that the authoring program is menu-driven with many other capabilities, as summarized
above. Each case is conceived to be a /esson, in the sense that it brings out a certain set of
concepts in a particular problem context. The teacher defines a case by running the domain
expert system within Training Express, and using the menus to define problem data (called
presets), define terms, provide text to appear when a breakpoint occurs, explanatory text for
specific rules, etc. See Figure 2. Other menus are used to sequence lessons and provide
introductory and concluding text. See Figure 3.

2.3. Teaching nProgram Example Dialogue

Here again we show Training Express output for the SACON knowledge base using typescript
format, rather than the window-menu system provided for the Vstudent. In this example, the
selection of the case file and other text provided by the teacher, which would normally be seen
by a student, is not shown. Student input is in bold face. Teaching program output is in
italics. Other text is output by the expert system.

- - - . . W D D P W A S kS S WM 4P wm e W = e W

M.1> teach sacon
Welcome to Training Express, the tutor for M.l knowledge bases.

Loading the knowledge base...done.
Loading the secondary knowledge base...done.

To run the tutor, use the "go” command.

M.1> go

Wwhat is the name of the structure you wish to analyze?

>> 747-wing

Assuming that your characterization of the 747-wing in terms of its
geometry, material characteristics, and boundary conditions are accurate,
how much error (in percent) is tolerable for the analysis?

(Enter a number between 5 and 30.)

>> 5

Do you want to examine the responses of the 747-wing, evaluate its
instability, or both?

>> examine

Choices
rfAPPLICATION DISPLAY
Choices
>PreSet <
Glossary Defn
Replace Term
Explain Rule
Concept Defn
Supply Preset Response Introduction
meat Conclusion
Help
-QUESTION rANSWER CF
Is the main component of the meal meat, meat
fish or poultry? fish
poultry
unknown
-Space to Mark
F2 Scroll F10 Menus Teknowledge Training EXPRESS READY

Figure 2-2: Defining a lesson by presetting case data

Training EXPRESS C

ourse Builder

Description

Choosing the correct body for wine

Wine color

Picking the appropriate wine sweetness

The impact of

Sauces can affect the choice of wine

Choices Lesson
>Lessons < > BODY :
Introduction 3 COLOR :
Conclusion SWEET :
Save Course 1 TASTE :
Help 2 SAUCE :
Quit
ARROWS plus ENTER to select.

the flavor of the meal

ESC to cancel.

Figure 2-3: Defining a curriculum by ordering lessons

10

Does the 747-wing have any time dependent terms in its equations of
equilibrium?)

>> mo :

Is heatin? or cooling of interest in determining the structural responses
of the 74/-wing?

>> no

What are the names of the substructures of the 747-wing?

>> total-wing

What is the material composing most of the total-wing?

>> high-strength-aluminum

Enterzghe average longest dimension of the total-wing in inches.

> 14

Enter the weight of the total-wing in pounds.

>> 46000

Is the total-wing thin-walled or solid?

>> thin-walled

what is the configuration of support for the total-wing?

>> one-side

Is ;ha total-wing to be modelled as a 1, 2, or 3 dimensional system?
>> -

Would you describe the construction of the total-wing to be a

* network. (truss and/or frame elements)

* continuum. (sheets and/or blocks of material), or

* network and continuum. (a combination)?

>> continuum

1s the overall geometry of the total-wing curved or planar?

>> curved

------- Tutoring Interruption --=~<--=
What do you conclude about the shape of the total wing?
- 1. beam : '
2. plate
3. shell
>>2
No, the expert didn't conclude that the shape of the total wing is plate.
You should have concluded that the shape of the total wing is shell.
Which factors support the choice of shell?
1. construction of the total wing
2. modelling~dimensionality of the total wing
3. geometry of the total wing
>>2
Correct.

rule-56 mentions construction of the total wing and geometry of the total
wing.

What geometry of the total wing is consistent with shell?

2> options

Your response must be chosen from the following:

curved, planar.

What geometry of the total wing is consistent with shell?

> planar

Incorrect: planar.

rule-56 mentions curved.

------- Returning to Consultation -=--=---

What are the names of the loadings on the total-wing?

>> flight

Enter the number of cycles of flight that will be applied.
>> 20000.0

How many components are there to flight?

11

» 1

Would you describe ﬂ‘l?ht-component-l as being distributed over most of the
substructure or as acting at a point of the substructure?

>> distributed

Which surface of the substructure does flight-component-1 act normal to?
>> width-length

Enter the average wall thickness of the total-wing in inches.

» 31

Enter the average depth of the total-wing in inches.

> 41

Enter the magnitude of the distributed load (in psi).

»1

------- Tutoring Interruption -------
The expert concludes that the substructure nonlinearity of the total wing
is material.

Which factors support the choice of material?
1. errorclass
2. non-dimensional stress of the total wing
2o 12
Correct.

------- Returning to Consultation -------

Do the supports of the 747-wing involive Coulomb friction, nonlinear springs,
and/or gapping?

>> no

------- Tutoring Interruption -------
What do you conclude about the ss+deflection of the total wing?
' 1. kinematic¢collapse

- 2. excessive~deflection

3. incrementalestrainefailure

>>3
Good, the expert concluded that the ss«deflection of the total wing is
incremental+strain«failure.

You should also have concluded that the ss«deflection of the total wing is
excessiverdeflection.

Which factors support the choice of excessiverdeflection?

sname

integrityegoal (STRUCTURE)

non-dimensional deflection of the total wing

errorclass

non-dimensional stress of the total wing

loading of the total wing

cycles(L)

> 2 5,6

Incorrect integrity~goal(STRUCTURE), nd«stress of the total wing and
loading of the total wing.

See rule-59.

rule-59 mentions errorclass and non-dimensional deflection of the total wing.

-

NOMA WS~

What errorclass is consistent with excessivecdeflection?
> list rule-59
rule-59:
if errorclass = moderate and
nde«deflection(SS) = ND and
ND>= 0.0111111

12

then ssedeflection(SS) = excessive~deflection.

What errorclass Is consistent with excessive+deflection?
) moderate

Good, that is the conclusion considered by the expert.
See: rule-59.

------- Returning to Consultation ==-----
<< Tutoring interruption omitted >>

------- Tutoring Interruption -------
What do you conclude about the analysis class of the 747 wing?
1. linear«analysis
2. nonlinear~boundary+condition
3. inelasticecrackegrowth
4. general«inelastic
>> 4

Good, the expert concluded that the analysis class-of the 747 wing is
general+inelastic.

------- Returning to Consultation ~===----

The following analysis classes are relevant to the analysis of
your structure:

general+inelastic

“‘.‘»'.."‘..“.‘...“.“‘.

The following are specific analysis recommendations you should follow when
performing the structure analysis:

Activate incremental stress-incremental strain analysis.
Model nonlinear stress-strain relations of the material.
Solution will be based on a mix of gradient and Newton methods.

Special code should be written to scan peak stress at each step and to
evaluate fatigue.

<< Section Omitted >>

- - ——— R N R D W ML W W e R W MR b e W e vw

2.4. Discussion of the tutoring example

As can be seen, SACON runs in the normal way, using either a case preset by the teacher or a
case chosen by the student. The "whenfound" declarations inserted by the authoring system
cause the tutoring interruptions to occur. The teaching program is paséed the name of a
concept (M.l expression). Under rule-based control, the teaching program then examines the

13

conclusion made for the current expression, probes the student, provides feedback, and probes
at deeper levels when the student makes mistakes.

It is not the aim of this research to argue for particular probing strategies, but rather to
demonstrate what is easily possible and plausibly useful. As indicated these probes are similar
to what have appeared in several other programs, particularly GUIDON.

The current version of Training Express illustrates three types of probes:

1. Ask student to state a value for an expression:

<< What do you conclude about EXPRESSION? >>>
e.g.. "What do you conclude about the wine?”

This probe occurs when the expression is determined ("whenfound™); this is a
primary breakpoint set by the teacher.

2. Ask student to state expressions that support a value:

¢ What factors support the choice of VALUE? >»>
e.g.. "What factors support the choice of zinfandel?”

) This probe occurs when the student fails to mention a value with a certainty greater

‘than 50 in the first probe. The question is asked for each such "strongly believed
missing value.”

3. Ask the student what values for an expression are consistent with the conclusion
made:

<< What EXPRESSION is consistent with VALUE? >»>

e.g.. "What recommended-color is consistent with zinfandel?”

This probe occurs when the student fails to mention a factor in the second probe.
The question is asked for each "missing factor.”

The pedagogical strategy used here prompts the student to use his Ynowledge to draw

conclusions. When the student leaves something out, the program gives him the answer and

checks if he can now remember why it is correct. A type 2 probe requests the concepts that
are related to a conclusion. A type 3 probe more specifically asks the student to recollect the

rule that relates two concepts by requesting the relevant value. As a whole, this approach

engages the student in the ongoing consultation, giving him practice in applying general

knowledge (a set of rules) to a particular problem (the case being discussed). It would also be

14

possible to ask the student to list relevant case data before the program requests it, thus going
much further in drawing the student into the problem-solving activity.

2.5. Some Implementation Details

M.1 has several distinctive features that make it particularly suitable for instructional
application:)

« Both the knowledge base and cache of consultation conclusions are accessible and
modifable under rule-based control, facilitating communication between the expert
system and teaching program.

o Variables can be used freely, allowing rules to be written in general form. In

particular, domain principles can be stated in general form, and teaching rules use
variables to refer to domain concepts. '

» External functions can be used to access a database and control the window-menu
display.

The reasoning done by the teaching system is often complex.
domain rule from SACON shown in Figure 4.

For example, consider the

rule-56: 7 - ' .
it construction(SUBSTRUCTURE) is unique 1d

modellingedimensionality(SUBSTRUCTURE) = MD and
MD>= 2 and

geometry(SUBSTRUCTURE) = curved
then shape(SUBSTRUCTURE) = shell.

Figure 2-4: Domain rule from SACON encoded in M.1

The author shell extracts the “factors” from this rule:

rulefactors(rule-56) =
[construction(SUBSTRUCTURE),

modelling«dimensionality(SUBSTRUCTURE),
geometry(SUBSTRUCTURE)].

The program knows that MD is a variable and which clause binds it. It knows that the rule
concludes about an expression using a variable. Therefore, before discussing the rule with the
student, the teaching program silently reapplies the rule and extracts the bindings for all of the
variables. Thus, in the program’s output we see "geometry of the total wing." This has been

generated from “geometry(total-wing)” from a template supplied by the teacher during the
authoring phase.

15

Much more complicated analysis is possible. For example, the program can determine that a
rule clause is irrelevant because it sets a variable that is not needed for matching a domain
fact. For example, if the fact "wine(red, ANY, dry) = zinfandel” is in the knowledge base, a
clause setting a variable that matches "ANY" will be irrelevant to the successful application of
the rule. The most difficult analysis involves determining the possible values a rule might
conclude when a variable appears on the righthand side eg., "if ... = W then wine = W."

As indicated, all analysis and teaching operations are carried out by M.l rules. This is
particularly advantageous for generating questions for the student and parsing his answers. In
effect, the teaching program is carrying on a kind of "consultation,” in which the probes are
questions and the student's responses are data. All records of the student-teacher interaction
are thus stored in M.1's cache and available for further reasoning by M.1 rules. In comparsion,
GUIDON was implemented in a stylized version of Lisp, requiring time-consuming and
complicated translation between EMYCIN's data structures and the list structures of GUIDON.
Records of GUIDON's reasoning were stored in a completely different representation than

MYCIN’s consultation results, making the tutoring code much more complex and more difficult
to maintain.

For the interested reader, Figure 5 is a typical rule from Training Express. It retrieves a rule
from the knowledge base (using the kbentry primitive), determines the conjuncts of the premise
(using other analysis rules), and maps over them; extracting the "expressions” (also determined
by other analysis rules). Duplicates are removed from the resulting list. In all fairnes§, list
manipulation is important in the tutor and such rules could not be successfully analyzed by the

authoring program itself. So although the syntax is compatible, we don't quite have a teaching
program that can teach ibout itself.

if listof (EXP, kbentry(RULE:if PREM then ACT) and
conjuncts(PREM) = PROPS and
member (PROPS) = TERM and
expression(TERM) = EXP) = LST and
dremdupls(LST) = SIMPLELST
then rulefactors(RULE) = SIMPLELST.

Figure 2-5: Typical Training Express rule written in M.1

3. Advantages and Limitations

The general pedagogical approach used is that of a case-method tutor. That is, the program
teaches by discussing the application of general knowledge in specific situations. In many
respects, this knowledge-based tutor has one of the simplest designs conceivable for a tutor of
this type. The human teacher selects the concepts that will be discussed with the student. The
case is prepared by the teacher or the student. In contrast, Guidon only works with canned

17

improvements. The output of Training Express makes clear the kind of teaching interaction
clean rules allow, motivating and guiding the teacher (or his programmer assistant) in the
process of rewriting the rules for the concepts he wants the program to discuss. The authoring
system also provides suggestions about how rules can be rewritten using intermediate
expressions that hide procedural computations.

Our experience also indicates that knowledge bases built specifically for teaching are stand-
alone, small, and relatively easy to reconfigure. In practice a teacher is only likely to create a
knowledge base good enough for the cases he wants to teach. In fact, the number of rules is
not as important in many respects as the value of being able to show the student how actual
problem cases are ﬁolved. Even a twenty rule system can reveal many subtle issues. The
limitations of the system provide an excellent starting part for classroom discussion, and

finding such limitations can be an important activity in learning from a knowledge-based
tutor.

Thus, having the student adopt the attitude that the program is an object of study, that he is
to evaluate the program, rather than vice versa, may mitigate some of the limitations of the
approach. In particular, the apprenticeship method we follow doesn't challenge the student to
to step through the entire problem himself. Interruptions occur while the expert system, not
the student, is solving the problem. However, the teacher can encourage the student to vary the
supphed cases and probe the program to print the rules or unwind the reasonmg using M.1's
AWHY command. Thus, following the curriculum might be just a means a providing

background to the more important activity of defeating the program and explaining why it
fails.

The basic idea introduced here of having an authoring program help a teacher configure a
knowledge-based teaching program can be applied to other forms of knowledge-based tutoring.
For example, a simulation knowledge base, embodying a function-structure model of some
process, might be analyzed in a similar way to point out difficulties the general teaching
program will encounter or, prompt the teacher to supply textual explanations for the student.

In one sense, the analysis program is acting as a student, looking over the knowledge base
and complaining about constructs that are difficult to understand. Like other CAI authoring
systems, the analysis program performs some of the tasks of a knowledge acquisition prog;'am.
Indeed, Training Express could be used directly as a means of familiarizing experts with the
capabilities of an existing expert system. The knowledge engineer could set breakpoints that
will query the expert to fill in gaps in the knowledge base. Then, rather than comparing the
expert's conclusions, factors, and values to the (non-existing) rules in the program, an

augmented Training Express could write rules as the expert justifies his conclusions. This

18

demonstrates again the striking promise of knowledge-based programs, as mentioned in the
opening paragraph of this paper. In particular, it shows the value of programs that can reason
about other programs, illustrated well by Training Express’ ability to write M.1 code that wiil
interrupt an expert system, determine how variables are set and used, and even rewrite domain
rules before they are presented to a student.

4. Status and Future Work

Training Express has been used with approximately a dozen M.1 knowledge bases, in domains
ranging from patent law to structural analysis and medicine. The program has been released to
selected customers for testing. The perceived value of the program appears to be very sensitive
to the familiarity of the audience with the knowledge base and with the complexity of the
knowledge base. That is, the program is most suitable for students who are already familiar
with the domain of discourse of the expert system. The program is most suitable fdr
knowledge bases with a high proportion of heuristics and facts, relative to procedural code (e.g.,
for conveying text to the user). Industrial R&D researchers were particularly interested in

using the program during the test and verification cycle for M.1 knowledge base developers, in
the manner described above.

Knowledge engineers also find that Training Express has considerable value over a simple
WHY and HOW explanatién facility. In particular, Training Express allows the developer to
- trap expressions that are always inferfed by the system, but never presented to the user in the
expert systems's output. In addition, Training Express can present glossary, concept and rule

explanations when a break occurs. Currently M.1 and most rule-based systems only provide
explanations when a question is asked.

Development of Training Express is continuing with users who wish to construct knowledge
bases primarily for teaching, rather than adapting large existing programs, which poses more

difficulties. Limitations such as those involving list manipulation will be handled as the need
arises.

5. Conclusions

Training Express is a knowledge-based tutoring system that is designed to exploit the
essential benefits of expert systems research in a classroom or on-the-job setting. We seek a
trade-off, building on the advantages of a simple, rule-based design, and skirting the
disadvantages by shifting some of the decision to a human teacher. In particular, we exploit
the advantage of an expert system as a model that can be inspected and reasoned about by a
teaching program. We separate the teaching program from the domain knowledge so teaching
strategies are stated in a general way and easily reused. The breakpoint design focuses the

19

student interaction on the essential reasoning points, skirting messy code or unimportant
details. Finally, the teacher is given a convenient facility for entering a library of cases, which
combined with the breakpoints demonstrate the domain heuristics and facts she wishes to
convey. We believe that this combination of features--interactive probing, situated (in
context) learning, and sequenced examples--represents in large part the essential advantages of
knowledge-based tutoring. :

We believe that our design is a good example of the 80/20 rule: From 20% of effort
involved in designing programs like NEOMYCIN and GUIDON, we believe we have derived 80%
of the educational benefit. In many respects, Training Express is a case study in how academic

research ideals can be adapted to application realities. Many trade-offs were made in moving
from GUIDON to Training Express--

to make the program more reliable,

to build on well-known advantages of more traditional approaches
(e.g., the window-menu system for defining cases
and creating a curriculum), and

to provide a program that non-Al specialists could use today.

Indeed, our collaboration has revealed that there is an often unrealized middle ground
between state-of-the-art research and commercial engineering. We didn't just take an existing
research design- (such as GUIDON) and "apply” it. We radically redefined the nature- of the
entire interaction between student and prograrﬁ. We brought the human teacher into tﬁe
process and gave her an essential role. We developed a powerful authoring program that can
relate rules and facts, coping with difficult problems involving variables. Then we "applied”
the idea, packaging it with conventional hardware (e.g., personal computers) and software (the

"C" programming language), and integrating it to a conventional database and window
management system.

We found that producing a commercial product provides an entirely new orientation to
research. In some respects, this is the well-known distinction between basic and applied
research. We were faced with the constraints of a target audience and providing obvious value
over current techniques. We weren't interested in just developing a theory or speculating on
new instructional methods. We believe that as hardware makes delivery of complicated Al-
based systems commonplace, many other researchers will want to engage in the same kind of
collaboration, producing good research that anticipates use by actual teachers and students.

20

References

Bahill, A. T. and Ferrell, W. R. . An introductory course in expert systems. Technical Report,
Systems and Industrial Engineering, University of Arizona, January 1986.

Bennett, J. S. and Engelmore, R. S. SACON: A Knowledge-based Consultant for Structural
Analysis, pages 47-49, Proceedings of the Sixth International Joint Conference on
Artificial Intelligence-79, Tokyo, Japan, August, 1979.

Clancey, WJ. From Guidon to Neomycin and Heracles in twenty short lessons (ONR Final
Report 1979-1985). The Al Magazine, August 1986, 7(3), 40-60.

Clancey, W. J. Knowledge-Based Tutoring: The Guidon Program. Cambridge, MA: MIT Press
1987.

Collins, A., Brown, JS., and Newman, S.E. Cognitive Apprenticeship: Teaching the craft of
reading, writing, and mathematics.. BBN Technical Report 6459, Bolt, Beranek, and
Newman, 1986.

Sleeman, D. and Brown, J. S. {editors.} Intelligent Tutoring Systems. New York: Acade:ﬁic
Press 1982,

