
THE ADVANTAGES OF ABSTRACT COEJTROL KNOWLEDGE 
IN EXPERT SYSTEM DESlGN 

William J. Clancey 

Heuristic Programming Project 
Computer Science Department 

Stanford University 
Stanford, CA 94305 

ABSTRACT 

A poorly dcsigncd knowledge base can be as cryptic as an arbitrary 
program and just as difficult to maintain. Rcprescnting control 
knowledge abstractly, scparatcly from domain facts and relations, 
makes the design more transparent and explainable. A body of abstract 
control knowledge provides a generic framework for constructing 
knowledge bases for rclatcd problems in other domains and also 
provides a useful starting point for studying the nature of strategies.* 

I INTRODUCTION 

The quality of a knowledge base depends not only on how well it 
:olves problems, but also how on easily its design allows it to be 
nGntaincd. Easy maintenance--the capability to reliably modify a 
knowledge base without extensive reprogramming--is important for 
several reasons: 

Y Knowledge-based programs arc built incrcmcntally, based 
on many trials, so modification is continually required, 
including updztcs based on improved expertise; 

e A knowledge base is a repository that other researchers and 
IISWS may wish to build ~1po11 years later; 

3 A client rccciving a knowlcdgc base constructed for him 
may wish to correct and cxtcrld it without the assistance of 
the original designers. 

A knowlcdgc base is like a traditional program in that maintaining it 
rcquircs having a good undcraandin$ of the underlying &sign. ‘I’hat 
i:, yuu ncctl to kt~ow how the parts of the knowlcclgc base are expcctcd 
to interact in problcrn solving. IIcpcnding on the rcprcscntation, this 
includes knowing how dcthult and judgmcntnl knowlcdgc interact, 
\I I Icthcr rule cl~~uscs can bc reordered, when attnchcd proccdurcs are 
applied, how cclnstraints arc inherited and ordcrcd, etc. One way to 
provide Lhis ulldcrstanding is to have the program explain its reasoning, 
using an internal description of its own design (Davis, 1976). (Swartout, 
1977). However, problems cncountcrcd in understanding traditional 
programs--poorly-structured code, implicit side-effects, and inadeqtlatc 
documentation--carry over to knowlcdgc-based programming and 
naturally limit the capabilities of explanation programs. For example, 3 
knowledge base might arbitrarily combine reasoning strategies with 
facts about the domain. Implicit, procedurally-cmbcddcd knowlcdgc 
cannot bc articulated by an explanation system (Swartout, 1981), 
(Clnncry, 1983) and is not visible to guide the program maintainer (see 
(Ennis, 1982) for an cntcrtaining study of this problem). 

This paper argues that an iqm-~a~~t design priirciple f;)r building 
expert s~5terns is to rcpresetlt all corrlrol ktlorvledge abslrrrclly, seprmte 

from the domain knowledge il opuwes qon. This ide‘r is illustrated 
with cxamplcs from the NEOMYCIN system (Clanccy, 1981). There 
arc many scientific, cngincering, and practical bcncfits. The difficulty 
of attaining this ideal design is also considered. 

II WHAT IS ABSTRACT CONTROL KNOWLEDGE? 

“Control knowledge” specifics when and how a program is to carry 
out its operations, such as pursuing a goal, focusing, acquiring data, and 
making infcrcnccs. A basic distinction can be rnadc bctwccn the facts 
and relations of a knowlcdgc base and the program oper‘ltions that act 
upon it. For example, i%crs and relations in a medical knowledge base 
might include (expressed in a prcdicatc calculus formulation): 

(SUBT YPE INFECTION MENINGITIS) 
"meningitis is a kind of infection" 

(CAUSES INFECTION FEVER 1 
-- I- infection causes fever" 

(CAUSES INFECTION SHAKING-CHI LLS) 
-- "infection causes shaki ng chills" 

(DI SORDER MENINGITIS) 
-- "meningitis is a cl isorder" 

(FINDlNG FEVER) 
-- "fever is a finding" 

Such a knowlcdgc base might be used to provide consultative advice 
ta n user, in a way typical of cxpcrt systems (I)uda and Shortliffe, 1983). 
Consider, for cxnmplc, a consultation spstcm for diagnosing some faulty 
dcvicc. One typicJ progr,rm operation is to sclcct ;I linding that causes 
a dlsordcr acid ask ~hc user to indicate whcthcr the device being 
di,lgnoc;cd exhibits that symptom. Spccifkally, a medical diagnostic 
systcrn lnight ask the user whcthcr the patient is suffering from rll,lking 
chills, in or&r to detcrnlinc whcthcr he has an infection. ‘l’hc first 
description of the progralrl’s opcr‘ltioti is dslrxl, rcfcrr-ing only to 
tlomain-il:dcpclidcllt rcla[ions like “finding” and “causes”: the second 
description is corlcre/e, rcfcrring to domain-dcpcnd~ltt tcrins like 
“shnking-cliills” and “infection”. (“l)olnain-indc(,clIdcllt” doesn’t 
mean that it npplics to cvcry domain, just IhaL tlic term is not specific to 
any wit dohlnin.) 

The operation dcscribcd hcrc can be charnctcri/.cd abstractly as 
“attempting to confirm a diagnostic hypothesis” or concrctcly as 
“attempting to dctcrminc whcthcr the patient has an infection.” Ilithcr 
description indicates the s/ru/egy that motivntcs the question the 
program is asking of the user. So in this cxamplc WC SW how a strntcgy, 
or control knowlcdgc, can bc St&cd cithcr abstractly or concretely. The 
following two cxamplcs illustr,ltc how both forms of control knowledge 
might bc rcprcscntcd in a knowlcdgc base. 

74 

From: AAAI-83 Proceedings. Copyright ©1983, AAAI (www.aaai.org). All rights reserved. 



A. An IrnsiJ~~t Refinement Stratesy 

In MYCIN (Shortliffc, 1976), most knowlcdgc is represented as 
domain-specific rules. For cxnmplc, the rule “If the patient has an 
infection and his CSF ccl1 count is less than 10, then it is unlikely that 
hc has meningitis,” might be rcprcscntcd as: 

PREMISE: 
($AND (SAME CNTXT INFCCTION) 

(ILESSP (VALl CNTXT CSFCELLCOUNT) 10)) 
ACTION: 

(CONCLUDE CNTXT INFECTION-TYPE MENINGITIS TALLY -700) 

The order of clauses is important hcrc, for the program should not 
conGdcr the “CSI: ccl1 count” if the patient dots not have an infection. 
Such clause ordering in all rules cncurcx that the program proceeds by 
top-down rcfincmcnt from infection to meningitis to subtypes of 
meningitis. ‘I‘hc discasc hierarchy cannot bc stated explicitly in the 
MYCIN rule language: it is implicit in the design of the rules. (See 
(Clanccy, 1983) for fui thcr analysis of the limitations of MYCIN’s 
representation.) 

CENTAUR (Aikins, 1980) is a system in which discnsc hicrarchics 
arc explicit. In its rcprcscntation langungc, MYCIN’s meningitis 
kllowlcdgc niight bc encoded as follows (u&g a I,ISP property list 
notation): 

INFCCTION 
MORE-SPLCIFIC ((disease MCNINGITIS) 

(disease BACTtRCMIA)...) 
IF-CONFIRMED (DETERMINE disease of INFCCTION) 

ElFNINGITIS 
MORE-Sl'tCIFIC ((subtype BACTERIAL) 

(subtype VIRAL)...) 
IF-CONFfRMED (DETk!!MINE subtype of MCNINGITIS) 

III C EN’I’AUII, hierarchical rclat~ons among disorders arc explicit 
(meningitis is a specific kind of infection), and the stratcgics for using 
the knowledge XC domain-specific (after confirming that the patient 
1~1s an infection, determine what more specific discasc he has). This 
design enables CXNTAUII to articulate its operations better than 
MYCIN, uhosc hierarchical relations and strategy arc procedurally 
cmbcddcd in rules. 

I-Towcvcr, obscrvc that each node of CEN’I’AUll’s hierarchy 
csscntially rcpcnts i l Siilgk smkgy--try to confirm the prcscncc of a 
child disorder--and the overall strategy of top-down rclincmcnt is not 
explicit. Aikins has lcrbrlctl CHVI’AUI~‘s strategies, 5ut has not stated 
them abstractly. By rcprcscnting stratcgics abstractly, it is possible to 
have a more explicit and non-redundant design. This is what is done in 
NEOMYCIN. 

In NEOMYCIN domain relations and strategy arc represented 
srpara~~ly and strategy is rcprcscntcd abstractly. A typical rule that 
accomplishes. in part, the abstract task of attempting to confirm a 
diagnostic hypothesis and its subtypes is shown below. 

~Domain Knotvledge> 

INFECTION 
CAUSAL-SUBTYPES (MENINGITIS BACTEREMIA . ..) 

MCNINGITIS 
CAUSAL-SUBTYPES (BACTERIAL VIRAL . ..) 

(Abstmct Control Knowledge> 

TASK: EXPLORE-AND-RFFINE 
ARGUMENT: CURRENT-HYPOTHESIS 

_Mirnllul EOOl 
IF the hypothesis being focused upon 

has a child 
that has not been pursued, 

THFN pursue that child. 

(IF (AND (CURRCNT-ARGUMFNT %CURFOCUS) 
(CHIlDOF $CURFOCUS .$CHIlD) 
(TIINOT (PURSUED $CHILD))) 

(NEXTACTION (PURSUE-HYPOTHESIS WIILD))) 

NI’OMYCIN LIZ, ‘I dclib~ratior:/action loop for deducing what it 
sllould Jo next. nlc~/t/;/~/~s, like the one shown above. rccommcnd what 
t;i<k +ould bc done IICYI, nhat domain rule applied, or what domain 
finding rcqt!cstcd frown the user (dct:lils arc given in (Clanccy, 1381) 
n11r1 (Clnnccy and Hock, 1982) atld arc not important here). ‘I’hc 
important thing to notice is that rhis mctarulc will be applied for 
refining any disorder, obviating the need to “compile” rcdundnntly into 
the dom,iin hierarchy of disorders 1701~ it should bc searched. When a 
new domain relation is declared (e.g., a new kind of infection is added 
to rhc hierarchy) the abstract control knowlcdgc will USC it 
approprintcly. That is, we ,sclJnmle out whar /he dormtitl knowledge is 
f7om how if sl~ould be used. 

Mct,lruIcs wcrc first introduced for IISC in cxpcrt systems by IXtvis 
(LLivis, 197G), but hc conccivcd of‘ them as being domain-specific. In 
t.h,\t form, principles arc cncodcd reduntl,lnll~, just like CENTAUR’s 
control knowlcdgc. F’or cxamplc, the principle of pInsuing common 
causes hcforc unusual L~IISCS appears as specific metarulcs for ordering 
the domain rules of c,lch disorder. 

The bcncfits of stating mctarules abstractly <lrc illuntratcd further by 
a second cxamplc. 

6. An Implicit Question-Askinq Strategy 

Another reason for ordering clauses in a system like MYCIN is to 
prevent unncccssary requests for data. A finding might bc dcduccd or 
ruled out from other facts available to the program. For cxamplc, the 
rule “If the patient has undergone surgery and ncurosurgcry, then 
c,)nsidcr diplococcus as a cause of the meningitis” might bc reprcscntcd 
as follows. 

PREMISE: ($AND (SAME CNTXT SURGERY) 
(SAME CNTXT NIUROSURGERY)) 

ACTION: (CONCLUDE CNTXT COVERFOR DIPLOCOCCUS TALLY 400) 

We say that the surgery clause “screens” for the relevance of asking 
about neurosurgery. Obscrvc that ncithcr the relation between thcsc 
two findings (that neurosurgery is a /ylz ofsurgcry) nor the strategy of 
considering a general finding in order to rule out one of its suhtypcs is 
explicit. An altcrnativc way used in MYCIN for encoding this 
knowledge is to have a separate “screening” rule that at least makes 
clcnr that thcsc two findings are related: “If the patient has not 
undcrgonc surgery, then hc has not undergone neurosurgery.” 

PREMISE: (SAND (NOTSAMC CNTXT SURGERY)) 
ACTION: (CONCLUDE CNTXT NEUROSURGERY YES TALLY -1000) 

Such a rule obviates the need for a “surgery” clnusc in every rule that 
mentions neurosurgery, so this design is more clcgant and less prone to 
error. However, the question-ordcriiig str‘ltcgy and the abstract relation 
between the findings arc still not explicit. Conscqucntly, the program’s 
cxplanatiorl syslem cannot help d syhtcm maintzincl understand the 
underlying design. 

In NEOMYCIN, the nbovc rule is rcprcscntcd abstractly by a 
mctarulc for the task of finding out new data. 

75 



(Domain Kuowledge> 

(SUUSUMES SURGERY NFUROSURGERY) 
(SUBSUMES SURGERY CARDIACSURGERY) 

(Abstract Control Knowledge> 

1ASK: FINUOUT 
ARGUMENl': DESIRED-FINDING 

MFTARUlf'OOZ 
IF the desired finding 

is a subtype of a class of findings and 
the class of findings is not present in this case 

THEN conclude that the desired finding is not present. 

(IF (AND (CURRENT-ARGUMENT $SUBTYPE) 
(SUBSUMES $CLASS $SUBTYPE) 
(THNOT (SAMEP CNTXT $CLASS))) 

(NEXTACTION 
(CONCLUDE CNTXr $SUUTYPE 'YFS TALLY -1000))) 

This metarulc is rally an absfract geizeralization of all screening 
rules. Factoring out the statcmcnt of rclntions among findings from 
how those relations are to bc used products an elegant and economical 
representation. Bcsidcs enabling more-dctailcd explanation, such a 
design makes the system easier to construct and more robust. 

Consider the multiple ways in which a single relation between 
findings can be used. If WC are told that the patient has neurosurgery, 
WC can use the subsumption link (or its inverse) to conclude that the 
patient has undergone surgery. Or if WC know that the patient has not 
undcrgonc any kind of surgery WC know about, we can USC the “closed 
world assumption” and conclude that the patient has not undergone 
surgery. These infcrenccs are controlled by abstract metarules in 
NEOMYCIN. 

The knowledge base is casicr to construct because the cxpcrt needn’t 
specify cvcry situation in which a given fact or relation should bc used. 
New facts and relations can be added in a simple way: the abstract 
mctarules explicitly state how the relations will bc used. The same 
generality makes the knowlcdgc base more robust. ‘1%~ system is 
capahic of making use of facts and relations for diffcrcnt purposes, 
pcrhnps in combinations that would be difficult to anticipate or 
enumerate. 

Ill STUDYING ABSTRACT STRATiX~~ 
AND STRUCTURAL RELATIONS 

In NEOMYCIN, domain findings and disorders are rclatcd in the 
way shown above, and there arc approximately 75 rnctarulcs thal 
constitute a proccdurc for doing diagnosis. Bcsidcs abstract domain 
relations, such as SUI>SUMES, Ni*X>hlYClN’s mctarulcs rcfercncc: 

o Knowlcdgc about mctantlcs and tasks: (static) the argument 
of ;I task, whcthcr mctaruics arc to be appiicd itcnrtivcly, 
the condition under which a task sho111d bc abol ted, 
(dyn‘unic) whcthcr a task complctcd succcssfuliy, whcthcr a 
mctarule succccdcd or failed, cr_c. 

o Domain probicm-solving history: the active hypotheses, 
whcthcr a hypothesis was pursued, cumulative bclicf for a 
hypothesis, rules using a. finding that are “in focus”, a 
strong competitor to a given hypothesis, etc. 

‘I’hcsc conccptq form the vocabulary for a modci of diagnosis, the 
terms in which cxpcrt bchnvior is intcrprctcd and \triilCgiCS arc 
cxprcsscd. 

An uncxpcctcd cffcct is that thcrc is no more backward chaining at 
the domain lcvci. That is, the only reason MYCIi’I dots bnckw‘ud 
chaining during its diagnostic (hiL,tory and p!l)sical) phase is to 
accomplich top-down rcfincmcnt and to :~;)ply screening rlllcs. This is 

the ndcs. Thcrc arc two spccilic products: (I bo& of abs/roc/ confrol 
kn~,ln/l~& that can itself bc sttldicd, as well as applied in other problem 
domains, and n larlguage fhr represeuting knowledge about tlir~rders (in 
terms of causality, subtype, etc.). We call these abstract relations 
slructufal relations. 

Structural relations arc a tncans for indexing domain-specific 
knowlcdgc: They select hypotheses to focus upon, &dings to request, 
and domain infcrcnces that might be made. As such, structural 
relations constitute the organization, the access paths, by which 
strategies bring domain-spccilic knowlcdgc into play. For exnmplc, the 
metarulcs given above mention the CHlI,l>OF and SUl3SUMES 
relations. METARUI_E001 looks for I/P children of the current 
hypothesis in order to pursue them; MEl‘ARUL,F,002 looks for a more 
gerzeraljmhg in order to ask for it first. 

These relations constitute the language by which the primitive 
domain concepts (particular findings and disorder hypothcscs) are 
related in a network. Addirlg a new strategy oflm requires addhg a ?lew 
kind of structural relation to the network. For cxamplc, supposc WC 

desire to pursue common causes of a disorder bcforc serious, but 
unusual causes. WC must partition the causes of any disorder according 
to this distinction, adding new relations to our lnnguage--COMMON- 
CAUSES and SERIOUS-CAUSES. 

Similarly, 111~ applicability of a strategy depemh 011 the preseme of 
giveu sfructur.al relations iu flit rh~ain. For cxamplc, a strategy might 
give prefcrcncc to low-cost findings, but in a particular problem 
domain all findings might bc equally easy to attain. Or a given set of 
strntcgies might deal with how to search a deep hierarchy of disorders, 
but in a given domain the hierarchy might bc shallow, making the 
stratcgics inapplicabic. By stating strategies abstractly, we arc forced to 
crplicatc structural relations. On this basis WC can compare domains 
with rcspcct to the applicability of stratcgics, ~cfcrring to structural 
propcrtics of the starch space. 

Lenat has found a similar relationship bctwccn hcuristicq (stratcgics) 
,Ind slots (structural relations) in his program for discovering new 
heuristics (I.cnat, 1982). In particular, the ability to reason about 
heuristics in 1IURlSKO dcpcnds on breaking down compicx conditions 
and actions into many smaller slots that the program can inspect and 
modify sclcctivcly. The same observation holds for domain concepts 
\+ host rcprcscntation is rcfincd by the synthesis of new slots (c.g., 
adding a PI<IM II-FACTORS slot to cvcry nurnbcr). ‘l‘hc prugrnm even 
reasons ~LJOLJ/ rrhtions by creating a new slot that coiiccts rclations 
among cntrics of an important slot. 

IV GIVEN THE i33lEFITS, CANj’l- t3E DONE? 

An initial rc;\ction might bc that for sonic domains thcrc arc no 
pa!tcrns for using knowicdgc--no abstract stratcgics--ail f‘tcts and 
relations arc inscpnrablc from how they will bc USC~. For cxampic, the 
proccdurc for confirming any given clic;ordcr (IIIOIT gcncrally, 
intcrprcting signals or config~uriii 1: sonic dcvicc) might bc complctcly 
situation-spccilic, so thcrc arc IIO gcncral principics to ‘lpply. ‘I’his 
would appcdr to bc an unusual kir~ti of domain. WC arc more familiar 
with problems in which simple principics can bc applied over and over 
again in many situations. 

Teaching and learning arc made incrcdibiy difficult if thcrc is no 
early-over of proccdurcs from one problem to anolhcr. I)omains with a 
strong pcrccptual component, such 3s signal irltcl.prctation, might bc 
like this. Pcrccptuai skills rely o11 pattern matching, rather than 
scicctivc, controlled analysis of data; they arc might bc poor candidates 
for rcprcscnting proccdurcs abstractly. 

We also know that in many domains, for cfficicncy at runtimc, 
procctlurcs have been compiled for solving routine problems. ‘I’hcsc 
proccdurcs arc written down in the Lmiliar “proccdurcs manuals” for 



organization manngcmcnt, cquipmcnt operation, configuration design, 
tlolll>leshooting, etc. It is important to rccogniirc that thcsc proccdurcs 
‘UC based upon domain facts, constraints impoycd by causal, temporal, 
and spa&i1 intcr,tctions, problem-solving goals, abstract principles of 
dc:,ign, diagnosis, etc. Except whcrc a proccdurc is arbitrary, there 
must bc sonic unticrlying rationale for the selection and ordering of its 
steps. Knowing this rationnlc is certainly important for rclinbly 
modt fying the proccdurc; such proccdurcs arc often just prcparcd plans 
that an cxpcrt (or a user following a program’s advice) mdy need to 
adapt to unusual circumstances. At one lcvcl, the ration& can bc made 
explicit in terms of ,m abstract plan with its attendant domain structural 
relations; a rcdlllldant, compiled form can be used for cfficicnt routine 
problem solving. 

In theory, if the rationale for a proccdurc or prepared plan can be 
made explicit, a program can rccons[ruct the proccdurc from first 
priniiplcs. ‘I‘his ,Ipproach has two basic difficulties. First, the 
proccdurc might have been lcnrncd incrcmcntnlly from cast 
cxpcricncc. It simply handles problems well: tltcrc is no compiled-out 
theory that can bc articulated. ‘1’11~s problem arises particularly for skills 
in which behavior has been shaped over time, or for any problem in 
vb’hich the trace of “lcssonc” has been poorly rccordcd. The second 
difticirlty is that constructing 21 proccdurc from first principles can 
involve a great deal of scar&. Stcfik’s (Stcfik, 1980) multi-lcvclcd 
planning rcgimc ti)r constructing MOILiEN cxperimcnts testifies to the 
coinplcxity of the task and the limited capabilities of current programs. 
In contr,l\t, Fricdl‘md’s (Friedland. 1979) approach of constructing 
cxpcrilncnt plans from skeletal, &tract plans trades flexibility for 
cfficicncy and rcscmbLancc to human solutions. While skeletal plans 
mny somctimcs USC domain-specific terms. as prccompilcd abstract 
pr<lccdurcs they arc atlalogous to Nl:OMYCIN’s tasks. 

Importantly, th2 ~/liotrak~for rlrc nf~sl,.crcl pl0n ilsclf is not explicit in 
any of‘ 111cse plograt~ls. For cxamplc, NEOMYCIN’s mctarulcs for a 
given task might bc ordered by prcfcrcncc (alternative methods to 
L~ccoinplish the sdmc operation) or as steps in a procedure. Since the 
constraints tllilt suggest the given ordering are not explicit. part of the 
d<:sign of the program is still not explicit. For example, the abstract 
stays of top-down rcfincmcnt arc now stated, but the scnsc in which 
they constitute this proccdurc is not rcp[cscntcd. (Why should 
pursuing siblings of ;I hypothcyis hc done before pursuing children?) 

As another example, the task of “establi4ling the hypothesis space” by 
expanding the set of possibilities beyond common. cxpcctcd causes and 
then narrowing down in a refincmcnt phase has mathematical, sct- 
theoretic underpinnings that arc not explicit in the program. Similarly, 
Stefik’s abstract planning procedure of “lcast-commitment” is implicit 
in numeric priorities assigned to plan design operators (Clanccy, 1983). 
Automatically constructing proccdurcs at this high lcvcl of abstraction, 
as opposed to implicitly building them into a program, has been 
explored very little. 

Even within the practical bounds of what we make explicit, it might 
be argued that representing procedures abstractly is much more 
difficult than stating individual situation-specific rules. This might 
differ from person to person; certainly in medicine some physicians are 
better than others at stating how they reason abstractly. A good 
heuristic might be to work with good tcachcrs, for they arc most likely 
to have extracted the principles so they can bc taught to students. 

There is certainly an initial cost whose bcncfit is unlikely to be 
rcnlizcd if no explanation facility is desired, only the original dcsigncrs 
maintain or modify the knowledge base, or there is no desire to build a 
generic system. But even this nrgumcnt is dubitable: a knowledge base 
with cmbcddcd strategies can appear cryptic to even the original 
designers after it has been left aside for a few months. Also, anyone 
intending to build more than one system will bcncfit from expressing 
knowledge as gcncrally as possible so that lessons about structure and 
strategy can speed up the building of new systems. 

The cost aside. it appears that thcrc is no way to get strategic 
explanations without making dom,~in relations explicit and stating 
strategic:; scpnratcly. This was the col,clusion of S;vartnut, who was led 

to concliidc that an automatic progr-nmmln g approach, as difficult as it 
first sccmcd. was a nntur,ll, direct way to cnsurc that the program had 
kllowlcdgc of its own design (Swartout, 1981). That is, providing 
complctc explanations means undcrstnnrling the design well enough to 
dcrivc the proccdurcs yourself. 

NEOMYCIN’S factoring of ktlowlcdgc into domain and strategic 
knowlcdgc baccs is comparable to the input rcquircmcnts of Swartout’s 
automatic programming s) stem. I lowc\cr, Nl OMYCIN intcrprcts its 
domain knowlcdgc, rather than instLmti,lting its abstract strategies in a 
compiled program. (Maintaillinq the ccparation is important so the 
tnctarulcs can bc used in student modcling (I ondon and Clanccy, 
1982).) Morcovcr, NEOMYCIN’s str‘ltcgics arc abstract, unlike the 
domain-cyccific “principlcc” used in Swnrtout‘s program. ‘I‘his dasign 
decision was originally motiv,ltcd by our dcsirc to rcplicntc the kir;d or 
cxpl,mations given by tc~licrs (I Iasling, 1953). Howcvcr, WC now 
rcali/c th,lt rcprcscnting control knowl&c abstractly has cnginccring 
and scientific bcncfits as well. 

V ADVANTAGES OF THF APPROACH -- -~-- 

‘l’h~ atlvalltagcs of rcprcscnting control knowlcdgc abstractly Can bc 
SUnllll~rri/Cd X~(;rdillg to cnginccl~in_r, SCiClltific, and practic<il bcnctits: 

o The explicit design is casicr to debug and modify. 
Hierarchical relations among findings and hypothcscs 
and search strategies are no longer procedurally 
embedded in rules. 

o Knowlcdgc is represcntcd more generally, so we get 
more pcrformancc from less system-building effort. 
WC don’t need to specify every situation in which a 
given fact should bc used. 

o The body of abstract control knowledge can bc 
applied to other problems, constituting the basis of a 
generic system, for example, a tool for building 
consultation programs that do diagnosis. 

8 Science. Factoring out control knowlcdgc from domain 
knowledge provides a basis for studying the nature of 
stratcgics. Patterns become clear, revealing, for example, 
the underlying structural bases for backward chaining. 
Comparisons between domains can be made according to 
whether a given relation exists or a strategy can be applied. 

8 Practice. 

o A considerable savings in storage is achieved if 
abstract strategies arc available for solving problems. 
Domain-specific proccdurcs for dealing with all 
possible situations needn’t be compiled in advance. 

o Explanations can bc more detailed, down to the level 
of abstract relations and stratcgics, so the program can 
be evaluated more thoroughly and used more 
responsibly. 

o Because strategies arc stated abstractly, the program 
can rccognizc the application of d pariicular strategy 
in different situations. This provides a basis for 
expL!nation by analogy, as well as recognizing plans 
during knowledge acquisition or student modclling. 



Rcprcscnting cuntrol knowlcdgc abstractly n~ovcs us closer to our 
idcal of specifying to a program Wl l Al’ problem to solve versus HOW 
to solve the problem (Fcigcnh,~um. 1977). Constructing a knowlcdgc 
base bccomcs a matter of declaring knowledge relations. 1 IOW the 
knowledge will bc used needn’t be simultaneously and rcdundnntly 
specified. 

An analogy can bc mndc with GUIDON (Clanccy, 1379) (Clnnccy, 
1982), whose body of abstract teaching rules m&c the program us,~ble 
with multiple domains. Traditional CA1 programs arc specific to 
particular problems (not just problem domains) and have both subject 
matter cxpcrtisc and teaching strategies cmbcddcd within them. The 
scpnration of thcsc in GUIDON, and now the abstract rcprescntation of 
stratcgics in NEOMYCIN, is part of the logical progression of expert 
systcrns research that began with separation of the interpreter from the 
knowledge base in MYCIN. The trend throughout has been to state 
domain-specific knowledge more declaratively and to generalize the 
proccdurcs that control its application. 

Another analogy can be made with database systems that combine 
relational networks with logic programming (e.g., see (Nicolas, 1977)). 
To conserve space, it is not practical to explicitly store every relation 
among entities in a database. For example, a database about a 
population of a country might record just the parents of each person 
(e.g., (MOTHEROF $CHILD $MOTHER) and (FATHEROF 
$CI-IILD $FATHER)). A separate body of general derivafion uxiotns is 
used to retrieve other relations (the iniensional da&base). For example, 
siblings can be computed by the rule: 

(IF (AND (PERSON $PERSON) 
(MOTHEROF $PERSON $MOTHER) 
(PERSON $PERSONZ) 
(MOTHEROF $PERSONZ $MOTf.fER)) 

(SIBLING $PERSON $PERSONZ)) 

Such a rule is quite similar to the abstract mctarules that 
NEOMYCIN uses for deducing the prcscncc or abscncc of findings. 
IGEOM YCIN differs from database systems in that its rules are grouped 
and controlled to accomplish abstract tasks. Only a few of 
NEOM YClN’s metarulcs make infcrcnccs about database relations; 
most invoke other tasks, such as “ask a general question” and “group 
and differentiate hypotheses.” Morco\cr, the knowledge base contains 
judgmental rules of cvidcncc for the disorder hypothcscs. These 
diffcrcnccs aside, the analogy is stimulating. It suggests that treating a 
knowlcdgc base as an object to bc inspcctcd, rcasoncd about, and 
Inanipulatcd by abslract pt.occdure.s--ns a database is checked for 
integrity, qucricd, and cxtcndcd by general axioms--is a powerful 
design principle for building expert systems. 

References 

hikins J. S. Represenlation of control knowledge in expert 
Proceedings of the FM AAAI, pages 121-123,198O. 

systems, in 

Clancey, W. J. Tutoring rules for guiding a case method dialogue. The 
Internalional Journal of Man-Machine Studies, 1979, I I, 25-49. 
(Also in Slccman and Brown (editors), In/elligenl Turoring 
Systems, Academic Press, 1982). 

Clancey, W. J. and Lctsingcr, I<. NI!‘OM YCIN: Recot$grtring a rule- 
based expert syslettz for application to leaching, in Proceedings of 
the Sevenlh IJCAI, pages 829-836, 1981. (Rcviscd version to 
appear in Clanccy and Shortliffc (editors), Readings in medical 
ur@ial intelligence: Thefirst decade, Addison-Wesley, 1983). 

Clanccy, W. J. GUIDON. In Barr and Fcigcnbaum (editors), The 
Ilandbook of ArliJicial Inielligence, chapter Applications-oriented 
AI research: Education. William Kaufmann, Inc., Los Altos, 
1982. (Revised version to appear in the Journal of Compufcr 
Based Inslruclion, 1983). 

Clancey, W. J. The epistemology of a rule-based expert system: A 
framework for explanation. Arlificial Intelligence, 1983, 20(j), 
215-251. (Also to appear in Buchanan and Sholtliffe (editors), 
Rule-based expert sysletns: The MYCIN expetitttenls of he 
Sratford Heuristic Progratntning Project, Addison-Wcslcy, 1983). 

CXtlnccy, W. J. and Bock, C. hIR,‘;/NI<.‘OMYCIN: Representing 
melacottlrol in predicnle calculus. HPP Memo 82-31, Stanford 
University, Novcmbcr 1982. 

Davis R. Applications of tneta-level knowledge lo lhc cottslruciiott, 
tttaintcnance, and use of large knowledge bases. HIV Memo 70-7 
and AI Memo 283, Stanford University, July 1976. 

Duda, R. 0. and Shortliffc, E. H. Expert systems research. Scietrce, 
1983, 220,261-268. 

Ennis, S. P. Expert sysletns: A user’s persprcrive of sonte currenl lools, 
Proceedings of /he Second AAAI, pages 319-321, August, 1982. 

in 

Fcigcnbaum, E. A. The art of artt’jicial itt/elligettcc: I. Themes and case 
sludies of knowledge engineering, in Procecrlitlgr of rite Fifih 
IJCAI, pages 1014-1029, August, 1977. 

Fricdlnnd, I’. Knowledge-based experitttent design in molecular genetics, 
in Procrcdittgs ofcthe Six01 IJTA I, pages 255-257, 1979. 

Hasling, r). W. Abhtrnct cxplnnations of strarcgy in a didgnostic . 
consultation system. (‘I’0 appear in the 1’rocc:~tlilrg.s (I/‘/l ,I A I-K?). 

Lcnat, D. B. ‘1%~ nature of heuristics. Artificial In/elligence, 1952, 19(2), 
189-249. 

London, B. and Clanccy, W. J. Plan recognilion strafegies in student 
modeling: prediclion and descriplion, in Proceedings of the Second 
AAA I, pages 335-338,1982. 

Nicolas, J. M. and Gallairc, H. Data base: Theory vs. interpretation. In 
H. Gallairc and J. Minkcr (editors), I.ogic and data bases, pages 
33-54. Plenum Press, New York, 1977. 

Shortliffc, E. M. Computer-based medical consullations: MYC’IN. New 
York: Elscvier 1976. 

Stefik, M. J. Planning wilh constrainfs. PhD thesis, Computer Scicncc 
Dcpartmcnt, Stanford University, 1980. 

Swartout, W. I<. A digitalis lherapy advisor G/h explanafions. Technical 
report 176, MIT Laboratory for Computer Scicncc, I%bruary 
1977. 

Swartout W. R. Explaining and juslifiing itr experr consullittg programs, 
in Proceeditlgs of /he Sevetrlh IJCAI, August, 1981. (Also to 
appear in Clancey and Shortliffc (editors), Retufittgs in ttlcdical 
artu?ci(rl itr/elligence: Thr-jTrst rlrcuJc. Addison-Wesley, 1983). 

78 


