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Foreword 

Those of us involved in the creation of the Handbook of Artificial Intelligence, both 
writers and editors, have attempted to make the concepts, methods, tools, and main results 
of artificial Intelligence research accessible to a broad scientific and engineering audience. 
Currently, Al work is familiar mainly to its practicing specialists and other interested 
computer scientists. Yet the field is of growing interdisciplinary interest and practical 
importance. With this book we are trying to build bridges that are easily crossed by 
engineers, scientists In other fields, and our own computer science colleagues. 

in the Handbook we Intend to cover the breadth and depth of Al, presenting general 
overviews of the scientific issues, as well as detailed discussions of particular techniques 
and important Al systems. Throughout we have tried to keep in mind the reader who is not a 
specialist in Al. 

As the cost of computation continues to fall, new areas of computer applications 
become potentially viable. For many of these areas, there do not exist mathematical "cores" 
to structure calculatlonal use of the computer. Such areas will inevitably be served by 
symbolic models and symbolic Inference techniques. Yet those who understand symbolic 
computation have been sneaking largely to themselves for twenty years. We feel that it is 
urgent for Al to "go publh" in the manner Intended by the Handbook. 

Several other writers have recognized a need for more widespread knowledge of Al 
and have attempted to help fill the vacuum. Lay reviews, in particular Margaret Boden's 
Artificial Intelligence and Natural Man, have tried to explain what is important and 
interesting about Al, and how research In Al progresses through our programs. In addition, 
there are. a few textbooks that attempt to present a more detailed view of selected ar4as 
of Al, for the «erious student of computer science. But no textbook can hope to describe all 
of the sub-areas, to present brief explanations of the important ideas and techniques, and to 
review the forty or fifty most important Al systems. 

The Handbook contains several different types of articles. Key Al ideas and techniques 
are described In core articles (e.g., basic concepts in heuristic search, semantic nets). 
Important Individual Al programs (e.g., SHRDLU) are described in separate articles that 
indicate, among other things, the designer's goal, the techniques employed, and the reasons 
why the program is important. Overview articles discuss the problems and approaches in 
each major area. The overview articles should be particularly useful to those who seek a 
summary of the underlying issues that motivate Al research. 
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Eventually the Handbook will contain approximately two hundred articles. We hope that 
the appearance of this material will stimulate interaction and cooperation with other A! 
research sites. We look forward to being poised of errors of omission and commission. For a 
field as fast moving as Al, it is important that Its practitioners alert us to important 
developments, so that future editions will reflect this new material. We intend that the 
Handbook of Artificial Intelligence be a living and changing reference work. 

' 

Tho articles in this edition of the Handbook were written primarily by graduate students 
in Al at Sta iford University, with assistance from graduate students and Al professionals at 
other institutions. We wish particularly to acknowledge the help from those at Rutgers 
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND 
Corporation. 

The authors of this'report, which contains the section of the Handbook on educational 
applications research, are William Clancey, James Bennett, and Paul Cohen. Others who 
contributed to or commented on earlier versions of this section include Lee Biaine, John Seely 
Brown, Richard Burton, Adele Goldberg, Ira Goldstein, Albert Stevens, and Keith Wescourt. 

Avron Barr 
Edward Feigenbaum 

Stanford University 
July, 1979 
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• 
A.  Historical Overview 

Educational applications of computer technology have been under development since 
the early 1960s. These applications have Included scheduling courses, managing teaching 
aids, and grading tests. The predominant application, however, has involved using the 
computer as a device that Interacts directly with the student, rather than as an assistant to 
the human teacher.  For this kind of application, there have been three general approaches. 

The "ad lib" or "environmental approach" Is typified by Papert's LOGO laboravnry 
(Papert, 1970), that allowed students more or less free-style use of the machine. Students 
are Involved in programming; It is conjectured that learning problem-solving methods takf s 
place as a side effect of using tools that are designed to suggest good problem-solv^ig 
strategies to the student. The second approach uses games and simulations as instructional 
tools; once aga'n the student Is Involved in an activity—for example, doing simulated 
genetics experiments—for which learning is an expected side effect. The third computer 
application In education is computer-assisted instruction (CAI). Unlike the first two 
approaches, CAI makes an explicit attempt to Instigate and control learning (Howe, 1973). 
This third use of computer technology In education Is the focus of the following discussion. 

^The goal of CAI research is to construct instructional programs that incorporate well- 
prepared course material in lessons that are optimized for each student. Early procjrams 
were either electronic "page-turners" which printed prepared text or drill-and-practice 
monitors, which printed problems and responded to the student's solutions using prestored 
answers and remedial comments. In the Intelligent CAI (ICAI) programs of the 1970s, course 
material Is represented independently of teaching procedures so that problems and remedial 
comments can be generated differently for each student. Research today focuses on the 
design of programs that can offer instruction in a manner that is sensitive to the student's 
strengths, weaknesses, and preferred style of learning. The role of Al in computer-based 
Instructional applications Is seen as making possible a new kind of learning environment.^- 

This overview surveys how Al techniques have been used in research attempting to 
create intelligent computer-based tutors. In the next article, some design issues are 
discussed and typical components of ICAI systems are described. Subsequent articles 
describe some important applications of artificial intelligence techniques in instructional 
programs. 

Frame-oriented CAI Systems 

The first instructional programs took many forms, but all adhered to essentially the 
same pedagogical philosophy. The student was usually given some instructional text 
(sometimes without using the computer) and asked a question that required a brief answer. 
After the student responded, he was told whether his answer was right or wrong. The 
student's response was sometimes used to determine his "path" through the curriculum the 
sequence of problems he Is given (see Atkinson & Wilson, 1969). When the student made an 
error, the program branched to remedial material. 

The courseware author attempts to anticipate every wrong response, prespecifying 
branches to appropriate remedial material based on his Ideas about what might be the 
underlying misconceptions that would cause each wrong response.  Branching on the basis of 
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Al Applications in Education 

response was the first step toward individualization of instruction (Crowder, 1962). This style 
of CAI has been dubbed ad-hoc, frame-oriented (AFO) CAI by Carbonell (1970b), to stress its 
dependence on author-specified units of information. (The term "frame" as it is used in this 
context predates the more recent usage in Al—see Article RBpresBntation.B7--and refers to 
a block or page or unit of information or text.) Design of ad-hoc frames was originally based 
on Skinnerian stimulus/response principles. The branching strategies of some AFO programs 
have become quite involved, incorporating the best learning theory that mathematical 
psychology has produced (Atkinson, 1972; Fletcher. 1976; Kimball. 1973). Many of these 
systems have been used succesfuily and are available commercially. 

Intelligent CAI 

In  spite  of  the  widespread  application  of AFO CAI  to many  problem   areas,   many 
researchers believe that most AFO courses are not the best use of computer technology: 

In most CAI systems of the AFO type, the computer does little more 
than what a programmed textbook can do, and one may wonder why 
the machine is used at all....When teaching sequences are extremely 
simple, perhaps trivial, one should consider doing away with the 
computer, and using other devices or techniques more related to the 
task.  (Carbonell, 1970b, pp. 32, 193) 

In this pioneering paper, Carbonell goes on to define a second type of CAI that is known 
today as "knowledge-based" or "intelligent" CAI (ICAI). Knowledge-based systems and the 
previous CAI systems both have representations of the subject matter they teach, but ICAI 
systems also carry on a natural language dialogue with the student and use the student's 
mistakes to diagnose his ml3<'nderstandings. 

Early u.5es of Al techniques in CAI were called "generative CAI" (Wexler, 1970), since 
they stressed the ability to generate problems using a large database representing the 
subject they taught. (See Koffman & Blount, 1976, for a review of some early generative 
CAI programs and an example of the possibilities and limitations of this style of courseware.) 
However, the kind of courseware that Carbonell was describing In his paper was to be more 
than just a problem generator—it was to be a computer tutor that had the inductive powers 
of its human counterparts. ICAI programs offer what Brown (1977) calls a reactive learning 
environment, in which the student is actively engaged with the instructional system and his 
Interests and misunderstandings drive the tutorial dialogue. This goal was expressed by 
other researchers trying to write CAI programs that extended the medium beyond the limits 
of frame selection: 

Often it is not sufficient to tell a studen» he is wrong and Indicate the 
correct solution method. An intelligent CW system should be able to 
make hypotheses based on a student's error history as to where the 
real source of his difficulty lies. (Koffman & Blount, 1976) 

The Use of Al Techniques in ICAI 

The  realization of the computer-based tutor has involved increasingly complicated 
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A Historical Overview 3 

computer programs and has prompted CAI researchers to use artificial Intelligence 
techniques. Artificial Intelligence work in natural language understanding, representation of 
knowledge, and methods of inference, as well as specific Al applications like algebraic 
simplification, calculus, and theorem proving, have been applied by various researchers 
toward making CAI programs that «re more intelligent and more effective. Early research on 
ICAI systems focused on represen.ation of the subject matter. Benchmark efforts include 
SCHOLAR, the geography tutor of Carbonell and Collins (see article Cl), EXCHECK, the logic 
and set theory tutors by Suppes et al. (article F7), and SOPHIE, the electronics 
troubleshooting tutor of Brown and Burton (article C3). The high level of domain expertise in 
these proflrams permits them to be responsive in a wide range of problem-solving 
Interactions. 

These ICAI programs are quite different from even the most complicated frame- 
oriented, branching program. 

Traditional  approaches  to  this  problem  using  decision  theory  and 
stochastic    models    have    reached   a    dead   end   due    to    their 
oversimplified representation of learning    It appears within reach 
of Al methodology to develop CAI systems that act more like human 
teachers.  (Laubsch, 1975) 

However, an Al system that is expert in a particular domain is not necessarily an expert 
teacfter of the material-'ICAI systems cannot be Al systems warmed over" (Brown, 1977). A 
teacher needs to understand what the student is doing, not Just what he is supposed to do. 
Al programs often use very powerful problem-solving methods that do not resemble those 
used by humans; in many cases. CAI researcners borrowed Al techniques for representing 
subject domain expertise but had to modify them, often making the inference routines 'ess 
powerful, in order to force them to follow human reasoning patterns, so as to better explain 
their methods to the student, as well as to understand his methods (Smith. 1976; Goldberg. 
1973). 

In the mid-1970s, a second phase in the development of ICAI tutors has been 
characterized by the inclusion of expp-tise in the tutor regarding (a) the student's learning 
behavior and (b) tutoring strategies (Brown & Goldstein. 1977). Al techniques are used to 
construct models of the learner that represent his knowledge in terms of "issues" (see 
article C4) or "skills" (Barr & Atkinson. 1975) that should be learned. This model then 
controls tutoring strategies for presenting the material. Finally, some ICAI programs are now 
using Al techniques to explicitly represent these tutoring strategies, gaining the advantages of 
flexibility and modularity of representation and control (Burton & Brown. 1979; Goldstein. 
1977; Clancey, 1979a). 

References 

The best general review of research In ICAI is Brown & Goldstein (1977). Several 
papers on recent work are collected in a special Issue of the International Journal of Man- 
Machine Studies. Volume 11, 1979. 
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B    Issues in ICAI Systems Design 

ThP main components of ICAI systems are (a) its problem-solving expertise, the 
Knowledge tnLt the ^em tries to im/art to the student, (b) the ^udent mode, .nd.cat.ng 
what the student does and does not know, and (c) tutoring strateg-es, wh.ch specify how the 
System Presents material to the student). (See Reif. 197/i. for an excellent d.scuss.ono 
he^iTfe'renct and ir^errelations of tM typ.s of Knowledge ^^^^^ ^ 

proaram ) Not all of tK components a,c fully developed In evt.ry system. Beca^e oT J'1^ 
s ze and compLity of .uelligent CAI programs, most researchers tend t0 concen rate the.r 
effort on the development of a single part of what would constitute a fully usable system. 
Each component is described briefly below. 

The Expertise Module—Representing Domain Knowledge 

The "expert" component of an ICAI system Is charged with the task of generating 
problems and evaluating'the correctness of student -,UtiT/^ t^bL^taHncoTp^a fd 
of the subject matter was originally envisioned as a huge static database that incorporated 
a the acs to be taught. Thfs idea was implicit in the early drill-and-practice P-grams and 
was made explicit in generative CAI (see Article A). Representation of subject matte 
expertise in this way, using semantic nets (Article RepresenlalioaBa), has been useful for 
gene ting and answering questions involving causal --^-^-«^Sj^tr WHY 
Collins,   1973;   Laubsch,   1975;   and  see  Articles  Cl  and  C3  on  the   SCHOLAR   and  WHY 
systems). 

Recent systems have used procedural representation of/t
07in

Q
knoW^ f°;^amp^ 

how  to  take  measurements and make deductions (see Article RB^e^|
nla; ^f^.   .T^' 

knowledge is represented as procedural experts that correspond to subsk.lls ^at ytudent 
must learn In order to acquire the complete skill being ta.ght ^^Bw^Jf'^l 
Production    rules    (Article   Rapr«l«it.HoaB3)   havV^   "S^Q;°    ^17 97^    In 
representations of skills and problem-sükinc, methods (Goldstein, 1977; Clancey. tO^aX. In 
addition. Brown & Burton (1975) have pointed out XM multiple ^^I^^^BI 
useful for answering student questions and for evaluating partial solul.ons to a > roblern ^'^j 
a aemantlo net of facts about an electronic circuit and procedures simulating the functiona 
SehaX  Of  the  c""t)     Stevens   &  Collins   (1978)   considered  an   evolving   series   o 
"slmul^cn" models .hat can be used to reason metaphorically «bout the behavior of causal 
systems. 

It should be noted that not all ICAI systems can actually solve the P^blJ» they poae 
to a student. For example, BIP, the BASIC Instructional Program (Barr, Beard, & Atkmson, 
1076) can" write or analyze computer programs: BIP uses sample input/output pflfa 
suppled by the course authors) to test students" programs. Similarly, the procedu al 

exper s in SOPHIE-I could not debug an electronic circuit. In contrast, the product.on rule 
representation of domain knowledge used in WUMPUS and ^IDON enables these prog^ 
soh/e problems independently, as well as to criticize student solutions .(Go,f ^"l,if/7'^ 
Clancey 1979a). Being able to solve the problems, preferrably in all possible way. 
clrrecÄ and incorrect is necessary if the ICAI program Is to make f.ne-grained 
suggestions p.oout the completion of partial solutions. 

An impcrtant idea in this connection is that of an articuiate expert (Goldstein. 1977). 

mmm 



Issues in ICAI Systems Design 6 

Whereas typical expert Al progt. is have data structures and processing algorithms that do 
not necessarily mimic the reasoning steps used by humans and are, therefore, considered 
"opaque" to the user, an articulate expert for an ICAI system must be designed to enable 
the explanatior of each problem-solving decision that it makes in terms that correspond (at 
some level of abstraction) to those of a human problem solver. For example, the electronic 
circuit simulator underlying SOPHIE-I (see Article C3), which is used to check the consistency 
of a student's hypotheses and to answer some of his questions, is an opar,iie expert on the 
functioning of the circuit. It is a complete, accurate and efficient model of ihe circuit, but its 
mechanisms are never revealed to the student since they are certainly not the mechanisms 
that he is expected to acquire. In WEST, on the other hand, while a (compete and efficient) 
opaque expert Is used to determine the range of possible moves that the student could have 
made with a given roll of the dice, an articulate expert, which only models pieces of the 
game-playing expertise, is used to determine possible causes for less-than-optimal student 
moves. 

ICAI systems are distinguished from earlier CAI approaches by the separation of 
teaching strategies from the subject expertise to be taught. However, the separat an of 
subject-area knowledge from instructional planning requires a structure for organizing the 
expertise that captures the difficulty of various problems and the interrelationships of 
course material. Modeling a student's understanding of a subject is closely related 
conceptually to figuring out a representation for the subject itself or for the language used 
to discuss it. 

Trees and lattices showing prerequisite interactions have b(;en used to organize the 
introduction of new knowledge or topics (Koffman & Blount, 1975). In BIP this lattice took 
the form of a curriculum net that related the skills to be taught to example programming tasks 
that exercised each skill (Barr, Beard, & Atkinsoh, 1976). Goldstein (1979) called the 
lattice a syllabus in the WUMPUS program and emphasized the developmental path that a 
learner takes in acquiring new skills. For arithmetic skills used in WEST, Burton & Brown 
(1976) use levels of issues. Issues proceed from the use of arithmetic operators to 
strategies for winning the game, to meta-level considerations for improving performance. 
Burton and Brown believe that when the skills are "structurally independent," the order of 
their presentation is not particularly crucial. This representation is useful for modeling the 
student's knowledge and coaching him on different levels of abstraction. Stevens, Collins, & 
Goldin (1978) have argued further that a good human tutor does not merely traverse a 
predetermined network of knowledge in selecting material to present. Rather, it is the 
process of ferreting out student misconceptions that drives the dialogue. 

The Student Model 

The modeling module is used to represent the student's understanding of the material 
to be taught. Much recent ICAI research has focused on this component. The purpose of 
modeling the student Is to make hypotheses about his misconceptions and suboptimal 
performance strategies so that the tutoring module can point them out, indicate why they are 
wrong, and suggest corrections. It is advantageous for the system to be able to recognize 
alternate ways of solving problems, including the incorrect methods that the student might 
use resulting from systematic misconceptions about the problem or from inefficient 
strategies. 
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Some early frame-oriented CAI systems used mathematical stochastic learning models, but 
this approach failed because it only modeled the probability that a student would give a 
specific response to a stimulus. In general, knowing the probability of a response is not the 
same as knowing what a student understands-the former has little d.agnost.c power 
(Laubsch, 1975), 

Typical uses of Al techniques for modeling student knowledge include (a) simple pattern 
recognition applied to the student's response history and (b) flags in the subject matter 
semantic net or in the rule base representing areas that the student has mastered. In these 
ICAI systems, a student model is formed by comparing the student's behavior to that of the 
computer-based "expert" in the same environment. The modeling component marks each skill 
according to whether evidence indicates that the student knows the material or not. Carr & 
Goldstein (1977) have termed this component an overlay model-Xhe student's understanding 
is represented completely in terms of the expertise component of the program (see Article 
C5). 

In contrast, another approach is to model the student's knowledge not as a subset of 
the expert's, but rather as a perturbation or deviation from the expert's knowledge—a 
"bug", (r-e, for example, the SOPHIE and BUGGY systems-Articles C3 and CB.) There is a 
major difference between the overlay and "buggy" approaches to modelling; In the latter 
approach it is not assumed that, except for "knowing" less, the student reasons as the 
expert does; the student's reasoning can be substantially different from expert rear jnmg. 

Other information that might be accumulated in the student model includes the 
student's preferred modes for interacting with the program, a rough characterization of his 
level of ability, a consideration of what he seems to forget over time, and an indication of 
what his goals and plans seem to be for learning the subject matter. 

Major sources of evidence used to maintain the student model can be characterized 
as: (a) implicit, from student problem-solving behavior; (b) explicit, from direct questions 
asked of the student; (c) historical, from assumptions based on the student's experience; 
and (d) structural, from assumptions based on some measure of the difficulty of the subject 
material (Goldstein, 1977). Historical evidence is usually determined by asking the student 
to rate his level of expertise on a scale from "beginner" to "expert." Early programs like 
SCHOLAR used only explicit evidence. Recent programs have concentrated on inferring 
"implicit" evidence from the student's problem-solving behavior. This approach is 
complicated because it is limited by the program's ability to recognize and describe the 
strategies being used by the student. Specifically, when the expert program indicates that 
an inference chain is required for a correct result and the student's observable behavior is 
wrong, how is the modeling program to know which of the intermediate steps are unknown or 
wrongly applied by the student? This Is the apportionment of creditlblame problem; it has been 
an important focus of WEST research. 

Because of inherent limitations in the modeling procöss, it is useful for a "critic" in the 
modeling component to measure how closely the student mode! actually predicts the 
student's behavior. Extreme inconsistency or an unexpected demonstration of expertise in 
solving problems might Indicate that the representation being used uy the program does not 
capture the student's approach. Finally, Goldstein (197/) has suggested that the modeling 
process should attempt both tc measure whether or not the student is actually learning and 
to discern what teaching methods are most effective. Much work remains to be done in this 
area. 
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The Tutoring Moduie 

The tutoring module of ICAI systems must integrate knowledge about natural language 
dialogues, teaching methods, and the subject area to be taught. This is the module that 
communicates with the student: selecting problems for him to solve, monitoring and critic!, ng 
his performance, providing assistance upon request, and selecting .Gmed.al matenal The 
design of this module involves issues like "When is It appropriate to offer a hint?' or How 
far should the student be allowed to go down the wrong track?" 

These are Just some of the problems which stem from the basic fact 
that teaching Is a skill which requires knowledge additional to the 
knowledge comprising mastery of the subject domain. (Brown, 1977) 

This additional knowledge, beyond the representation of the subject domain and of the 
student's knowledge, is about how to teach. 

Most ICAI research has explored teaching methods based on diagnostic modeling in 
which the program debugs the student's understanding by posing tasks and evaluating his 
response (Collins, 1976; Brown & Burton, 1975; Koffman & Biount, 1975). The student is 
expected to learn from the program's feedback which skills he uses wrongly, which skills he 
does not use (but could use to good advantage), etc. Recently, there has been more 
concern with the possibility of saying Just the right thing to the student so that he will 
realize his own inadequacy and switch to a better method (Carr & Goldstein, 1977; Burton & 
Brown, 1979; Norman, Centner, and Stevens, 1976). This new direction is based on attempts 
to make a bug "constructive" by establishing for the student that there is something 
inadequate in his approach, and giving enough information so that the student can use what 
he already knows to focus on the bug and characterize it so that he avoids this failing In the 
future. 

However, it is by no means clear how "Just the right thing" is to be said to the student. 
We do know that it depends on having a very good model of his understanding process (the 
methods and strategies he used to construct a solution). Current research is focussing on 
means for representing and isolating the bugs themselves (Stevens, Collins, & Goldm, 1978; 
Brown & Burton, 1978). 

Another approach is to provide an environment that encourages the student to think in 
terms of debugging his own knowledge. In one B1P experiment (Wescourt and Hemphill. 
1978) explicit debugging strategies (for computer programming) were conveyed in a written 
document and then a controlled experiment was undertaken to see whether this traingmg 
fostered a more rational approach for detecting faulty use of (programming) skills. 

Brown, Colllfrs, and Harris (1978) suggest that one might foster the ability to construct 
hypotheses and test them (the basis of understanding in their model) by setting up problems 
In which the student's first guess is likely to be wrong, thus "requiring him to focus on how 
he detects that his guess is wrong and how he then intelligently goes about revising it. 

The Socratic method used in WHY (Stevens & Collins, 1977) involves questioning the 
student in a way that will encourage him to reason about what he knows and thereby modify 
his conceptions. The tutor's strategies are constructed by analyzing protocols of real-world 
student/teacher Interactions. 
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Another teaching strategy that has been successfully implemented on several systems 
is called coaching (Goldstein, 1977). Coaching programs are not concerned with covering a 
predetermined lesson plan within a fixed time (in contrast with SCHOLAR). Rather, the goa! 
of coaching is to develop the acquisition of skill and general problem-solving abilities, and it 
works by engaging the student in a computer game (see Article A). In a coaching situation, 
the Immediate aim of the student is to have fun, and skill acquisition is an indirect 
consequence. Tutoring comes about when the computer coach, which is "observing" the 
student's play of the game, interrupts him and offers new information or suggests new 
strategies. A successful computer coach must be able to discern what skills or knowledge 
the student might acquire, based on his playing style, and to judge effective ways to 
intercede in the game and offer advice. WEST and WUMPUS (Articles C4 and C5) are both 
coaching programs. 

Socratic tutoring and coaching represent different styles for communicating with the 
student. All mixed-initiative tutoring involves following some dialogue strategy, which 
involves decisions about when and how often to question the student and methods for 
presentation of new material and review. For example, a coaching program, by design, is 
non-intrusive and only rarely lectures. On the other hand, a Socratic tutor questions 
repetitively, requiring the student to pursue certain lines of reasoning. Recently ICAI 
research has turned to making explicit these alternative dialogue management principles. 
Collins (1976) has pioneered the careful investigation and articulation of teaching 
strategies. Recent work has explored the representation of these strategies as production 
rules (see CJancey, 1979a and Article 02 on Collins and Stevens' WHY system). 

For example, the tutoring module in the GUIDON program, which discusses MYCIN-like 
"case diagnosis" tasks with a student (see Clancey, 1979a, and Article C1 on MYCIN), has an 
explicit representation of discourse knowledge. Tutoring rules select alternative dialogue 
formats on the basis of economy, domain logic, and tutoring or student modeling goals. 
Arranged into procedures, these rules cope with various recurrent situations in the tutorial 
dialogue, for example: introducing a new topic, examining a student's understanding after he 
asks a question that indicates unexpected expertise, relating an inference to one just 
discussed, giving advice to the student after he makes a hypothesis about a subpr^ipm, and 
wrapping up the discussion of a topic. 

Conclusion 

In genera!, ICAI programs have only begun to deal with the problems of representing 
and acquiring teaching expertise and of determining how this knowledge should be integrated 
with general principles of discourse. The programs described in the articles to follow have all 
investigated some aspect of this problem, and none offer an "answer" to the question of how 
to build a computer-tutor. Nevertheless, these programs have demonstrated potential 
tutorial skill, sometimes often snowing striking Insight Into students' misconceptions. 
Research continues toward making viable Al contributions to computer-based education. 

References 
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C.  ICAI Systems 

C1.   SCHOLAR 

An important aspect of tutoring is the ability to generate appropriate questions for the 
student. These questions can be used by the tutor to indicate the relevant material to be 
learned, to determine the extent of a student's knowledge of the problem domain, and to 
identify any misconceptions that he might have. Given that the knowledge base of a tutorinc) 
program can't contain all of the "facts" that are true about the domain, the tutor should be 
able to reason about what it knows and make plausible inferences about facts in the domain. In 
addition to responding to the student's questions, the tutor should be able to take the 
initiative during a tutoring dialogue by generating good tutorial questions. 

SCHOLAR . one such mixed-initiative computer-based tutorial system; both the system 
and the student can initiate conversation by asking questions. SCHOLAR was the pioneering 
effort in the development of computer tutors capable of coping with unanticipated student 
questions and of generating subject matter in varying levels of detail, according to the 
context of the dialogue. Both the student's input and the program's output are in English 
sentences. 

The original system, created by Jaime Carbonell, Allan Collins, and their colleagues at 
Bolt, Beranek end Newman, Inc., tutored students about simple facts in South American 
geography (Carbonell, 1970b). SCHOLAR uses a number of tutoring strategies for composing 
relevant questions, determining whether or not the student's answers are correct, and 
answering questions from the student. Both the knowledge representation scheme (see 
below)^ and the tutorial capabilities are applicable to other domains besides geography. For 
example, NLS-SCHd-AR was developed to tutor computer-naive people in the use of a 
complex text-editing program (Grignetti, Hausman, & Gould, 1975). 

In addition to investigating the nature of tutorial dialogues and human plausible 
reasoning, the SCHOLAR research project explored a number of Al issues, including: 

\ 
1. How  can  real-world knowledge be stored  effectively for the  fast,  easy 

retrieval of relevant facts needed in tutoring? 

2. What general reasoning strategies are needed to make appropriate inferences 
from the typically incomplete database of the tutor program? 

3. To what extent can these strategies 'le independent of the domain 
being discussed (i.e., be dependent or om of the representation)? 

The Knowledge Base~-Semantic Nets 

In SCHOLAR, knowledge about the domain being tutored is represented in a semantic net 
(see Article RepresentatioaBa). Each node or "unit" In the net, corresonding to some 
geographical object or concept, Is composed of the name associated with that node and a 
set of properties. These properties are lists of attribute-value pairs. For example, Figure 1 
shovja a representation of the unit for Peru: 

Ml       ���"�'- 
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PERU: 
((EXAMPLE-NOUN PERU)) 

,, 0) "importance' of unit is high 

(SUPERC (I 0) COUNTRY) 
(SUPERP (I 6) SOUTH/AMERICA) 

link to superordinate units 

(LOCATION (I 0) values of LOCATION attribute follow: 

(IN (I 0) (SOUTH/AMERICA (I 0) WESTERN)) 
(ON (I 0) (COAST (I 0) (OF (I 0) PACIFIC)) 
(LATITUDE (I 4) (RANGE (10)-18 0)) 
(LONGITUDE (I 5) (RANGE (I 0) -82 -68)) 
(BORDERING/COUNTRIES (I 1) 

(NORTHERN (I 1) (LIST COLUMBIA ECUADOR)) 
(EASTERN (I 1) BRAZIL) 

Figure 1. The unit for PERU, 

Attributes can be English words (other units) that are de^ed elsewhere in ;'- n^ ^^ 
several special attributes such as "SUPRA" for superattnbute, "SUPERC for superconcepi 
or supero din te "SUPERP" for superpart. or case structure attributes "f^'" P«^..^ 
below). An example of SUPRA might be the fact that »fertile« refers to so^ ad so 
refers to "topography"; of SUPERP, that Peru Is part of South ^er.ce; of SUPERC hat Peru 
is a country Values can also be importance tags, like the expressions "(I 0) after LOCATION 
n Figure and "ID" after EASTERN: the lower the number, the more important the property. 
SCHOLAR uses these tags to measure the relevance of a node with respect to the top.c 
under discussion (see below). 

Tutorial Dialogue 

An Important part of the SCHOLAR research has been an emphasis on the nature of 
tutorial drogue in particular the Socratic style of tutoring, where the tutor a tempts to 
diaanoL the student's misconceptions and then present material that will force the student 
to irhia own errws Collins. Warnock. «. Passaflume. 1974). Many human tutodal protoco s 
have been analysed to see what strategies human students follow, m order to try to 
incoUate these strategies In the system (see also Article Ca on the groups con.numg 
esear h fn th" direction). The fol.owing example is an excerpt '^ « ""l

d
0;d^„^ 

South American geography tutor. The student's questions and answers are preceded by . 
and annotations are shown in italics: 

B ^ 

f 
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What is the language of Argentina? 
«* PROBABLY SPANISH 

Very good. 
Approx what is the area of Argentina? 

Student changes topic... 

«« TELL ME SOMETHING ABOUT PERU 

Peru is a country. 
It is located in South America 
The capital of Peru is Lima. 
Now answer the question you didn't answer before. 

...and finally answers the question. 

** THE AREA OF ARGENTINA IS 1,100,000 SQUARE MILES 

Approximately true, but a more exact value is 1,200,000. 
The eastern bordering country of Peru is •--. 

Student makes an error and is corrected... 

«* CATHOLICISM 

Wrong. Catholicism Is not a country but a religion. 
The correct answer Is: Brazil 
Where is Peru? 

...and once again changes topic. 

** Is Asuncion hot? 
Since Asuncion is part of Paraguay, yes. 

** WHAT IS THE MOST IMPORTANT DIFFtRENCE BETWEEN PERU AND PARAGUAY? 
The primary difference is: The population of Peru is larger by a 
factor of 7.8. 

The natural language processing used by SCHOLAR is based on a case grammar system 
(Article Natural Languaoe.B3b), and the semantic Interpretation of a student's response is 
heavily guided by the geography knowledge in the semantic net. Matural language 
processing Is important In SCHOLAR because it allows the student to take the initiative and 
ask questions that were not anticipated by the program. However, comprehension of English 
Input is facilitated by a taxonomy of expected "question types." The case grammar is also 
used by the system to constrt ^t questions and presentations of new material from the 
semantic network. English output Is composed of short, simple sentences, with no embedded 
clauses and a limited repertoire of verbs—generally some form of the verb "to be." 

A simple agenda is used to keep track of topics that are being discussed.   Timing 

/ 



C1 SCHOLAR 13 

i 

considerations and relevance (Importance tags) affect the generation «"J Pruning oMopk* 
on this agenda. Continuity between questions is weak, however, since SCHOLAR does not 
plan a series of questions to make a point. SCHOLAR is capable of diagnosing a student s 
confusion only by following up one question with a related question. 

Making Inferences 

SCHOLAR'S Inference strategies, for answering student questions and evaluating 
student answers to Its questions, are designed to cope with the Incompleteness of the 
information stored In the semantic net database. Some of the Important strateg.es used to 
reason with Incomplete knowledge are given below. These abilities Jave been explored 
further in current research dealing with default reasoning (Relther. 1978) and plausible 
reasoning (Collins, 1978). 

Intersection search. Answering questions of the form "Can X be a Y7" ie;0;. "•» B"eno8 
Aires a city In Brazil?") Is done by an Intersection search: The superconcept (SUPERC) arcs 
of both nodes for X and Y are traced until an Intersection Is found (,e « common 
superconcept node is found). If there Is no Intersection, the answer is "NO. if there is an 
Intersection node Q, SCHOLAR answers as follows: 

If  0=Y, then "YES"; 
If Q=X, then "NO, Y IS AN X." 

For example, the question "Is Buenos Aires In Brazil?" is answered YES because Brazil is a 
SUPERC of Buenos Aires in the net (Q=Y): 

SOUTH AMERICA 

/ (Superconcept) 

BRAZIL (Y) 

(Superconcept) 

BUENOS AIRES (X) 

But. the question "is Brazil In Buenos Aires?" gets the response "NO. BRAZIL is a country." 

SOUTH AMERICA 
/  (Superconcept) 

BRAZIL (X) 

(Superconcept) 

BUENOS'AIRES (Y) 

Common superordinate.  Otherwise, if Q Is not X or Y. the program focuses on the two 
elements that have Q as a crmmon superordinate.  if they are contradictory (contain suitable 

/ 
s 
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CONTRA properties) or have distinguishing, mutually exclusive properties (e.g., different 
LOCATIONS), the answer is "NO"; otherwise the system answers "I DON'T KNOW." Answering 
"Is X a part of Y7" questions is similar, except SUPERP (superpart) arcs are used for thn 
intersection process. 

Open and closed sets. In order to look for all objects in the system that satisfy some 
condition (e.g., "How many cities in Columbia are on the Atlantic?"), a distinction must be 
made about whether the resulting set of these objects Is closed (explicitly contains all such 
objects) or open (contains some and need not contain all such objects). In SCHOLAR'S net, 
sets are tagged by the course author as either open or closed, thus giving an indication of 
the incompleteness of the system's knowledge. 

While it Is easy for SCHOLAR to answer questions (such as, "Is France a country in 
South America?") about closed sets, similar questions about open sets require the use of 
special techniques—SCHOLAR must be able to reason about the extent of its knowledge. For 
example, if we ask SCHOLAR whether or not rubber is a product of, say, Guyana and if there 
is no explicit information about Guyanese rubber production in the semantic net, SCHOLAR 
starts to reason with what It knows: It compares the Importance tags of the agricultural 
products of Guyana with the importance tags for rubber in countries that it knows produce 
rubber. It happens that Peru is a known rubber producer. SCHOLAR looks at the i-tag of 
rubber for Peru and compares this tag to the largest (least important) l-tags associated with 
Guyana. If it finds that these are comparable, SCHOLAR infers that it knows as much about 
Guyana (up to some large l-tag value) as it knows about Peru. Therefore SCHOLAR infers 
that It would know about rubber production in Guyana if it were important. S.nce rubber is 
not listed for Guyana, SCHOLAR makes the plausible (though uncertain) conclusion that rubber 
is not produced there. At this point SCHOLAR answers that it doesn't know for certain and 
gives the information about rubber and Peru. 

SCHOLAR'S use of knowledge about the extent of Its knowledge in this kind of plausible 
reasoning Is unique in Al research and represents an application of meta-level knowledge (see 
HepresentB t lon.Overview). 

Summary 

The inferenclng strategies used by SCHOLAR are independent of the confnt of the 
semantic net, and are applicable In different domains. The inferences produced are fairly 
natural; that Is, they cope with the incomplete knowledge by employing reasoning processes 
similar to those that people use. The SCHOLAR project as a whole provides an ongoing 
environment for research on discourse, teaching strategies, and human plausible reasoning 
(see Article CS on recent research, including the WHY system). 

References 

Carbonell (1970a) Is a classic paper, defining the field of ICAI and introducing the 
SCHOLAR system Collins (1976) is an illuminating study of human tutorial dialogues. Collins 
et al. (1976) discusses Inference mechanisms, and Collins (1978) reports extei-ded 
research on human plausible reasoning. Grignettl, Hausman, & Gould (1976) describes NLS- 
SCHOLAR. 
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C2.   WHY 

Recent .sea.. .Y ..an C=^ r^^^-P-^" ^ ^'^ ^ Beranek  and Newman.  Inc.   has focused on devetop  g        PR ^ a system t 

discuss complex systems. Their P^^;.8"*'^ °n
m t0 investigate the nature of tutor.al 

tutors facts about South American geography ^ *' *" J^-where the causal and temporal 
dialogues about subject matter that ""^^XBTIJM'BSX and where student's 
interrelations between the concepts m the doma'" ^^^^ tton8 about why processes 
errors could involve not only forf ^^^ ^^^fj.^ing a new system, called WHY. that 
work the way they do.  Stevens «. Co^\(1

c
9/Je

a;ieoph^cal process that is a function of r^r^i.--:-Siar^rb^ted L< . ^ »^ ^ 
sufficient to account for rainfall. 

1978)! 

below.) 

2   Wha, types o. .isconceptlons do „u.ep.s h.ve?   How do lu..r3 di.c,n„se 
' r." . miscooooptions from the errors stodents make? 

3.  Whe. ere .h. .betreotteo. end viewpoints «,.. tutors use to expiain Physioai 
processes? 

By a„.,y2.n8 tutoriai dieiogues ^'--^'r^^^^rporerMo'rTu'Jai tZ�. 
Identify eiements of a theory of ,u'0;1"V. ^('"tS for further investigation. The 
which is then XtV^s^rrhoTaTerlero/iteratiohs of this sort. Th. wo* 
ZlXt'^lZ^ TZl topic above, the nature of Socratic tutor.ng. 

Socratic Tutoring Heuristics 

Collins (1976) argues that ^^^ ^ ^^ tryZ'to ^rS 
is best accomplished by dealing with ^f^J^Xr^orm complex subjects where 
from"them.   Socratic dialogue is especial y ap^ri^J°[^7 the    phenomenon    under 
'actors    interact   and   where   ^JlTe^Z ^TeTJ^ 

consideration,  in an effort to ^^^^ ""ch control the student/system 
version of the WHY system incorporates 24 heuristics wmc 
interaction.  An example heuristic is: 

,/ the student gives as an expian.tion of caus.i dependence one or more 
factors that are not necessary, 

,*„  pick a counterex.Wie with the wrong v.;ue of «h" <.ctor and ask the 
student why his causal depondeoco doeso', hold In that case. 

*r<EiC_iÄäjf"v~ ^ 



(Section Omitted) 

Heuristic 4: Ask for subsequent causes. 

What happens after the moisture-filled air reaches the land? 
** I DON'T KNOW 

Heuristic 5.- Suggest a factor and ask if it is a cause. 
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This rule forces the student to consider the necessity of a particular factor. For example, if 
the student gives rainfall-- as a reason for growing rice, then the computer-generated 
counterexample "Why do they grow rice in Egypt, where there isn't much rainfall?" 
challenges "he student's explanation of rice growing. These heuristic rules are designed to 
facilitate tutorial dialogues in which students must consider combinations of factors that are 
necessary for rainfall, eliminate irrelevant factors, and attempt to generalize from specific 
cases to general conditions.   (See Collins, 1976, for a complete discussion of the tutoring 
rules.) 

s 
WHY's knowledge base about rainfall is represented in script-\'\ke data structures, which 

encode temporal relations In the rainfall process; for example, "First water evaporates f-om 
an ocean or sea, then the water-laden air mass is carried over land by winds, which in turn 
causes the air mass to cool, which causes precipitation." (See Schänk & Abelson, 1977, on 
scripts, as well as Article RepresentatioaB?.) This knowledge representation is adequate for 
capturing many of the characteristics of a tutorial dialogue, but there are other kinds of 
knowledge about rainfall that aren't represented here, discussed below. 

The following excerpt is from a dialogue with the current version of the WHY system. 
The system prompts the student to suggest causes of rainfall, to look for prior or 
intermediate causes, and finally to suggest a general rule. When such a rule is proposed, the 
system finds a counterexample and forces revision of the rule to account for it. The system 
proceeds In this way until a rule of sufficient generality is found. The protocol is annotated 
with the heuristics employed by the system at each Juncture in the conversation. 

Heuristic 1: Ask for a prediction about a particular case. 

Do you think the Amazon jungle has he«vy rainfall or light rainfall? 
** HEAVY RAINFALL 

Heuristic 2: Ask for prior causes. 

Why doe^j the Amazon jungle have heavy rainfall? 
** BECAUSE ITS NEAR THE ATLANTIC 
Yes, the Amazon jungle is near the equatorial Atlantic. 

Heuristic 3: Ask for intermediate causes. 

How does that affect rainfall In the Amazon jungle? 
*« THE WATER IN THE CURRENT IS WARM 

V-^vörd<-'\_'     ''-ti      ' ?r T ^Imiitr h      i   '*"""! Il'l'l llllliijnrTii"" "'i III1 '^StxJUifi-irr^iia^itp. 
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Do you think the Andes mountain range has any effecl on the rainfall 
in the Amazon Jungle? 
*• YES 

Heuriitic 3: Ask for intermediate causes. 

How? 
** THE PREVAILING WIND HITS THE ANDES AND THE AIR COOLS 

Heuristic 3; Ask for intermediate causes. 

How does the fact that prevailing wind hits the Andes, lead to 
air cooling? 

(5ecfton Omitted) 

Heuristic 6: Form a general rule for an Insufficient cause 

Do you think that any place with mountains has heavy rainfall? 
** YES 

Heuristic 7: Pick a counterexample for an insufficient cause, and Heuristic 2: Ask for 
prior causes 

Southern California has mountains. Why doesn't Southrrn California 
have heavy rainfall? 

Current Research 

Tutorial goals. One of the shortcomings of the existing system is that it doesn't have 
long-term "goals" for the tutorial dialogue. Implicit In the tutorial rules is some idea about 
local management of the Interaction, but a global strategy about the tutoring session is 
absent. Human tutors, however, admit to having goals like "Concentrate on one particular 
part of the causal structure of rainfall at a time," or "Clear up one misconception before 
discussing another." Stevens & Collins (1977) set about codifying hese goals and 
strategies for incorporation into the WHY system. They analyzed tutoring protocols in which 
human tutors commented on what they thought the students did and didn't know, and on why 
they responded to the students as they did. From this unalysis. two top-level goals became 
apparent: 

1. Refine the student's caudal structure, starting with the most important 
factors In a particular process and gradually incorporating more subtle 
factors. 

2. Refine the student's procedures for applying his causal model to novel 
situations. 

�««�msn»»*1 
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Student misconceptions. The top-level goals involve subgoals of identifying and 
correcting the student's misconceptions. Stevens & Collins (1977) classified these 
subgoals into five categories corresponding to types of bugs and how to correct them: 

Factual Bugs. Dealt with by correcting the student, Teaching facts is not 
the goal of Socratic tutoring; interrelationships of facts are more important. 

Outside-domain bugs.   Misconceptions about causal 'tructure, which the 
tutor chooses not to explain in detail. For example, the "correct" relationship 
between the temperature of air and its moisture holding capacity is often   . 
stated by the tutor as a fact, without futher explanation. 

Overgeneralization. When a student makes a general rule from an 
insufficient set of factors (e.g., any place with mountains has heavy rainfall), 
the tutor will find counterexamples to probe for more factors. 

Overdifferentiation. When a student counts factors as necessary when 
they are not, the tutor will generate counterexamples to show that they are 
not. 

Reasoning bugs. Tutors will attempt to teach students skills such as forming 
and testing hypotheses and collecting enough information before drawing a 
conclusion. 

If a student displays mtw« than one bug, human tutors will employ a set of heuristics to 
decide which one to correct first; 

1. Correct errors before omissions. 

2. Correct causally p;ior factors before later ones. 

3. Make short corrections before longer ones. 

4. Correct low-level bugs (in the causal network) before correcting higher 
level ones. 

Functional relationships. The bugs Just discussed are all domain independent, that is, 
they would occur in tutorial dialogues about other complex processes besides rainfall. But 
some bugs are the results of specific misconceptions about the functional interrelationships 
of the concepts of the specific domain. For example, one common misconception about 
rainfall Is that "cooling causes air to rise" (Stevens, Collins, & Goldin, 1978). This is not a 
simple factual misconception, nor is It domain Independent. It is best characterized as an 
error in the student's functional model of rainfall. 

In fact, the script representation used In the WHY system for capturing the temporal 
and causal relations of land, air, and water masses In rainfall proved inadequate to get at all 
of the types of student misconceptions. Recent work has investigated a more flexible 
representation of functional relationships, which allows the description of the processes that 
collectively determine rainfall from multiple viewpoints—e.g., temporal-causal-subprocess view 
captured in the scripts, functional viewpoint which emphasizes the roles that different 

amp 
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objects play in the various processes (Stevens. Collins. & Goldin. 1978). Misconceptions 
about rainfall are represented as errors in the student's model of K***'***�*�**-* 
functional relationship has four components: (a) a set of actors, each w.th a rde In he 
process; (b) a set of factors that affect the process--the factors are all attributes of the 
actors e.g.. water is an actor In the Evaporation relationship and its temperature is a 
factor); (c) the result of the process--this is always a change in an a tribute of o^ of the 
actors and (d) the relationship that holds between the actors and the result, or how en 
attribute gets changed. These funtional relationships may be the result Rodels f^mo her 
domains that are applied metaphorically to the domain under discuss.on (Stevens & Collins. 
1978). 

Summary 

The WHY system started as en extension of SCHOLAR by the implementation of rules 
that characterize Socratic tutoring heuristics. Subsequently, an effort was made to describe 
the global strategies used by human tutors to guide the dialogue. Since these were d.rected 
towards dispelling students' misconceptions, five classes of m;.sconcept,on

t
s H^ 

established, as well as means for correcting them. Many misconceptions are not domain 
independent and the key to more versatile tutoring lies in continuing research on knowledge 
representation. 

References 

The most recent reference on the research reported here is SXe^%Co^s'^Go^ 
(1978). The tutorial rules are discussed fully in an excellent article by Collins (1976). The 
later work on the goal structure of a tutor is reported in Stevens & Collms. 1977 Fmally 
recent work on conceptual models and multiple viewpoints of complex systems is discussed 
In Stevens & Collins (1978). 

MMK*" 

/ 

'| 

t^Q,�-^ —*"ysr- �-IWiii'i». - ���— 



20 Al Applications in Education 

C3.   SOWIE 

SOPHIE (a SOPHisticated Instructional Environment) is an ICAI system developed by 
John Seely Brown, Richard Burton, and their colleagues at Bolt, Beranek and Newman, Inc., to 
explore the objective of a wider range of student initiatives during the tutorial interaction 
(Brown, Burton, & Bell, 1975). The SOPHIt system provides the student with a learning 
environment in which he learns problem-solving skills by trying out his ideas, rather than by 
instruction. The system has a model of the problem-solving knowledge in its domain as well 
as numerous heuristic strategies for answering the student's questions, criticizing his 
hypotheses, and suggesting alternative theories for his current hypotheses. SOPHIE enables 
the student to have a one-to-one relationship with an "expert" who helps him create his own 
ideas, experiment with these ideas and, when necessary, debug them. 

Figure 1 illustrates the component modules of the original SOPHIE-I system (Brown, 
Rubinstein, & Burton, 1976) and the additional capabilities added for the SOPHIE-II system, 
discussed later in this article. 

Natural 
Language 

SOPHIE-I SYSTEM 

Hypothesis 
Evaluator 

Semantic 
Network 

Question 
Answerer 

Team 
Game 
Monitor 

\ 
SOPHIE Menu 

AUGMENTATIONS FOR SOPHIE-II 

Articulate 
Expert 
Debugger/ 
Explainer 

/ 

Figure 1. SOPHIE-I and SOPHIE-II. 
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SOPHIE-I 

SOPHIE teaches problem-solving skills in the context of a simulated electronics 
laboratory. The problem facing the student is to find the "faults" in a malfunctioning piece of 
equipment whose characteristics have been given to him by taking "measurements." The 
student obtains a sequence of measurements (such as voltages, currents, resistances, etc.) 
to determine what Is wrong with the equipment and asks questions about the measurements 
and about what fault hypotheses he should consider, given the information he has discovered 
so far. SOPHIE evaluates the hypotheses by considering ail of the Information that the 
student should have been able to derive from his current set of measurements. The system 
also judges the merits of a student's suggestion for a new measurement in light of the prior 
sequence of measurements. SOPHIE can decide If a measurement is valuable, depending on 
whether it eliminates or isolates a fault, and will inform the student when a proposed 
measurement provides no new information. 

The following portion of a sample protocol illustrates some of the linguistic and 
inferential capabilities of the SOPHIE system (from Brown & Burton, 1975). SOPHIE randomly 
selects a fault (in the performance of a circuit component), inserts it into a model or 
simulation of the circuit, and tells the student how the controls are set. The student is given 
a schematic diagram of the circuit, and the dialogue refers to components in the schematic 
diagram (e.g., resistor 6 (R8), node connection 1 (N1), capacitor 6 (05)). The student begins 
his troubleshooting by performing measurements in the faulted circuit. 

Welcome to Sophie, a reactive learning environment.  The piece of 
equipment you are studying is a regulated power supply.  Would you like 
to start with a faulted instrument that needs fixing? 
** YES 

The instrument has a fault and its present control settings are: 

CURRENT CONTROL 
CURRENT RANGE SWITCH 
LOAD RESISTANCE IN OHMS 

VOLTAGE CONTROL 
VOLTAGE RANGE SWITCH 

** WHAT IS THE OUTPL "f* 

The output voltage is 11.7 volts. 

Notice that "output" was disambiguated as "output voltage." 

«« WHAT IS IT IN A WORKING INSTRUMENT? 

In a working circuit the output voltage is 19.9 volts. 

In case the student does not know what the required value of measurement should have 
been, he can ask for any measurement in a properly functioning instrument. " ^ student 
then requests an internal measurement. 

** WHAT IS THE VOLTAGE BETWEEN R8 AND 017 

cc 1.0 
CR HIGH 
LOAD 20 
VC 1.0 
VR HIGH 

�il ' ". .' .   ' '' 
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The voltage at N1 is 47.6 volts. 

** REPLACE Q6 

The student believes that he has discovered the problem (in transistor Q6) and tries to fix 
it. Before a component is replaced, however, the system queries him as to how he thinks it 
is faulted. 

I am going to ask you some questions about how Q6 is faulted. 
Are any junctions shorted? 

** I DON'T KNOW 

Are any terminals open? 

** YES 

Which terminal(s) are open? 

*« THE BASE 

06 is not faulted in that manner. Q6 not replaced. 

After learning that Q6 does not have an open base, the student asks if this was at least a 
reasonable hypothesis. 

«* IS IT POSSIBLE THAT Q6 HAS AN OPEN BASE? 

Before the system's evaluation procedures can be applied to the student's idea or 
hypothesis, the hypothesis must it completely specified. To help the student out, the 
system suggests a plausible complete specification of it in an abbreviated form familiar to 
the student. 

Is the complete fault mode EB/EC/BC = Open/Ok/Open what you intended? 

** SURE 

That fault is consistent with all of the measurements you have made. 

The hypothesis is reasonable, but other measurements will indicate that another component 
is faulty. 

ii     UIIIIJ.IMIM. " /* 
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Natural Language Processing—Semantic Grammar 

In an instruc'cional environment, it is important that the student be provided with a 
convenient way in which to communicate his ideas to the system. The student wilf become 
quickly frustrated If he has to try several ways of expressing an idea before the system can 
understand it. SOPHIE'S natural language understander copes with various linguistic problems 
such as anaphoric references and context-dependent deletions and ellipsis, which occur 
frequently In natural dialogues. > 

SOPHIE'S natural language capabilities are based on the concept of a semantic grammar 
In which the usual syntactic categories such as noun, verb, and adjective are replaced by 
semantically meaningful categories (Burton, 1976b, and Burton and Brown, 1979b). These 
categories represent concepts known to the system-such as "measurements," "circuit 
elements," "transistors" and "hypotheses." For each concept there is a grammar rule that 
gives the alternate ways of expressing that concept in terms of its constituent concepts. 
Each rule Is encoded as a LISP procedure that specifies the order of application of the 
various alternatives In each rule. 

A grammar centered around semantic categories allows the parser to deal with a 
certain amount of "fuzziness" or uncertainty in its understanding of the words in a given 
statement; that is, If the parser is searching for a particular instantiation of a semantic 
category, and the current word In the sentence falls to satisfy this instantiation, it skips 
over that word and continues searching. Thus, if the student uses certain words or concepts 
that the system doesn't know, the parser can ignore these words and try to make sense of 
what remains. In order to limit the negative consequences that may result from a 
misunderstood question, SOPHIE responds to the student's question with a full sentence that 
tells him what question Is being answered. (See Article Natural Language.F? about the 
semantic grammar used in the LIFER system). 

Inferencing Strategies 

In order to Interact with the student, SOPHIE performs several different logical and 
tutorial tasks, Firss there is the task of answering hypothetical questions. For example, the 
student might ask, "If the base-emitter junction of the voltage limiting transistor opens, then 
what happens to the output voltage?" 

A second task SOPHIE must perform is that of hypothesis evaluation, where the student 
asks, "Given the measurements I have made so far, could the base of transistor Q3 be 
open?" The problem here Is not to determine if the assertion "the base of Q3 Is open" is 
true, but whether this assertion Is logically consistent with the data that have already been 
collected by the student. If It Is not consistent, the program explains why it Is not. When it 
Is consistent, SOPHIE Identifies which Information supports the assertion and which 
information is Independent of it. 

A third task that SOPHIE must perform is hypothesis generation. In Its simplest form this 
Involves constructing all possible hypriheses that are consistent with the known information. 
This procedure enables SOPHIE to answer questions like, "What could be wrong with the 
circuit (given the measurements that I have taken)?" The task Is solved using the generate- 
and-test paradigm with the hypothesis evaluation task described above performing the "test" 
function. 

 � ""' �����WHMiWiil     --;��
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Finally SOPHIE can determine whether a given measurement is redundant, that is, if the 
results of Se measurement could have been predicted from a complete theory of the circuit, 
given the previous measurements. 

SOPHIE accomplishes all of these reasoning tasks using an inference ««^^J*^ 
relies principally on a general-purpose simulator of the circuit under discussion. For example 
oanswTr a question about a changed voltage resulting from a hypothetical nodlflcation to a 

^rcursOPHE^st interprets the question with its parser and t'-n. using this interpre^t.o. 
simulates the desired modification. The result is a Voltage Table that represents the 
voTages at each terminal in the modified circuit. The original question is then answered in 
terms of these voltages. 

The tasks of hypothesis evaluation and hypothesis generation are handled in a similar 
manner using the simulator. When evaluating hypotheses. SOPHIE attempts to determine e 
Togical consistency of a given hypothesis. To accomplish this task« ^7 *<7 ° the 

hypothesis is performed on the circuit model and measurements are taken o^le resu,^ „ 
the values of any of these measurements are not equivalent to the measurements taken by 
Ihe student then a counterexample has been established and it is used to critique the 
student's hypothesis. 

When generating hypotheses. SOPHIE attempts to determine the set of possible faults 
or hypo heses that are consistent with the observed behavior of the faulteo "»trument. 
This task Is performed by a set of specialist procedures that propose a possible set of 
Spotfese to' expll a measurement and then simulate them to make sure that they explam 
the output voltage and all of the measurements that the student has taken. Hypothes.s 
generation ca be used to suggest possible paths to explore when the student has run ou 
of ideas for what could be wrong with the circuit or when he wishes to understand the full 
rmpSons of his last measurement. It Is also used by SOPHIE to determ.ne when a 
measurement Is redundant. 

SOPHIE-II: The Augmented SOPHIE Lab 

Extensions to SOPHIE Include: (a) a troubleshooting game involving two teams of students 
and (b) the development of an articulate expert debuggerlexplainer The ^P'« react'v« 
learning environment has also been augmented by the development of ^e:o;'«n^ C*1 

lesson material, used to prepare the student for the laboratory mteract.on (Brown, 
Rubinste:. I Burton. 1976). The articulate expert not only locates ^^'Xove ^ 
in a given instrument but can articulate exactly the deductions that led to its discovery, as 
well as the more global strategies that guide the trouble-shooting scenario. 

Experience with SOPHIE indicates that its major weakness is an inability to ^"°w UP °" 
student errors. Since SOPHIE is to be reactive to the student, it will not M***�^** 
explore a student's understanding or suggest approaches that he does not consider 
However, the competitive environment of the troubleshooting game, in which partners share a 
Noblem and work it out together, was found to be an effective means of exercising the 
student's knowledge of the operation of the instrument ^«/^"M^;/'"^' !J 
experiment Involving a minicourse-and exposure to the frame-based *e*Xs'"fj*^'*"* 
the original SOPHIE Lab-indicated that long-term use of the system is �re effect.ve than a 
single, concentrated exposure to the material (Brown, Rubinstein. & Burton. 1976). 

/ / > 
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Summary 

The goal of the SOPHIE project was to create a learning environment in which the 
student would be challenged to explore ideas on his own and to create conjectures or 
hypotheses about a problem-solving sitcation. The student receives detailed feedback as to 
the logical validity of his proposed solutions. In cases where the student's ideas have 
logical flaws, SOPHIE can create relevant counterexamples and critiques. The SOPHIF 
system combines domain-specific knowledge and powerful domain-independent infernnr." 
mechanisms to answer questions that even human tutors might find it extremely difficult t" 
answer. 

References 

Brown, Burton, & Bell (1976) give a complete description of the early work on SOPHIE, 
and Brown, Rubinstein, & Burton (1976) report on the later work. Also see Brown & Burton 
(1976). 
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C4.   WEST 

Development of the first computer coach was undertaken by Richard Burton and John 
Seely Brown at Bolt, Beranek and Newman, Inc., for the children's board game called How the 
West Was Won. The term "coach" describes a computer-bajed learning environment where 
the student is involved in an activity, like playing a computer game, and the instructional 
program operates by "looking over his shoulder" during the game and occasionally offering 
criticisms or suggestions for improvement (Goldstein, 1977). This research focused on 
identifying: (a) diagnostic strategies required to infer a student's misunderstandings from his 
observed behavior and (b) various explicit tutoring strategies for directing the tutor to say the 
right thing at the right time (Burton & Brown, 1976, and Burton & Brown, 1979). The intention 
of this work was to use these strategies to control the interaction so that the instructional 
program took every possible opportunity to offer help to the student without interrupting so 
often as to become a nuisance and destroy the student's fun at the game. By guiding a 
student's learning through discovery, computer-based coaching systems hold the promise of 
enhancing the educational value of the increasingly popular computer-gaming environments. 

Philosophy of the Instructional Coach 

The pedagogical ideas underlying much of computer coaching researcii in WEST can be 
characterized as guided discovery learning. It assumes that the student constructs his 
understanding of a situation or a task based on his prior knowledge. According to this theory, 
the notion of misconception or bug plays a central role in the construction process. Ideally, a 
bug in the student's knowledge will cause an erroneous result in his behavior, which the 
student wMI notice. If the student has enough information to determine what caused the 
error and can then correct it, the bug is referred to as constructive. The role of a tutor in an 
Informal environment is to give the student extra information in situations that would 
otherwise be confusing to him, so that he can determine what caused his error and can 
transform nonconstructive bugs into constructive ones (see Fischer, Brown, & Burton, 1978 
for further discussion). 

However, an important constraint on the coach is that it should not interrupt the 
student too often. If the coach immediately points out the student's errors, there is a 
danger that the student will never develop the necessary skills for examining his own 
behavior and looking for the causes of his mistakes himself. The tutor must be perceptive 
enough to make relevant comments, but not be too intrusive, destroying the fun of the game. 
The research on the WEST system examined a wide variety of tutorial strategies that must 
be included to create a successful coaching system. 

How the West Was Won 

How the West Was Won was originally a computer board game designed by Bonnie 
Anderson of the Elementary Mathematics Project at the PLATO computer-based education 
system at the University of Illinois (Dugdale & Kibbey, 1977). The purpose of this original 
(nontutorial) program was to give elementary-school students drill and practice in arithmetic. 
The game resembles the popular Chutes and Ladders board game and, briefly, goes 
something like this: At each turn a player receives three numbers (from spinners) with which 
he   constructs   an   arithmetic   expression   using   the  operations  of   addition,   subtraction. 
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multiplication, and division.  The numeric value of the completed expression is the number of 
spaces the player CCT move, the object of the game being to get to the end first. 

However, the strategy of combining the three numbers to make the biggest valued 
expression is not always the best strategy, because there are several special features on 
the game board. Towns occur every ten spaces and if a player lands on one, he skips ahead 
to the next town. There are also shortcuts, and If iie lands on the beginning of one a player 
advances to the other end of the shortcut. Finally, if the player lands on the space that his 
opponent is occupying, the opponent Is bumped back two towns. The spinner values in WEST 
are small, so these special moves are encouraged (I.e., landing on towns or shortcuts "• on 
your opponent). 

Diagnostic Modeling 

There are two majrr related problems that must be solved by the computer coach. 
They are (a) when to Interrupt the student's problem-solving activity, and (b) what to say 
once it has been intarrupted. In general, solutions to these problems require both techniques 
for determining what the student knows (procedures for constructing a diagnostic model) and 
explicit tutoring principles about interrupting and advising. These, in turn, require theories 
about how a student forms abstractions, how he learns, and when he Is apt to be most 
receptive to advice. Unfortunately, few, if any, existing psychological theories are precise 
enough to suggest anything more than caution. 

Since the student is primarily engaged in a gaming or problem-solving activity, diagnosis 
of his strengths and weaknesses must be unobtrusive to his main activity. This objective 
means that the diagnostic component cannot use pre-stored tests or pose a lot of diagnostic 
questions to the student Instead, the computer coach must restrict itself mainly to inferring 
a student's shortcomings from what he does in the context of playing the game or solving the 
problem. This objective can create a difficult problem—just because a student does not use 
a certain skill while playing a game does not mean that he does not know that skill. Although 
this point seems quite obvious, it poses a serious diagnostic problem: The absence of a 
potential skill carries diagnostic value if and on'y If an expert in an equivalent situation would 
have used that skill. Hence, apart from his outright errors, the main window a computer- 
based coach has on a student's misconceptions is through a differential modeling technique 
that compares what the student is doing with what the expert would be doing in his place. 
This difference provldei hypotheses about what the student does not know or has not yet 
mastered.  (See the related discussion of overlay models In Article C5.) 

Constructing the differential model requires that two tasks be performed by the coach, 
using the computer Expert (the subprogram that is expert at playing the game WEST). The 
first task of the coach is to evaluate the student's current move with respect to the set of 
possible alternative moves that an Expert might have made in the exact same 
circumstances. The second task is to determine what underlying skills were used to select 
and compose the student's move and each of the "better" moves of the Expert. To 
accomplish the evaluative task, the Expert need only use the results of its knowledge and 
reasoning strategies, available as better moves. However, for the second task, the coach 
has to consider the "pieces" of knowledge involved in move selection and in the generation 
of better moves, since the absence of one of these pieces of knowledge might explain why 
the student failed to make a better move. 

»««���.! lawmmmmmmm 

f^^as^^g^^ 1>«J— 
:- 



28 Al Applications in Education 

Tutoring by Issue and Example — A General Paradigm 

One of the top-level goals driving the coach is the objective that its comments be both 
relevant to the situation and memorable to the student. The Issues and Examples tutoring 
strategy provides a framework for meeting these two constraints. Issues are concepts used 
in the diagnostic process to identify, at any particular moment, what is relevant. Examples 
prov'rle concrete Instances of these abstract concepts. Providing both the descnpt.on of a 
generic Issue (a concept used to select a strategy) and a concrete example of its use 
Increases the chance thai the student will integrate this piece of tutorial commentary into 
his knowledqe. In the Issues and Examples paradigm, the Issues embody the important 
concepts underlying a student's behavior. They define the space of concepts that the 
Coach can address--the facets of the student's behavior that are monitored by the Coach. 

In WEST, there are three levels of Issues on which a Coach can focus; At the lowrv 
level are the basic mathematical skills that the student is practicing (the use v< 
parentheses, the use of the various arithmetic operations, and the *orm or pattern of the 
student's move as an arithmentic expression). The second level of Issues concerns the 
skills needed to play WEST (like the special moves: bump, town, and shortcut) and the 
development of a strategy for choosing moves. At the third level ere the general skills of 
game playing (like watching your opponent to learn from his moves), which are not addressed 
by the WEST program. 

Each of the Issues is represented in two parts, a recognizer and an evalualor. The issue 
recognizer is data-directed; it watches the student's behavior for evidence that he does or 
does^not use a particular concept or skill. The recognizers are used to construct a model oi 
the student's knowledge. The Issue evaluators are goal-directed; they Interpret this model 
to determine the student's weaknesses. The Issue recognizers of WEST are fa.rly 
straightforward but are. nevertheless, more complex than simple pattern matchers. For 
example, the recognizer for the PARENTHESIS Issue must determine not only whether or not 
parentheses are present In the student's expression, but also whether they were necessary 
for his move, or for an optimal move. 

Figure 1 Is a diagram of the modeling/tutorial process underlying the Issues and 
Examples paradigm. Figure 1a presents the process of constructing a model of the student's 
behavior. It Is Important to observe that without the Expert it is impossible to determine 
whether the student is weak In some skill or whether the skill has not been used because 
the need for It has arisen infrequently in the student's experience. 
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Figure 1.     Diagram of  the Modeling/Coaching Process 
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The Coaching Process 

I igure lb presents the top level of the coaching process. When the student makes a 
less than optimal move (as determined by comparing his move with that of the Expert), the 
Coach uses the evaluation component of each Irsue to create a list of Issues on which it has 
assessed that the student is weak. From the Expert's list of better moves, the Coach 
invokes the Issue recognizers, to determine which issues are illustrated by these better 
moves. From these two lists of Issues, the Coach selects an Issue and the move that 
illustrates It (I.e., creates an example of It) and decides, on the basis of tutoring principles, 
whether or rot to interrupt. If the two lists have no Issues in common, the reason for the 
student's problem lies outside the collection of Issues, and the Coach says nothing. 

If the Coach decides to interrupt, the selected Issue and Example are then passed to 
the explanation generators, which produce the feedback to the student. Currently, the 
explanations are stored In a procedures, called Speakers, attached to each Issue. Each 
Speaker is responsible for presenting a few lines of text explaining its Issue. (See also the 
related discussion of computer coaching in Article C5 on WUMPUS). 

Tutoring Principles 

General tutoring principles dictate that, at time., even when relevant Issues and 
Examples have been identified, it may be inappropriate to interrupt. For example, what if 
there are two competing Issues, both applicable to a certain situation? Which one should be 
picked? The Issues in WEST are sufficiently independent that there is little need to 
consider their prerequisite structure, for example, whether the use of parentheses should be 
tutored before division (but see the description of the syllabus in WUMPUS, Article C5). 
Instead, additional tutoring principles must be invoked to decide which one of the set of 
applicable Issues should be used. 

In WEST, experiments have been conducted using two alternate principles to guide this 
decision. The first Is the Focus Strategy, which ensures that, everything else being equal, 
the Issue most recently discussed is chosen--the Coach will tend to concentrate on a 
particular Issue until evidence is present to Indicate that it Is mastered. The alternative 
principle is the Breadth Strategy, where Issues that have not recently been discussed tend 
to be selected. This strategy minimizes a student's boredom and Insures breadth of concept 
coverage. 

The rest of WEST'S strategies for deciding whether to raise an Issue and what to say 
can be placed In the four categories listed below, with example rules of each: 

1. Coaching Philosophy. Tutoring principles can enhance a student's likelihood 
of remembesing what is said. For example. "When illustrating an Issue, use an 
Example (an alternative move) only when the result or outcome of that move 
1-5 dramatically superior to the move made by the student." 

2. Maintaining Interest In the Gsme. The Coach should not destroy the 
student's Inherent Interest in the game by interrupting too often. For 
example, "Never tutor on two consecutive moves." or "If the student makes 
an exceptional move, Identify why It is good and congratulate him." 
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Increasing Chances ov' Learning. Four levels of hints are provided by the 
WEST tutor, at the student's request: (a) isolate a weakness and directly 
address that weakness, (b) delineate the space of possible moves at this 
point in the game, (c) select the optimal move and tell why it is optimal, and 
(d) describe how to make th' optimal move. 

Envlronmertal Considerations. The Coach should consider the game-playing 
environment. For example, "If the student makes a possibly careless error, 
one for which there is evidence that he knows better, be forgiving." 

Noise in the Model 

When the student does not make an optimal move, the program knows only that at least 
one of the Issues required for that move was not employed by the student. Which of these 
Issues blocked the student from making the move is not known. In practice, blame is 
apportioned more or less equally among all of the Issues required for a missed better move. 
One effect of this apportionment is the Introduction of nolst into the model, that is, blame will 
almost certainly be apportioned to Issues that are, in fact, understood. Also, since the 
system does net account for the entire process that a person uses to derive a move, the set 
of Issues is, by definition, incomplete. This is the second source of noise in the differential 
model. A third source of noise in the model is the difficulty of modeling certain human factors 
such as boredom or fatigue that cause inconsistent behaviors. For example, students <re 
seldom completely consistent. They often forget to use techniques that they know, or get 
tired and accept a move that is easy to generate but which does not reflect their 
knowledge. 

Another source of noise is inherent in the process of learning. As the ttudent plnys the 
game, he acquires new skills. The student model, which has been accumulating during the 
course of his play, will not be up to date, that is, it will still show the newly learned issues as 
"weaknesses." ideelly, the "old pieces" of the model should decay with time. Unfortunately, 
the costs involved m this computation are prohibitive. To avoid this particular failing of the 
model, the WEST Coach removes from consideration any Issues that the student has useo 
recently (in the last three moves), assuming diat they are now part of his knowledge. 

To combat the noise that arises in the model, the Evaluator for each ISSUP »^nds to 
assume that the student has mastery of the Issue. Some coaching opportunities niay be 
missed, but eventually, if the student has a problem addressed by an Issue, a pattern will 
emerge. 

Experiences with West 

WEST has been used In elementary school classrooms. In a controlled experiment, the 
coached version of WEST was compared to an uncoached version. The coached students 
showeci a considerably greater variety of patterns, indicating that they had ac-uired many of 
the more subtle patterns and had not fallen permanently into "ruts" that prevented them from 
seeing when such moves were important. Moreover, and perhaps most important of all, the 
students in the coached group enjoyed playing the game considerably more than the 
uncoached group (Goldstein, 1979). 
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WUMPUS 33 

This artic'e describes a eomputtr coach for WUMPUS, a computer cjame in which the 
player must track down and slay "the vicious Wumpus while avoiding pitfalls that result in 
certain, if fictional, death (Yob, 1975). The coach descrioed here is WUSOR-II one of three 
"aenerations" of computer coaches for WUMPUS developed by Ira Goldstein and Brian Carr at 
MIT (Carr & Goldstein, 1977). (For discussions of WUSOR-I and -III, see Stansfieltl, Carr, & 
Goldstein, 1976, and Goldstein, 1979. respectively.) To be a skilled Wumpus-hunter one must 
know about logic, probability, decision theory, and geometry. A deficit in one s knowledge 
may result In being eaten by the Wumpus or falling through the center of the earth. In 
keeping with the philosophy of computer coaching, students are highly motivated to learn 
these fundamental skills. 

The design of the WUSOh II system involves the interactions of the specialist programs 
shown In Figure 1. There are four modules: the Expert, the Psychologist, the Student Model, 
and the Tutor. The Expert informs the Psychologist of two facts: (a) if the player's move is 
nonoptimal and (b) which skills are needed for him to discover better alternatives. The 
Psychologist employs this comparison to formulate hypotheses about which domain-specific 
skills are known to the student. These hypotheses are recorded in the Student Model which 
represents the student's knowledge as a subset of the Expert's skills--an overlay model (see 
Overview B and Carr & Goldstein, 1977). The Tutor uses the student model to fluide 'ta 
interactions with the player. Basically, it chooses to discuss skills not yet exhibited by he 
player in situations where their use would result in better moves. Goldstein (1977 provides 
a more detailed discussion of the structure and function of these coachir.g modules. 'Also 
see the discussion of the WEST computer coach in Article C4.) 

The central box of Figure 1 contains a representation for the problem-solving skills of 
the domain being tutored. It Is, in essence, a formal representation of the syllabu-- fhe 
Expert is derived from the skills represented therein, as is the structure of the student 
model The Psychologist derives expectations from this knowledge regarding which skills the 
student can be expected to acquire next, based on a model of the relative difficulty of item? 
In the syllabus. The Tutor derives relationships between skills such as analogies and 
refinements, which can be employed to improve Its explanations of new skills (see Goldstein. 
1979). 

Theoretical Goals:  Toward a Theory of Coaching 

The approach to the design of computer coaches in WUSOR-II is to construct rule-based 
representation (see Article RepresentatioaBS) for (a) the skills needed by the Expert to play 
the game, (b) the modeling criteria used by the Psychologist, and (c) the alternative tutormg 
strategies used by the Tutor.  Each Is expanded below: 
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Fig. 1. Simplified block diagram of a computer coach. 
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The Expert uses rules that embody the knowledge or skills required to play the game 
to analyze the player's behavior. The virtue of a rule-based representation of expertise is 
that Its modularity both allows tutoring to focus concisely on the discussion of specific skills 
and permits modeling to take the form of hypotheses regarding which rules are known by the 
player. 

The Psychologist uses rules of evidtnce to make reasonable hypotheses about which of 
the Expert's skills the player possesses. Typical rules of evidence are: 

Increase the estimate that a player possesses a skill If the player explicitly 
claims acquaintance with the skill, and decrease the reliability if the player 
expresses unfamlliarlty. 

Increase the estate that a player possesses a skill If the skill Is manifest in the 
player's behavior, and decrease the estimate if the skill Is not manifest in a 
situation where the Expert believes It to be appropriate; hence, implicit as well 
as overt evidence plays a role. 

Decrease the estimate that a player possesses a skill If there Is a long interval 
since the last confirmation was obtained (thereby modeling the tendency for a 
skill to decay with little use). 

The Tutor uses explanation rules to select the appropriate topic to discuss with the 
player and to choose the form of the explanation. These rules include: 

Rules of simplification that take a complex statement and reduce it to a simpler 
assertion. Simplification rules are essential if the player is not to be 
overwhelmed by the Tutor's explanations. 

Rules ** rhetoric that codify alternative explanation strategies. The two extremes 
are e. ination in terms of a general rule and explanation in terms of a concrete 
instance. 

The WUMPUS Expert 

In WUMPUS, the player Is initially placed somewhere In a randomly connected wurren of 
caves and told the neighbors of his current location. His goal is to locate the horrid Wumpus 
and slay it with an arrow. Each move to a neighboring cave yields Information regarding that 
cave's neighbors. The difficulty in choosing a move arises from the existence of clangers In 
the warren--bats, pits, and the Wumpus itself. If the player moves Into the Wumpus's lair, he 
is eaten. If he walks Into a pit, he falls to his death. Bats pick the player up and randomly 
drop him elsewhere in the warren. 

The player can minimize risk and locate the Wumpus by making the proper logistic and 
probabilistic inferences from warnings that he is given. These warnings are provided 
whenever the player Is In the vicinity of a danger. The Wumpus can be smeiled within one or 
two caves. The squeak of aats can be heard one cave away and the breeze of a pit felt 
one cave away. The game Is won by shooting an arrow into the Wumpus's lair. If the player 
exhausts his set of five arrows without hitting the creature, the game is lost. 
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The Wumpus Expert uses a rule-based representation, consisting of approximately 20 
rules, to infer the risk of visiting new caves. Five of these rules are shown below: 

LI.   Positive Evidence Rule.   A warning in a cave implies that a danger exists in a 
neighbor. 

L2.  Negative Evidence Rule.   The absence of a warning implies that no danger 
exists in any neighbors. 

L3.  Elimination Rule.   If a cave has a warning and all but one of its neighbors are 
known to be safe, then the danger is in the remaining neighbor. 

P1.  Equal   Likelihood   Rule.    In   the   absence   of  other   knowledge,   all   of   the 
neighbors of a cave with a warning are equally likely to contain a danger. 

P2.   Double Evidence Rule.   Multiple warni.igs increase the likelihood that a given 
cave contains a danger. 

A Sample Protocol with the WUSOR-II Computer Coach 

A  transcript  of  an  interaction with the WUSOR-II  coach is  illustrated  below.    The 
player's responses are preceded by a **. 

Hello, Timmy. There are 16 caves, 2 bats, 2 pits, and 1 Wumpus. You 
are now at cave 15 with neighbors 4, 14 and 0. Brrr! There is a draft. You 
are near a pit.  What a stench!  The Wumpus is near.  What now? 

You are now at cave 4 with neighbors 16, 14 and 2. Brrr!  Squeak! 
A bat is near.  What now? 

The goal of the Coach is to tutor a beginner in the relevant logical, probabilistic, and 
strategic knowledge needed to play the game. For example, the Expert informs the Tutor 
that cave H should be treated as more dangerous than 0 or 2 since there is multiple 
evidence (from the drafts in /5 anri 4) that 14 contains a pit. If the player now moved to 
cave 14, a coaching situation might occur as follows: 

«« 14 

Timmy, it Isn't necessary to take such large riska with pits. One of 
cave 2 and 14 contains a pit.  Likewise one of cave 0 and 14 contains a pit. 
This is multiple evidence of a pit In cave 14 which makes it quite likely 
that cave 14 contains a pit.  It is less likely that cave 0 contains a pit. 
Hence, we might want to explore cave 0 instead. Do you want to take back 
your move? 
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Although it is not apparent from these simple remarks, every module o( thr Coacl" 
contributed to the dialogue.  These contributions are summarized below. 

The Expert analyzes all possible moves, using its set of skills. The outcome of its 
analysis is a ranking of possible moves with an attached list that associates the skills that 
would be needed to make each move. For example, using the five skills listed earlier, the 
Expert recognizes that cave 14 Is the most dangerous move and cave 0 is the «afest move. 

Essentially, the Expert provides the following proof for use by the Psychologist and 
Tutor modules. (The proof is given here In English for readability! the Expert's actual 
analyses are In the programming language LISP.) 

Lemma 1: The Wumpus cannot be In 0, 2, or 14 since there is no smell in 4. 
(Application of the Negative Evidence Rule, 12, for 2-cave warning of Wumpus.) 

Lemma 2i Caves 0 and 2 were better than 14 because there was single 
evidence that caves 0 and 2 contained a pit, but double evidence for cave 14. 
(Application of the Double Evidence Rule, P2.) 

Lemma Ö: Cave 2 Is more dangerous than cave 0, since 2 contains a bat, and the 
bat could drop you In a fatal cave. (We know this fact because the squeak In 4 
implied a bat in 14 or 2; but the absence of a squeak in 15 implies no bat in 14. 
Hence, by Elimination Rule, L3, there is a bat in 2.) 

The Psychologist, after seeing Timmy move to cave 14, decreases the Student Model 
weight indicating familiarity with the Double Evidence Rule, P2, since the Expert's proof 
indicates that this heuristic was not applied, Table 1 is the Psychologist's hypotheses 
regarding which skills of the Expert the student possesses. 

Table 1. 

A Typical Student Model Maintained by the Coach 

RULES 

LI 
L2 
L3 
LA 
15 

APPROPRIATE 

5 
A 
4 
5 
4 

ED PER CENT 

5 100 
3 75 
2 50 
5 100 
1 25 

KNOWN 

Yes 
Yes 

7 
Yes 
No 

Modeling raises many issues. One subtlety is that the move to 14 above may be 
evidence of a more elementary limitation-a failure to understand the logical implications of 
the draft warning--i.e., that a pit is in a neighboring cave. The current statr of the Student 
Model is used by the Psychologist to determine, in the event of a nonoptimal move, which skill 
is in fact missing. The Student Model indicates the level of play that can be expected from 
this player--the player might be a beginner with incomplete knowledge of the basic rules of 
the game, a novice with understanding of the logical skills, an amateur with knowledge of the 

7 
Ä 
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logical and the more elementary probability skills, etc. The Psychologist would attribute the 
student's error in the current situation to unfamiliarity with a skill at his current level of play; 
in this case, Timmy is a player who has mastered the logical skills and is learning the basic 
probability heuristics. Hence, the coach's explanation focused on explaining the double 
evidence heuristic. 

i 

The Tutor is responsible for abridging the Coach's response to the player's move to 
cave 14. (The complete explanation generated by the Expert were the three lemmas shown 
above) Such pruning is imperative if the Coach is to generate comprehensible advice. 
Hepce, the Tutor prunes the complete analysis on the basis of simplification rules that delete 
those parts of the argument that are already known to the player on the basis of the 
Student Model and those portions that are too complex. Here, the coach deleted Lemma 1, 
the discussion of the Wumpus danger, because it is based on the negative evidence skill 
that the Student Model attributes to the player. Lemma 2, the elimination argument for bats, 
is potentially appropriate to discuss; but a simplification strategy directs the Coach to focus 
on a single skill.  Additional information will be given by the Coach if requested by the player. 

Conclusions 

The novelty of this research is that in a jin^ systtm there is significant domain 
expertise, a broad range of possible interaction strategies available to the tutor, and a 
modeling capability for the student's current knowledge state. Informal experience with over 
20 players of various ages has shown WUSOR-II to be a helpful learning aid, as judged by 
interviews with the players. The short-term payoff from this research is an improved 
understanding of the learning and teaching processes. The long-term payoff is the 
development of a practical educational technology, given the expected decrease in 
hardware costs. 
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C6.   BUGGY 

BUGGY is a program that can accurately determine a student's misconceptions (bugs) 
about basic arithmetic skills. The system, developed by John Seely Brown, Richard Burton 
and Kathy Larkin at Bolt, Beranek and Newman, Inc., provides a mechanism for explaining why 
a student is making an arithmetic mistake, as opposed to simply identifying the mistake. 
Having a detailed model of a student's knowledge that Indicates his misconceptions is 
important for successful tutoring. 

A common assumption among teachers is that students do not follow procedures very 
well and that erratic behavior is the primary cause of a student s inability to perform each 
step correctly. Brown & Burton (1978) argue that students are remarkably competent 
procedure followers, but they often follow the wrong procedures. By presenting examples of 
systematic Incorrect behavior, BUGGY allows teachers to practice diagnosing the underlying 
causes of a student's errors. Using BUGGY, teachers gain experience at forming hypotheses 
about the relatlünship between the symptoms of a bug that a student manifests and the 
underlying misconception. This experience helps teachers become more aware of methods or 
strategies available for diagnosing their student's problems properly. 

Manifesting Bugs 

Experience with BUGGY indicates that forming a model of what is wrong with a 
student's method or performing a task is often more difficult than performing the task itself. 
Consider, for example, the Toliowing addition problems and their (erroneous) solutions. They 
were provided by a student with a "bug" In his addition procedure: 

41 
+ 9 

59 

328 
+917 

1345 

989 
+ 52 

66 
+887 

1141      1653 

216 
+ 13 

229 

Once you have discovered the bug, try testing your hypothesis by simulating the buggy 
student—predict his results on the following two test problems; 

446 
+815 

281 
+399 

The bug is simple. In procedural terms, after determining the carry, the student forgets 
to reset the "carry register" to zero; he accumulates the amount carried, across the 
columns. For example, in the student's second problem (328 + 917 = 1345), he proceeds as 
follows: 8 + 7 = 15 , so he writes 5 and carries 1; 2 + 1 = 3 plus the 1 carried is 4; finally. 
3 + 9 = 12 , but the 1 carried from the first column is still there—it has not been reset—so 
adding it to the final column gives 13. If this is the correct bug, then the answers to the 
test problems will be 1361 and 700. (This bug is really not so unusual; a child oftep uses his 
fingers to remember the carry and might forget to bend them back after each column.) 

The model built by BUGGY incorporates both correct and incorrect mbprocedures that 
simulate the student's behavior on particular problems and capture what parts of a student's 
skill are correct and what pans are incorrect.  BUGGY represents a ski'l, such as addition, as 
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a collection of subskills. for example, one of which is knowing how to "carry" a digit into the 
next column. The subprocedures in BUGGY that correspond to human subskills are linked Into 
a procedural net (Sacerdoti, 1974), which Is BUGGY's representation of the ^6 human skill 
If all the sgbprocedures in BUGGY's procedural net for addition work correctly, then BUGGY 
will do addition problems correctly. On the other hand, replacing correct subprocedures with 
ones that are faulty will result in systematic errors of the kind shown above. Brown and 
Burton call a procedural network with one or more faulty subprocedures a diagnostic model 
because it is a way of representing systematic errors. The model has been used m two 
ways. First, it can diagnose a student's errors and pinpoint the bug(s) in the student s skill. 
Second, it can help to train a teacher to diagnose student errors by "playing the part of a 
student with one or more buggy subskills. 

When BUGGY is to diagnose a student's errors, its task is to modify the correct 
procedu.al network of, say, subtraction until It accounts for all of the student's answers 
both right and wrong. This modification is done by systematically replacing correct 
subprocedures with Incorrect variants until a consistent diagnostic model is found. There are 
currently 70 primitive faulty subprocedures for subtraction. These are explored 
exhaustively while attempting to determine a consistent diagnostic model, if a single variant 
or bug is insufficient to explain a student's behav.or, then combinations of two bugs are 
tried (Because of the overwhelming number of combinations of three o^ more bugs, these 
are not used to form diagnostic models.) In this manner, 330 "bugs" have been identif.eo, 
each with a bug description. Interactions among bugs and the ramifications of a buggy 
subpror;edure's being called by several high-order procedures constitute major challenges 
for designing efficient simulations of multiple bugs. Note also that this technique requires a 
large amount of compute time and Is amenable only to domains where bugs can be explicated 
in a more or less complete way. 

The procedural network for subtraction (and its bugs) was tested In an experiment 
using the results of a test administered to 1,325 students in the fourth, fifth, and sixth 
grades. Using the BUGGY model, it was found that about 40% of the students demons rated 
consistently buggy behavior. That is, BUGGY was able to construct a diagnostic model for 
student's errors demonstrating that they were using nonrandom. though incorrect procedures. 

Using Buggy to Train Teachers 

BUGGY can also be used to train teachers to diagnose student errors. This facility is 
illustrated by a protocol excerpted from Brown (1977) in which BUGGY presents a team of 
teachers with incorrectly solved math problems and supervises their diagnosis of the bug. 

Protocol of a Team Using BUGGY 

Welcome to Bugland. I have chosen a bug. 
Here is an example of the bug. 

17 
+5 

13 

����

r>«^^~^a^^--^^  , _—sta -' 



C6 BUGGY 41 

The system presents an example in which the student didn't get the right answer. 

Now you can give me problems to determine the bug. 

** 18       43 
•« +6       +79 

16      23 

The teachers generate problems, and BUGGY solves ihem incorrectly, following a bv gy 
procedure. The team is trying to diagnose the bug in BUGGY'S addition procedi .* by 
presenting BUGGY with problems to solve. However, they are using problems similar to the 
original one, which is a poor strategy because it may leave other symptoms of the bug 
undiscovered. 

** GOT THE BUGI 

The team thinks that they know what the problem is. Omitted here for space, but shoiun 
below, BUGGY asks them to formulate the bug in English. This step has the effect of 
making the team verbalize the bug clearly. It is a difficult task, and the results are often 
ambiguous. BUGGY does not "read" the description of the bug. because it does not have 
the natural language abilities to do so. Instead, it generates a wies of problems for the 
team to solve. The team must solve them incorrectly, using the bug that they think they 
have identified, to convince BUGGY that they have in fact discovered the bug. 

Here are some problems to test your theories about the bug. 
What is: 

21 
+39 

*« 51 

That's not the bug I have. Using my bug: 
21 

+39 

15 
Try giving me some more examples... 

The team fails BUGGY's test by being unable to solve the given problem. That is, their bug 
is not the same one that BUGGY is using. If they had solved 5 problems "correctly" (that 
is, incorrectly because of a bug), then BUGGY would credit them with a correct diagnosis. 
Now, however they must set more problems for BUGGY to solve, in an attempt to deduce 
the bug. 

*«         51 99 68 
««   +1707 +99 +9 

21 36 23 

-—«- 7 
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«* GOT THE BUG! 

Please describe the bug you think I have: 

•« THE STUDENT IS ADDING ALL THE DIGITS TOGETHER. 

Here are some problems to test your theory about the bug. 
What are: 

33  1091   8  28  90 
+99   +60  +34  +70  +6 

««24   17  15   17   16 

Very good. My description of the bug is: 
The student always sums up all the digits, with no regard to columns. 

Summary 

The central idea of this research is that procedural networks can be used to build 
diagnostic models. This representation scheme facilitates an appropriate decomposition of a 
skill into subskills, to make explicit the control structures underlying a collection of skills, and 
to execute directly the resulting diagnostic model. Rather than being a subset or simplification 
of expert rules, as in overlay modeling (Carr & Goldstein, 1977; see Articles B, C5 and C4), 
the procedural netvork Is a model of a student's behavior that is strucvjred in terms of 
serrantically meaningful deviations from the correct procedure. Each subskill, whether 
corract or Incorrect, Is explicitly represented as a subprocedure in the network. 

References 

Brown & Burton (1978) is the most recent and complete report on BUGGY. Also see 
Brown, Burton, Hausmann, Goldstein, Muggins & Miller (1977) and Brown, Burton, and Larkin 
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C7.   EXCHECK 

EXCHECK Is an Intelligent Computer-aided Instruction system designed and implemented 
by Patrick Suppes and his colleagues at the Institute of Mathematical Studies in the Social 
Sciences (IMSSS) at Stanford University. It Is a general-purpose instructional system used 
principally to present complete, university-level courses in logic, set theory, and proof 
theory. In the courses taught using the EXCHECK system, lesson material is presented to 
the student at his computer terminal, followed by exercises consisting of theorems that he is 
to prove using the program's theorem prover. The courses are taught on IMSSS's CAi 
system, which uses computer-generated speech and split-screen displays. Several hundred 
Stanford students take these courses each year. 

From an Ai point of view, the most interesting aspects of the EXCHECK system are the 
procedures and the underlying theories of mathematical reasoning that permit this interaction 
to take place In a natural style closely approximating standard mathematical practice. These 
Include natural language facilities, natural-deduction-based proof procedures, theorem 
provers, decision procedures for some simple mflthematlcal theories, procedures for analyzing 
and summarizing proofs, and procedures for conducting dialogues about some elementary 
mathematical structures. 

Examples of the kind of natural language accepted and generated are given in the 
proofs and dialogues presented below. The basic logic is a variant of Suppes's (1957) 
formulation of natural deduction augmented by high-level inference procedures that are the 
analogs of proof procedures used in standard mathematical practice. 

Understanding Informal Mathematlcftl Reasoning 

The mathematical reasoning involved in the set theory and proof theory courses is 
complex and subtle. The fundamental Al problem of EXCHECK Is making the program capable 
of understanding Informal mathematical reasoning: The program must be able to follow 
mathematical proofs presented in a "natural" manner. That is, just as the intent of natural 
language processing is to handle languaget. that are actually spoken, the intent of natural 
proof processing is to handle proofs as they are actually done by practicing mathematicians. 
In general, such proofs are presented by giving a sketch of the main line of argument along 
with any other mathematically significant Information that might be needed to completely 
reconstruct the proof. This rtyle should be contrasted with the derivations familiar from 
elementary logic, where each detail is presented and the focus of attention is on syntactic 
manipulations rati.ar than on the undt  /Ing semantics. 

A major aspect of the problem of machine understanding of natural proofs is finding 
languages that permit users to express their proofs in the fashion described above. Such 
languages, in turn, must find their basis In an analysis or model of Informal mathematical 
reasoning. Finding these natural proof languages should be compared to the problem of 
finding high-level "n-itural" or "English-like" programming languages. For more detailed 
discussions of these issues, see Blalne & Smith (1977), Smith (i976), and Smith et ai. 
(1976). A simple example of understanding Informal mathematical reasoning and fuller 
discussion of the techniques Involved follows. 
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Student Proof 
��

We presept two proofs of the elementary theorem, 

Thm:   If A c B then -(B c A) 

where "c" Is used for proper subset and "c" Is used for subset. 

First, the proof Is given in the informal style of standard mathematical practice. 

We want to show that If A c B, then -(B c A). 

Assume A c B. We show -(B c A) by Indirect proof. Assume that B c A. Since A c 
B then, by definition, A c B and A »« B. Since A c B and B c A then A = B. But this is 
a contradiction and, hence, the assumption that. B c A is false. Therefore, -(B c 
A). 

. 
The following typescript shows how one student did the proof in the EXCHECK system. 

Input from the student Is In boldface type and comments are in italics; everything else is 
generated by the program. The program keeps track of the goal that the student is currently 
trying to establish; the Initial goal is the theorem to be proven. EXCHECK indicates 
acceptance of an Inference by returning the top-level prompt **; If a suggested inference is 
not acceptable, EXCHECK returns an error message. 

Derive: If A c B then -(B c A) 

** hyp  (1)  •« Ac B 

The hypothesis of the theorem is assumed.   The goal is automatically reset  to the 
consequent of the theorem. 

** raa 
assume  (2)  ** G B c A 

The student begins an indirect proof (the command 'raa' is a mnemonic for reductio ad 
absurduml The program assumes the negation of current goal. The goal is now any 
contradiction. 

** 1 definition   Number or Name? •• proper subset 
1 Df. proper subset 

(3)  Ac B and A »« B 

The definition of proper subset is applied to line I. 

** 2,3establlsh «8 s A 
2,3 Establish 

(4)  B = A 

� i     .          ,  
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The student asks the theorem, prover to check the simple set theoretic inference 

«* 3,4contradlction 
Using ** ok 
3,4 Contradiction 

(5)  B-cA 

The student indicates that iines 3 and 4 lead to a 
contradiction. EXCHECK returns the negation of assumption (2). 

** qed 
Correct 

EXCHECK accepts the derivation. 

The following Informal review printout was generated by the program from the proof given in 
the above typescript. 

Derive: If A c B then -(B c A) 

Assume   (1)  A c B 
By raa shows -(B c A) 
Assume   (2)  Be A 
From 1, by definition of proper subset, 

(3) Ac B and A»« B 
From 2,3 it follows that, 

(4) A = B 
3,4 lead to e contradiction; hence, assumption 2 is false: 

(5) -(Be A) 

Natural Inference Procedures 

There are no significant structural differences between the detailed informal proof and 
the student's proof as presented to EXCHECK. The same steps occur in the same relat.ons 
to each other. Such global or structural fidelity to t.atural proofs is a major research goal of 
the EXCHECK project and depends upon the development of n«mra/ inference procedures. 
Some of these, such as the HYPOTHESIS and INDIRECT PROOF procedures used in the above 
proof, are familiar from standard logical systems. The procedure used in the applioatton of 
the definition of proper subset to line (1) Is called IMPLIES. It is used to derive results that, 
intuitively speaking, follow by applying a previous result or definition. It is considerably more 
complex than the inference procedures usually found in standard logical systfmsi J^" ^eu 
more complex natural Inference procedure used In the above proof is the ESTABLISH 
procedure. In general. ESTABLISH Is used to derive results that are consequences of prior 
results In the theory under consideration. In this case in the theory of sets. Eliminating the 
need to cite specific results In the theory, which would disrupt th« mam line or argument, is 
important and Is discussed further in the section on ESTABLISH, y -ow. 
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The inference procedures in EXCHECK are intended not only to match natural 
inferences in strength but also to match them in degree and kind. Howev , there are 
differences. EXCHECK inference procedures must always be invoked explicitly--in standard 
practice, particular inference procedures or rules are usually not cited explicitly. For 
example, compare how the scudent expresses the inferences that result in lines (3) and (4) 
with their counterparts In the Informal proof. The explicit invocation of inference procedures 
basically requires that two piecR;; of Information be given: first, the Inference procedure to 
be used; and, second, the previous results to be used--in particular, explicit line numbers 
must be used. 

Explicitness is not disruptive of mathematical reasoning--neither is the reduction of 
complex Inferences to smaller inferences nor the use of explicit line numbers disruptive, in 
the sense of distracting the student from the main line of the mathematical argument. They 
are both simple elaborations of the main structure. Hov evar. having to think about what 
inference rule to use can interrupt the main line of argument. The success of a system for 
Interactively doing mathematics depends crucially unon having a few powerful and natural 
inference procedures with clear criteria of use, which are sufficient to handle all the 
Inferences. 

IMPMES 

IMPLIES Is used to derive results by applying a previous result or definition as a rule of 
Inference in a given context. This form of inferenca is probably the most frequent naturally 
occurring inference. While the basic pattern is simple, the refinements that must be added to 
the basic form to get a procedure that handles most of the naturally occurring cases result in 
a computationally complex procedirq.  The following is a simple example of the basic pattern: 

(i) A Is a subset of B 

i definition (Name or number) "subset 

(i) (V x)(x « A -> x c B) 

In this example, the student directed the program to apply the definition of subset o line (i) 
and IMPLIES generated the result: (V x)(x € A -» x « B). While the student tliiiiK ��he is 
applying the definition of subset to line (i), the procedure actually invoked is the IMPLIES 
procedure. It Is important to note that in a use of the IMPLIES procedure, the student 
indicates what axiom, definition, theorem, or line to apply to which lines, and the IMPLIES 
procedure generates the formula that is the result of the inference. 

The IMPLIES procedure seems to correspond closely to na'ue notions of inference, in 
that logically unsophisticated lut mathematically sophisticated users can use it very well 
after seeing the basic explf ation and a few simple examples. However, the IMPLIES rule 
does have a fault: It is a purely logical inference procedure and that can occasionally cause 
problems for users, because mathematicians tend to think In terms of set 'heoretic rather 
than logical consequence. (See the discussion of the ESTABLISH rule for more on this 
distinction.) 

——• -•'*.: 
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ESTABLISH 

The following example of a simple use of ESTABLISH is taken from the typescript above. 

(2) Be A 
(3) A c B and A ^ 

*2,3estabiish «B = A 
2,3 Establish 

(4) B = A 

The ESTABLISH rule allows users to simply assert that some formula is an elementary set- 
theoretic truth or is an elementary set-theoretic consequence of prior results. In the above 
example ESTABLISH is used to infer from A c B and B c A that A = B. A = B is a set-theoret c 
consequence but not a logical consequence of A c B and Be A. If ESTABLISH handled only 
'ogical consequence, the student would have had to explicitly cite the relevant set theoret.c 
theorems or definitions needed to reduce the inference to a pure y logical inf

c
ere"ce- Th'8'* 

not only disruptive of the line of argument but also difficult to do. Even the most 
experienced logicians and mathematicians have difficulty ferreting out all the axioms, 
definitions, and theorems needed to reduce even simple inferences to purely log.cal 
inferences. 

Ail of the examples so far are extremely simple if considered in terms of the full 
capabilities of the ESTABLISH procedure. ESTABLISH uses a theorem prover that can prove 
about 857. of the first 200 theorems in the set theory course. 

Proof Analysis and Summarization 

EXCHECK contains procedures that generate informal summaries and sketches of 
proofs. Such analyses and summaries are useful not only as a semantic basis for the program 
to better understand proofs and to better present proofs, but also to g.ve ö",dance to ^^ 
student (see the proof summary below for an examp.e of the kind of guidance that can be 
generated) The summarization procedures analyze the proof by breaking it "^o parts (or 
"subproofs") and isolating the mathematically important steps. They also P^'» a ÖO«l 
oriented interpretation of the proof where the program keeps track of "hat is to be 
established at that point (i.e., the current goal); which lines, terms, etc.. are relevant; and 
how ' e curren line or part fits into the whole structure. MYClN's consultation explana ion 
syLm (see article Cl) uses a similar approach. Goldstein (1977) also uses summarization 
techniques in the rhetorical modules of the WUMPUS coach (article C5). 

The summaries presented below were generated by EXCHECK from a »tudent proo, of 
the Hausdorff maximal principle. The original line numbers have been retamed (In 
parentheses) in order to give a sense of how much of the proof has been omitted In the 
summary in the first summary only the top-level part of the proof is presented; the proofs 
oHts subparts are omitted. Also, ail mathematically or logically insignificant Information Is 
omitted, in these proofs and summaries "D contains E "is S^>7U*��Vielst'on?* a 
is a chain iff both C is a set of sets, and given any two elements of C. at least one .s a 
subset of the other. 
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Derive:   If A is a family of sets then 
every chain contained in A is contained in some maximal chain In A 

Proof: 
Assume   (1)  A is a family of sets 

Assume   (2)   C is a chain and C c A 
Abbreviate:   {B: B is a chain and C c B and B £ A} 

by:   Clchains 
By Zorn's lemma, 

(23) Clchains has a maximal element 
Let 6 be such that 

(24) B is,a maximal-element of Clchains 
Hence, 

(25) B Is a chain and C c B and B c A 
it follows that, 

(31) 8 is a maximal chain In A 
Therefore, 

(32) C is contained in some maximal chain in A 

Figure 1. informal summary of a proof of the llausdorff 
maximal principle. 

The summary above is not the only one that could be generated; it essentially presents only t 
the main part of the proof.   Subparts of the main part could have been included or even 
handled independently If so desired. 

The proof analysis and summarization procedures will also generate the following kind 
of summary, which Is an attempt to sketch the basic idea of the proof. 

Derive:   If A is a family of sets then 
every chain contained in A is contained in some maximal chain in A 

Proof: 
Use Zorn's lemma to show that 

(B; B Is a chain and C c B and B c A) 

contains a maximal element B. Then show that B is a maximal chain in 
A which contains C. 

Figure 2. An example summarization. 

The summarization in Figure 2 was obtained from that in Figure 1 by tracing backwards 
the history of the maximal chain in A that contains C. That is, the general form of the 
theorem to be proven is (3 x)FM(x), which is proven by showing FM(t) for some term t. 
Usually, In proofs of this form, the most Important piece of Information is the term t. Tracing 
backwards in this particular proof yields that there are two terms involved. The first is the 
set of all chains in A containing C, and the second is any maximal element of the set of all 
chains in A containing C. 
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Elementary Exercises and Dialers 

Another form of reasoning done by students is the solution of problems. A great many 
problems in elementary mathematics take the form of asking the student to give finite 
obJec'.s satisfying certain conditions. For example, given the finite sets A and B the student 
might be asked to give a function F that is a bijection (I.e., 1-1 and onto) from A to B. For a 
large class of such problems there are programs that will generate a tree of formulas and 
other information from the original statement of the problem. We call such trees verification 
trees for the problem. Essentially, the verification tree for a problem constitutes a reduction 
of the original (usually not directly verifiable) condition to a collection of directly verifiable 
conditions (the formulas at the leaves). These trees hi,ve the property that the failure of 
the formula at a node In the tree explains the failure of formulas at any of its ancestors 
Similarly, the failure of a formula at a node Is explained by the failure of formulas at any of 
its descendants. 

For example. In the above problem of supplying a bijection F from A onto B, suppose 
that the student forgets to specify a value for some element of A, say, 3. The first response 
to the student might be: "The domain of F isn't A." The student might then ask: " Why?" The 
program would then answer (going towards the leaves), "Because there is an element of A 
that has not been assigned a value in 8," The student might then ask, "Which one?" Since 
the routines that evaluate the formulas at the leaves provide counterexamples if those 
formulas fail, the program could then respond, "3." Or going back to the first response by the 
program ("The domain of F isn't A"), the student might say, "So?" The program could then 
move a step towards the root (the original statement of the conditions) and say, "Then F is 
not a map from A into B." The student might then again say, "So?", to which the program 
could respond, "F Is not a bijection from A onto B." 

The highly structured information in the verification tree provides the semantic base for 
a dialogue with the student in which the program can explain to the student what is wrong 
with the answer. It should be noted that more complex forms of explanation are available. 
In particular, the program could have said at the beginning that. "Because 3 is not given a 
value by F, the domain of F is not A and hence F is not a bijection from A onto B." 

Summary 

A primary activity in mathematics is finding and presenting proofs. In the EXCHECK 
system an attempt is made to handle natural proofs-proofs as they are actually done by 
practicing mathematicians-instead of requiring that these proofs be expressed as 
derivations in an elementary system of first order logic. This objective requires the analysis 
of inferences actually made and the design and implementation of languages and procedures 
that permit such inferences to be easily stated and mechanically verified. Some progress has 
been made in handling natural proofs in elementary mathematics, but there is a considerable 
amount of work yet to be done, 

References 

See Blaine & Snith (1977), Smith et al. (1976), Smith & Blaine (1976)  Suppes (1957) 
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