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Foreword

Those of us Involved In the creation of the Handbook of Artificlal Intelligence, both
writers and editors, have attempted to make the concepts, methods, tools, and main results
of artlficlal Intelllgence research accesslble to a broad sclentiflc and engineering audience.
Currently, Al work is famiilar mainly to its practicing speclallsts and other interested
computer sclentists. Yet the fleid Is of growing Interdisclplinary interest and practical
Importance. WIith this book we are trying to buiid bridges that are easlly crossed by
englneers, sclentlsts In other flelds, and our own computer science colleagues.

In the Handbook we Intend to cover the breadth and depth of Al, presenting general
overviews of the sclentiflc Issues, as well as detalled discusslons of particular techniques
and Important Ai systems. Throughout we have tried to keep in mind the reader who is not a
speclallst In Al.

As the cost of computatlon contlnues to fall, new areas of computer applications
beccme potentially viable. For many of these areas, there do not exist mathematical "cores”
to structure calculational use of the computer. Such areas will inevitably be served by
symbolic models and symbolic Inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is
urgent for Al to "go publiz" In the manner Intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fili the vacuum. Lay reviews, In particular Margaret Boden's
Artificial Intelllgence and Natural Man, have trled to explain what is important and
Interesting about Al, and how research In Al progresses through our programs. in addition,
there are. a few textbooks that attempt to present a more detailed view of selected arbas
of Al, for the serious student of computer science. But no textbook can hcpe to describe all
of the sub-areas, to present brief explanations of the Important ideas and techniques, and to
review the forty or flfty most Important Al systems.

The Handbook contalns several different types of articles. Key Al ideas and techniques
are descrlbed In core articles (e.g., baslc concepts In heurlstic search, semantic nets).
important Individual Al programs (e.g., SHRDLU) are described In separate articles that
indicate, among other things, the deslgner's goal, the techniques employed, and the reasons
why the program is Important. Overview articles discuss the problems and approaches In
each major area. The overview articles should be particularly useful to those who seek &
summary of the underlylng Issues that motlvate Al research.




Eventually the Handbook will contaln approximately two hundred articles. We hope tiat
the appearance of this material will stimulate interaction and cooperation with other Al
research sites. We look forward to being » _vised of errors of omission and commission. For a
field as fast moving as Al, it Is Important that Its practitioners alert us to important
developments, so that future editions wiil reflect this new material. We intend that the
Handbook of Artificlal intelligence be a living and changing reference work.

The articles in this edition of the Handbook were written primarily by graduate students
in Al at Staford University, with assistance from graduate students and Al professionals at
other institutions. We wish particularly to acknowledge the heip from those at Rutgers
University, SRI international, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The authors of this-report, which contains the section of the Handbook on educational
applications research, are Willlam Clancey, James Bennett, and Paul Cohen. Others who
contributed to or commented on earlier versions of this section Include Lee Blaine, John Seely
Brown, Richard Burton, Adele Goldberg, Ira Goldstein, Albert Stevens, and Keith Wescourt.

Avron Barr Stanford University
Edward Feigenbaum July, 1979
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A, Historicai Overview

Educational appiications of computer technoiogy have been under development since
the eariy 1960s. These appiications have inciuded scheduiing courses, managing teaching
aids, and grading tests. The predominant application, however, has invoived using the
computer as a device that interacts directly with the student, rather than as an assistant to
the human teacher. For this kind of appiication, there have been three generai approaches.

The "ad llb" or "environmenta! approach" Is typified by Papert's LOGO iaboraiory
(Papert, 1870), that aliowed students more or iess free-style use of the machine. Students
are involved In programming; it is conjectured that learning problem-solving methods takss
place as a side effect of using tools that are designed to suggest good probiem-solving
strategies to the student. The second approach uses games and simuiations as Instructionai
tools; once again the student Is invoived in an activity--for example, doing simuiated
genetlcs experlments--for which learning Is an expected side effect. The third computer
application In educatlon is computer-assisted Instruction (CAl). Uniike the first two
approaches, CAl makes an expliclt attempt to instigate and control learning (Howe, 1973).
This thlrd use of computer technology In educatlon Is the focus of the foliowing discussion.

‘The goal of CAl research is to construct instructional programs that incorporate well-
prepared course material In lessons that are optimized for each student. Early programs
were either electronlc "page-turners" which printed prepared text or drili-and-practice
monitors, which printed problems and responded to the student's solutions using prestored
answers and remedial comments. In the intelligent CAi (ICAI) programs of the 1970s, course
materlal Is represented independently of teaching procedures so that problems and remedial
comments can be generated differently for each student. Research today focuses on the
deslgn of programs that can offer instruction In a manner that Is sensitive to the student's
strengths, weaknesses, and preferred styie of learning. The role of Al in computer-based
Instructional applications Is seen as making possible a new kind of learning environment.

This overview surveys how Al techniques have been used In research attempting to”
create Intelligent computér-based tutors. In the next article, some design issues are
discussed and typlcal components of ICAl systems are described. Subsequent articies
descrlbe some important applications of artlficlai inteiiigence techniques In instructionai
programs.

Frame-oriented CAl Systems

The first instructlonal programs took many forms, but all adhered to essentially the
same pedagogical phliosophy. The student was usually given some Instructionai text
(sometimes without using the computer) and asked a question that required a brief answer.
After the student responded, he was told whether his answer was right or wrong. The
student's response was sometimes used to determine his “path" through the curriculum the
sequence of probiems he is given (see Atkinson & Wilson, 1869). When the student made an
arror, the program branched to remediai material.

The courseware author attempts to antlclpate every wrong response, prespecifying

branches to appropriate remediai materlal based on his ideas about what might be the
underiying misconceptions that wouid cause each wrong response. Branching on the basis of
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2 Al Appiications in Education

response was the first step toward individualization of instruction (Crowder, 1962). This style
of CAi has been dubbed ad-hoc, frame-oriented (AFO) CAIl by Carboneii (1970b), to stress its
dependence on author-speclfied unlts of information. (The term "frame" as it is used in this
context predates the more recent usage in Ai--see Article Representation.B7--and refers to
a block or page or unlt of informatlon or text.) Design of ad-hoc frames was originaily based
on Skinnerian stimuius/response principies. The branching strategies of some AFO programs
have become quite Invoived, Incorporating the best iearning theory that mathematical
psychoiogy has produced (Atkinson, 1972; Fietcher, 1975; Kimbail, 1973). Many of these
systems have been used succesfuily and are avaiiabie commerciaily.

Intelligent CAI

In spite of the widespread application of AFO CAi to many problem areas, many
researchers beiieve that most AFO courses are not the best use of computer technoiogy:

In most CAl systems of the AFO type, the computer does little more
than what a programmed textbook can do, and one may wonder why
the machine Is used at all...When teaching sequences are extremely
simpie, perhaps trlvial, one shouid consider doing away with the
computer, and using other devices or techniques more related to the
task. (Carboneli, 19700, pp. 32, 193)

in this pioneering paper, Carboneli goes on to define a second type of CAi that is known
today as "knowiedge-based" or "Intelilgent" CAl (iCAi). Knowiedge-based systems and the
previous CAl systems both have representations of the subject matter they teach, but ICAI
systems aiso carry on & natural language diaiogue with the student and use the student's
mistakes to diagnose his misiinderstandings.

Early uses of Ai techniques in CAl were caiied "generative CAI" (Wexier, 1970), since
tihey stressed the ability to generate problems using a iarge database representing the
subject they taught. (See Koffman & Blount, 1975, for a review of some early generative
CAl programs and an exampie of the possibllities and iimitations of this style of courseware.)
However, the kind of courseware that Carboneii was describing in his paper was to be more
than just a probiem generator--It was to be a computer tutor that had the inductive powers
of its human counterparts. iCAi programs offer what Brown (1977) calis a reactive learning
environment, in which the student is actlvely engaged with the instructional system and his
interests and misunderstandings drlve the tutoriai diaiogue. This goal was expressed by
other researchers trying to write CAl programs that extended the medium beyond the iimits
of frame seiection:

Often It is not sufficient to teli a student he Is wrong and Indicate the
correct solutlon method. An Inteiligent C:.i system should be abie to
make hypotheses based on a student's eiror history as to where the
reai source of his difficuity iies. (Koffman & Blount, 1976)

The Use of Ai Techniques in iCAI

~ The realization of the computer-based tutor has invoived increasingly complicated
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A Historical Overview 3

computer programs and has prompted CAl researchers to use artificial intelligence
technlques. Artificial Intelligence work In natural language understanding, reprasentation of
knowledge, and methods of inference, as well as speclfic Al applications llke algebralc
simplificatlon, calcuius, and theorem proving, have been applied by various researchers
toward making CAl programs that are more intelligent and more effective. Early research on
ICAI systems focused on represeniation of the subject matter. Benchmark efforts include
SCHOLAR, the geography tutor of Carbonell and Collins (see article C1), EXCHECK, the loglc
and set theory tutors by Suppes et al (article F?), and SOPHIE, the electronics
troubleshooting tutor of Brown and Burton (article C3). The high level of domain expertise in
these programs permits them to be responsive in a wide range of problem=solving
Interactlons.

These ICAl programs are quite different from even the most complicated frame-
orlented, branching program.

Traditional epproaches to this problem using daclsion theory and
stochastlc models have reached a dead end due to their
oversimplifled representation of learning. ... It appears within reach
of Ai methodology to develop CAl systems that act more like human
teachers. (Laubsch, 1975)

However, an Al system that is expert In a particular domain is not necessarily an expert
teacher of the material--"ICAl systems cannot be Al systems warmed over" (Brown, 1977). A
teacher needs to understand what the student Is doing, not just what he is supposed to do.
Al programs often use very powerful problem-solving methods that do not resemble those
used by humans; In many cases, CAl researchers borrowed Al techniques for representing
subject domaln expertise but had to modIfy them, often making the Inference routines ‘ess
powerful, In order to force them to follow human reasoning patterns, so as to better explain
their methods to the student, as well as to understand hls methods (Smith, 1976; Goldberg,

1973).

In the mid-1970s, a second phase In the development of ICAl tutors has been
characterized by the Incluslon of expe-tise in the tutor regarding (a) the student's learning
behavlor and (b) tutoring strategles (Brown & Goldstein, 1977). Al techniques are used to
construct modeis of the learner that represent his knowledge in terms of "issues" {see
article C4) or "skllis" (Barr & Atkinson, 1975) that should be learned. This model then
controls tutoring strategles for presenting the materlal. Finally, some ICAl programs are now
using Al techniques to explicitly represent these tutoring strategies, galning the advantages of
flexibility and modularlty of representation and control (Burton & Brown, 1979; Goldstein,

1977; Clancey, 1979a).

References

The best general review of research In ICAl Is Brown & Goldstein (1977). Several
papers on recent work are collected In a speclal issue of the International Journal of Man-

Machine Studies, Volume 11, 1979,
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B. !ssues in iCAl Systems Design

The main components of ICAi systems are (a) its problem-solving expertise, the
knowledge that the system tries to Impart to the student, (b) the student model, indicating
what the student does and does not know, and (c) tutoring strategies, which specify how the
system presents material to the student). (See Self, 1974, for an excellent discussion of
the differences and irterreiations of tra types of knowiedge needed in an intelligent CAI
program.) Not ail of th ~omponents a.c fully developed in every system. Because of the
size and complexity of ticelligent CAl programs, most researchers tend to concentrate their
efforts on the deveiopment of a singie part of what would constitute a fully usable system.
Each component Is described briefly below.

The Expertise Module--Representing Domain Knowiedge

The "expert" component of an iCAl system is charged with the task of generating
problems and evaluating the correctness of student solutions. The CAl system's knowledge
of the subject matter was originaily envisioned as a huge static database that incorporated
ail the facts to be taught. This idea was implicit in the early driii-and-practice programs and
was made explicit in generative CAl (see Articie A). Representation of subject matter
expertise in this way, using semantic nets (Articie Representation.B2), has been useful for
generating and answering questions involving causai or reiationai reasoning (Carboneli &
Collins, 1973; Laubsch, 1975; and see Articles C1 and C2 on the SCHOLAR and WHY

systems).

Recent systems have used procedural representation of domain knowledge, for example,
how to take measurements and make deductions (see Articie Representation.BS). This
knowiedge is represented as procedural experts that correspond to subskiiis that a student
must learn in order to acquire the compiete skill being taught (Brown, Burten, & Beli, 1975).
Froduction rules (Articie ‘RepresentationB3) have been used to construct moduler
representations of skilis anz probiem-solving methods (Goidstein, 1977; Clancey, 1974a). In
addition, Brown & Burton (1976) have pointed out that multiple representations are sometimes
useful for answering student questions and for evaluating partiai solutions to a probiem (e 4.,
a semantic net of facts about an eiectronic circuit and procedures simulating the functionai
behavior of the circult). Stevens & Coiiins (1978) considered an evolving series of
nsimuiation" modeis that can be used to reason metaphoricaily about the behavior of causal

systems.

it shouid be noted that not ail iCAi systems can actuaily soive the probiems they pose
to a student. For example, BIP, the BASIC instructionai Program (Barr, Beard, & Atkinson,
1975), can't write or anaiyze computer programs: BIP uses sampie input/output pairs
(supplied by the course authors) to test students' programs. Similariy, the procedural
experts in SOPHIE-I could not debug an electronic circuit. in contrast, the production rule
representation of domain knowledge used in WUMPUS and GUIDON enabies these programs to
soive probiems independently, as well as to criticize student soiutions (Goidstein, 1977, and
Ciancey, 19789a). Being able to soive the probiems, preferrably in ali possibie ways,
correctiy and incorrectly, is necessary if the ICAi program is to make fine-grained
suggestions epout the compietion of partial soiutions.

An Impertant idea in this connection is that of an articulate expert (Goldstein, 1977).
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Whereas typical expert Al progr. 7s have data structures and processing algorithms that do
not necessarily mimic the reasoning steps used by humans and are, therefore, considered
"opaque" to the user, an articuiate expert for an iCAi system must be designed to enable
the explanatior of each probiem-solving decision that it makes in terms that correspond (at
some level of abstraction) to those of a human probiem soiver. For example, tie electronic
circuit simulator underiying SOPHIE-i (see Article C3), which is used to check the consistency
of a student's hypotheses and to answer some of his questions, is an opacue expert on the
functioning of the circult. It is a compiete, accurate and efficient modei of \he circuit, but its
mechanisms are never reveaied to the student since tivey are certainiy not the mechanisms
that he is exnected to acquire. in WEST, on the other hand, whiie a (compete and efficient)
opaque expert is used to determine the range of possibie moves that the student couid have
made with a given roli of the dice, an articulate expert, which oniy modeils pieces of the
game-piaying expertise, Is used to determine possibie causes for less-than-optimal student

moves.

ICAI systems are distinguished from eariier CAi approaches by the separatinn of
teaching strategies from the subject expertise to be taught. However, the separat on of
subject-area knowiedge from instructional planning requires a structure for organizing the
expertise that captures the difficuity of various problems and the interretationships of
course materiai. Modeiing a student's understanding of a subject is closeily reiated
conceptuaily to figuring out a representation for the subject itseif or for the language used
to discuss it.

Trees and iattices showing prerequisite interactions have bcen used to organize tie
introduction of new knowiedge or topics (Koffman & Blount, 1975). in BIP this iattice took
the form of a curriculum net that reiated the skiils to be taught to example programming tasks
that exercised each skiii (Barr, Beard, & Atkinsoh, 1976). Goidstein (1979) called the
lattice a syllabus in the WUMPUS program and emphasized the deveiopmental path that a
learner takes in acquiring new skilis. For arithmetic skiiis used in WEST, Burton & Brown
(1976) use leveis of issues. Issues proceed from the use of arithmetic operators to
strategies for winning the game, to meta-ievel considerations for improving performance.
Burton and Brown beiieve that when the skiils are "structuraily independent,"” the order of
their presentation is not particuiarly cruciai. This representation is useful for modeiing the
student's knowiedge and coaching him on different levels of abstraction. Stevens, Coliins, &
Goidin (1978) have argued further that a good human tutor does not merely traverse a
predetermined network of knowledge in seiecting materlal to present. Rather, it is the
process of ferreting out student misconceptions that drives the diaiogue.

The Student Model

The modeiing module is used to represent the student's understanding of the material
to be taught. Much recent ICAi research has focused on this component. The purpose of
modeiing the student is to make hypotheses about his misconceptions and suboptimal
performance strategies so that the tutoring moduie can point them out, indicate wiy they are
wrong, and suggest corrections. It is advantageous for the system to be able to recognize
alternate ways of solving problems, including the incorrect methods that the student might
use resuiting from systematic misconceptions about the probiem or from inefficient

strategies.

e i




6 ) Al Application. in Education

Some early frame-oriented CAl systems used mathematical stochastic learn: g models, but
this approach failed because It only modeled the probability that a student would give a
specific response to a stimulus. In general, knowing the probability of a response is not the
same as knowing what a student understands--the former has little diagnostic power

(Laubsch, 1976).

Typical uses of Al techniques for modeling student knowledge Include (a) simpte pattern
recognition applied to the student's response history and (b) flags in the subject matter
semantic net or in the rule base representing areas that the student has mastered. In these
ICAI systems, a student model is formed by comparing the student's behavior to that of the
computer-based "expert" In the same environment. The modeling component marks each skill
according to whether evidence Indicates that the student knows the material or not. Carr &
Goldstein (1977) have termed this component an overlay model--the student's understanding
is represented completely In terms of the expertise component of the program (see Article

C5).

in contrast, another approach is to model the student's knowledge not as a subset of
the expert's, but rather as a perturbation or deviation from the expert's knowledge--a
"bug". (&=e, for example, the SOPHIE and BUGGY systems--Articles C3 and C6.) There is a
major difterence between the overlay and "huggy" approaches to modelling: In the latter
approach it is not assumed that, except for "knowing" less, the student reasons as the
expert does; the student's reasoning can be substantlally different from expert rear ning.

Other Information that might be accumulated in the student model includes the
student's preferred modes for Interacting with the program, a rough characterization of his
level of ability, a conslderation of what he seems to forget over time, and an indication of
what his goals and plans seem to be for iearning the subject matter.

Major sources of evidence used to maintaln the student model can be characterized
as: (a) implicit, from student problem-solving behavior; (b) explicit, from direct questions
asked of the student; (¢) historical, from assumptions based on the student's experience;
and (d) structural, from assumptions based on some measure of the difficulty of the subject
materlal (Goldsteln, 1977). Historlcal evidence Is usually determined by asking the student
to rate hls level of expertise on a scale from "beginner" to vexpert." Early programs like
SCHOLAR used only explicit evidence. Recent programs have concentrated on inferring
"implicit" evidence from the student's problem-solving behavior.  This approach is
complicated because It Is limited by the program's ability to recognize and describe the
strategles being used by the student. Specifically, when the expert program indicates that
an Inference chain Is required for a correct result and the student's observable behavior is
wrong, how is the modeilng program to know which of the Intermediate steps are unknown or
wrongly applled by the student? This Is the apportionment of credit/blame problem; it has been
an Important focus of WEST research.

Because of Inherent limltations in the modeling procéss, it Is useful for a "critic" in the
modeling component to measure how ciosely the student model actually predicts the
student's behavior. Extreme inconsistency or an unexpected demonstration of expertise in
solving problems might Indicate that the representation being used vy the program does not
capture the student's approach. Finally, Goldstein (1877) has suggested that the modeling
process should attempt both tc measure whether or not the student Is actually learning and
to discern what teaching methods are most effective. Much work remains to be done in this
area.
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The Tutoring Module

The tutoring moduie of iCAi systems must integrate knowiedge about natural ianguage
diaiogues, teaching methods, and the subject area to be taught. This is tihe module that
communicates with the student: selecting probiems for him to soive, monitoring and critici. 'ng
his performance, providing assistance upon request, and seiecting 1emedial material. The
design of this moduie involves issues iike "When is It appropriate to offer a hint?" or "How
far shouid the student be aiiowed to go down the wrong track?"

These are just some of the problems which stem from the baslc fact
that teaching is a skili which requires knowledge additional to the
knowiedge comprising mastery of the subject domain. (Brown, 1977)

This additional knowledge, beyond the representation of the subject domain and of the
student's knowiedge, is about how to teach.

Most ICAI research has expiored teaching methods based on diagnostic modeling in
which the program debugs the student's understanding by posing tasks and evaluating his
response (Coiilns, 1976; Brown & Burton, 1975; Koffman & Blount, 1975). The student is
expected to iearn from the program's feedback which skills he uses wrongly, whici skills he
does not use (but could use to good advantage), etc. Recently, there has been more
concern with the possibllity of saying Just the right thing to the student so that he will
realize his own Inadequacy and switch to a better method (Carr & Goldstein, 1977; Burton &
Brown, 1979; Norman, Gentner, and Stevens, 1976). This new direction is based on attempts
to make a bug "constructive" by establishing for the studgent that there is something
inadequate in his approach, and giving enough information so that the student can use what
he already knows to focus on the bug and characterize it so that he avoids this failing in the

future.

However, it is by no means clear how "just the right thing" is to be said to the student.
We do know that it depends on having a very good model of his understanding process (the
methods and strategies he used to construct a solution). Current research is focussing on
means for representing and isolating the bugs themselves (Stevens, Collins, & Goldin, 1978;

Brown & Burton, 1978).

Another approach is to provide an environment that encourages the student to think in
terms of debugging hls own knowiedge. In one BiP experiment (Wescourt and Hempiill,
1978), expiicit debugging strategies (for computer programming) were conveyed in a written
document and then a controlled experiment was undertaken to see whether this trainging
fostered a more rational approach for detecting faulty use of (programming) skills.

Brown, Coilliis, and Harris (1978) suggest that one might foster the ability to construct
hypotheses and test them (the basis of understanding in their modei) by setting up problems
in which the student's first guess is likely to be wrong, thus "requiring him to focus on how
he detects that his guess is wrong and how he then intelligently goes about revising it."

The Socratic method used in WHY (Stevens & Coilins, 1977) involves questioning the
student in a way that wiit encourage him tz reason about what he knows and thereby modify
his conceptions. The tutor's strategies are constructed by anaiyzing protocois of reai-world

student/teacher interactions,
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Another teaching strategy that has been successfully implemented on several systems
is called coaching (Goldstein, 1877). Coaching programs are not concerned with covering a
predetermined iesson plan within a fixed time (in contrast with SCHOLAR). Rather, the goa!
of coaching Is to deveiop the acquisition of skill and generai problem-solving abilities, and it
works by engaging the student in a computer game (see Arlicle A). In a coaching situation,
the immediate aim of the student Is to have fun, and skill acquisition is an indirect
consequence. Tutoring comes about when the computer coach, which is "observing" the
student's play of the game, Interrupts him and offers new information or suggests new
strategies. A successful computer coach must be able to discern what skills or knowledge
the student might acquire, based on his playing style, and to judge effective ways to
intercede in the game and offer advice. WEST and WUMPUS (Articles C4 and CB) are both
coaching programs.

Socratic tutoring and coaching represent different styles for communicating with the
student. Ali mixed-initiative tutoring Involves following some dialogue strategy, which
involves decisions about when and how often to question the student and methods for
presentation of new materlai and review. For example, a coaching program, by design, is
non-intrusive and only rarely lectures. On the other hand, a Socratic tutor questions
repetitively, requiring the student to pursue certain lines of reasoning. Recently ICAI
research has turned to making explicit these alternative dialogue management principles.
Collins (1976) has pioneered the careful investigation and articulation of teaching
strategles. Recent work has explored the representation of these strategies as production
rules (see Clancey, 1979a and Article C2 on Collins and Stevens' WHY system).

For example, the tutoring module in the GUIDON program, which discusses MYCIN-iike
"case diagnosis" tasks with a student (see Clancey, 197894, and Article Ci on MYCIN), has an
explicit representation of discourse knowledge. Tutoring rules select alternative dialogue
formats on the basis of economy, domaln logic, and tutoring or student modeling goals.
Arranged into procedures, these rules cope with various recurrent situations in the tutorial
dialogue, for example: introducing a new topic, examining a student's understanding after he
asks a question that Indicates unexpected expertise, relating an Inference to one just
discussed, giving advice to the student after he makes a hypothesis about a subproiriem, and
wrapping up the discussion of a topic.

Conclusion

In genera!, ICAI programs have only begun to deai with the probiems of representing
and acquiring teaching expertise and of determining how this knowiedge should be integrated
with general principles of discourse. The programs described in the articles to follow have ali
Investigated some aspect of this problem, and none offer an "answer" to tive question of how
to build a computer-tutor. Nevertheless, these programs have demonstrated potentiai
tutorial skiil, sometimes often showing striking Insight Into students' misconceptions.
Research continues toward making viable Ai contributions to computer-based education.

References

Goldstein (1977) gives a clear discussion of the distinctions between the modules
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C. ICAl Systems

C1, SCHOLAR

An important aspect of tutoring is the ability to generate appropriate questions for the
student. These questions can be used by the tutor to indicate the relevant material to be
learned, to determine the extent of a student's knowledge of the problem domain, and to
identify any misconceptions that he might have. Given that the knowledge base of a tutoring
program can't contain all of the "facts" that are true about the domain, the tutor should be
able to reason about what it knows and make plausible inferences about facts in the domain. In
addition to responding to the student's questions, the tutor should be able to take the
initiative during a tutoring dialogue by generating good tutorlal questions.

SCHOLAR .- one such mixed-initiative computer-based tutorial system; both the system
and the student can initiate conversation by asking questions. SCHOLAR was the pioneering
effort in the development of computer tutors capable of coping with unanticipated student
questions and of generating subject matter in varying leveis of detail, according to the
context of the dialogue. Both the student's Input and the program's output are in English
sentences.

The original system, created by Jaime Carbonell, Allan Collins, and their colleagues at
Bolt, Beranek &nd Newman, Inc., tutored students about slmple facts in South American
geography (Carbonell, 1970k). SCHOLAR uses a number of tutoring strategies for composing
relevant questions, determining whether or not the student's answers are corrcict, and
answering questions from the student. Both the knowledge representation scheme (see
below)\\ and the tutorial capabilities are applicable to other domains besides geography. For
example, NLS-SCHCLAR was developed to tutor computer-nalve people in the use of a
comples text-editing program (Grignetti, Hausman, & Gould, 1976).

"In 'addition to investigating the nature of tutorlal dialogues and human plausible
reasoning, the SCHOLAR research project explored a number of Al Issues, Including:

1. How can real-world knowledge be stored effectlvely for the fast, easy
retrieval of relevant facts needed in tutoring?

2. What general reasoning strategies are needed to make appropriate Inferences
from the typlcally incomplete database of the tutor program?

3. To what extent can these strategles ! ie Independent of the domain
being discussed (l.e., be dependent o srm of the representation)?

The Knowledge Base--Semantic Nets

In SCHOLAR, knowledge about the donain belng tutored is represented In a semantic ne!
(see Article Representation.B2). Each node or "unit" In the net, corresonding to some
geographical object or concept, Is composed »f the name associated with that node and a
set of properties. These properties are lists of attribute-value pairs. For example, Figure 1
shows a representation of the unlit for Peru:
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PERU:
((EXAMPLE-NOUN PERU))

(1 0) "importance” of unit is high

(SUPERC (I 0) COUNTRY)

(SUPERP (I 6) SOUTH/AMERICA)
link to superordinate units

(LOCATION (I 0) values of LOCATION attribute follow:

(IN (1 0) (SOUTH/AMERICA (I 0) WESTERN)) ‘
(ON (1 0) (COAST (I 0) {OF (I 0) PACIFIC))
(LATITUDE (I 4) (RANGE (1 0) -18 0))
(LONGITUDE (1 5) (RANGE (I 0) -82 -68))
(BORDERING/COUNTRIES (! 1)

(NORTHERN (I 1) (LIST COLUMBIA ECUADOR))

(EASTERN (I 1) BRAZIL)

Figure 1. The unit for PERU.

Attrlbutes can be English words (other units) that are defined elsewhere in the net or one of
several speclal attributes such as n"SUPRA" for superattribute, "SUPERC" for superconcept
or superordinate, "SUPERP" for superpart, or case structure atiributes used in parsing (see
below). An example of SUPRA might be the fact that "fertile" refers to vsoil" and "soil"
refers to "topography"; of SUPERP, that Peru Is part of South America; of SUPERC, that Peru
Is a country. Values can also be importance tags, like the expressions "(1 0)" after LOCATION
In Figure 1 and "(l 1)" after EASTERN: the lower the number, the more important the property.
SCHOLAR uses these tags to measure the relevance of a node with respect to the topic

under discusslon (see below).

Tutorial Dialogue

An Important part of the SCHOLAR research has been an emphaslis on the nature of
tutorial dialogue, In particular the Socratlc style of tutoring, where the tutor attempts to
diagnose the student's misconceptions and then present material that will force the student
to see hls own errors (Collins, Warnock, & Passaflume, 1974). Many human tutorial protocols
have been analysed to see what strategles human students follow, in order to try to
Incorpoiate these strategles In the system (see also Article C2 on the groups continuing
research In this direction). The following example Is an excerpt from a session with the
South Amerlcan geography tutor. The student's questions and answers are preceded by "**",

and annotations are shown In italics:

SN T T S
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What is tive language of Argentina?
xx PROBABLY SPANISH

Very good.
Approx what is the area of Argentina?

Student changes topic...
*x TELL ME SOMETHING ABOUT PERU

Peru is a country.

it is located in South America

The capitai of Peru is Lima.

Now answer the question you didn't answer before.

..and finally answers the question.
xx THE AREA OF ARGENTINA iS 1,100,000 SQUARE MILES

Approximately true, but a more exact value is 1,200,000.
The eastern bordering country of Peru is ---,

Student makes an error and is corrected...
%X CATHOLICISM

Wrong. Cathoiicism is not a country but a religion.
The correct answer Is: Brazii
Where is Peru?

..and once again changes topic.

xx |s Asuncion hot?
Since Asuncion is part of Paraguay, yes.

xx WHAT IS THE MOST IMPORTANT DIFFERENCE BETWEEN PERU AND PARAGUAY?
The primary difference is: The popuiation of Peru is larger by a
factor of 7.8.

The naturai language processing used by SCHOLAR is based on a case grammar system
(Articie Natural Language.B3b), and the semantic Interpretation of a student's response s
heavily guided by the geography knowiedge In the semantic net. Naturai language
processing Is important in SCHOLAR because it eiiows the student to take the initiative and
ask questions that were not anticipated by the program. However, comprehaension of English
input Is faciiitated by a taxonomy of expected "question types." The case grammar is aiso
used by the system to constrt'st questions and presentations of new materiai from the
semantic network. Engiish output is composed of short, simpie sentences, with no embedded
ciauses and a limited repertoire of verbs--generaily some form of the verb "to be."

A simple agenda is used to keep track of topics that are being discussed. Timing

- G pp—— -
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considerations and reievance (importance tags) affect the generation and pruning of topics
on this agenda. Continuity between questions is weak, however, since SCHOLAR does not
pian a series of questions to make a goint. SCHOLAR is capabie of diagnosing a student's
confusion only by foiluwing up one guestion with a reiated question.

Making inferences

SCHOLAR's Inference strategies, for answering student questions and evaluating
student answers to its questions, are designed to cope with the incompieteness of the
information stored in the semantic net database. Some of the important strategies used to
reason with incompiete knowiedge are given below. These abiiities have been expiored
further in current research dealing with default reasoning (Reither, 1978) and plausibie

reasoning (Coiiins, 1978).

intersection search. Answering questions of the form "Can X be a Y?" (e.g., "is Buenos
Airgs a city in Brazii?") is done by an intersection search: The superconcept (SUPERC) arcs
of both nodes for X and Y are traced untii an intersection is found (i.e.,, a common
superconcept node is found). if there is no intersection, the answer is "NO." if there is an
intersection node Q, SCHOLAR answers as foilows:

if Q=Y, then "YES";
if Q=X, then "NO, Y iS AN X."

For example, the question "is Buenos Aires in Brazii?" Is answered YES because Brazii is a
SUPERC of Buenos Aires In the net (G=Y):

SOUTH AMERICA
(Superconcept)
BRAZIL (Y)

(Superconcept)
BUENOS AIRES (X)

But, the question "is Brazli i, Buenos Aires?" gets the response "NO, BRAZIL is a country."
SOUTH AMERICA

(Superconcept)
BRAZIL (X)

(Superconcept)
BUENOS AIRES (Y)

Common superordinate. Otherwise, If Qis not X or Y, the program focuses on the two
eiements that have Q as a ceinmon superocdinate, if they are contradictory (contain suitable
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CONTRA properties) or have distinguishing, mutually exclusive properties (e.g., different
LOCATIONs), the answer Is "NO"; otherwise the system answers "| DON'T KNOW." Answering
"is X a part of Y?" questions Is similar, except SUPERP (superpart) arcs are used for the
intersection process.

Open and closed sets. In order to look for ali objects In the system that satisfy some
condition (e.g., "How many cities in Columbia are on the Atiantic?"), a distinction must be
made about whether the resuiting set of these objects is closed (expiicitly contains all such
objects) or open (contains some and need not contain all such objects). In SCHOLAR's net,
sets are tagged by the course author as either open or closed, thus giving an indication of
the incompleteness of the system's knowledge.

While it is easy for SCHOLAR to answer questions (such as, "Is France a country in
_South Amerlca?") about closed sets, similar questions about open sets require the use of
speclal technlques--SCHOLAR must be abie to reason about the extent of Its knowledge. For
example, If we ask SCHOLAR whether or not rubber Is a product of, say, Guyana and if there
is no explicit information about Guyanese rubber production in the semantic net, SCHOLAR
starts to reason with what it knows: it compares the importance tags of the agricultural
products of Guyana with the Importance tags for rubber in countries that it knows produce
rubber. It happens that Peru Is a known rubber producer. SCHOLAR looks at the |-tag of
rubber for Peru and compares this tag to the largest (least Important) I-tags associated with
Guyana. If It finds that these are comparable, SCHOLAR infers that It knows as much about
Guyana (up to some large I-tag value) as It knows about Peru. Therefore SCHOLAR infers
tirat It would know about rubber production In Guyana If It were important. S.nce rubber is
not ilsted for Guyana, SCHOLAR makes the plausibie (though uncertain) conclusion that rubber
Is not produced there. At this polnt SCHOLAR answers that it doesn't know for certain and
gives the Information about rubber and Peru.

SCHOLAR's use of knowiedge about the extent of Its knowiedge in this kind of plausible
reasoning is unique in Al research and represents an application of meta-level knowledge (see
Representation.Overview).

Summary

The Inferencing strategies used by SCHOLAR are independent of the conient of the
semantic net, and are appiicable in different domains. The Inferences produced are fairly
naturai; that is, they cope with the incompiete knowiedge by empioying reasoning processes
similar to those that people use. The SCHOLAR project as a whole provides an ongoing
environment for research on discourse, teaching strategles, and human plausible reasoning
(see Article C2 on recent research, Including the WHY system).

References

Carboneil (1970a) Is a classic paper, defining the fleid of ICAl and introducing the
SCHOLAR system. Collins (1976) is an llluminating study of human tutorial dialogues. Collins
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research on human plausibie reasoning. Grignetti, Hausman, & Gouid (1976) describes NLS-
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C2, WHY

Recent research by Allan Collins, Al Stevens, and their ICAl research group at Bolt,
Beranek and Newman, Inc., has focused on developing computer-based tutors that can
discuss complex systems. Thelr previous research on SCHOLAR (Article C1), a system that
tutors facts about South American geography, led them to investigate the nature of tutorial
dlalogues about subject matter that was not Just factual--where the causal and temporal
interrelations between the concepts in the domain were of Interest and where student's
errors could Involve not only forgotten facts, but also misconceptions about why processes
work ‘the way tney do. Stevens & Collins (1977) are bullding a new system, called WHY, that
tutors students i the causes of rainfall, a complex geophysical process that Is a function of
many interrelated factors; no single factor can be Isolated that is both necessary and

sufficient to account for rainfall.

in thelr research on tutorlal dialogue of this type, the BBN group has focused on three
questions that are central themes throughout CAI research (Stevens, Collins, & Goldin,

1978):

1. How can a good tutor's use of questions, statements, and examples be
characterized? What is the "goal structure" of a Socratic tutor? (See

below.)

2. What types of misconceptions do students have? How do tutors diagnose
these misconceptions from the errors students make?

3. What are the abstractions and viewpoints that tutors use to explain physical
processes?

By analyzing tutorial dielogues between human experts and students, Collins and Stevens
identify elements of a theory of tutoring. These are Incorporated into a tutorlal program,
which |Is then used to find the weak points of the theory for further investigation. The
current verslon of the WHY system Is the first of a series of iterations of this sort. The work
so far has concentrated on the first topic above, the nalure of Socratic tutoring.

Socratic Tutoring Heuristics

Collins (1976) argues that learning to reason about and understand complex processes
Is best accomplished by dealing wlith speclific problems and cases and trying to generalize
from them. Socratic dlalogue is especlally appropriate for tutoring complex subjects where
tactors Interact and where thelr interactlon accounts for the phenomenon under
conslderation. In an effort to explicitly model the nature of the Socratlc dialogue the current
version of the WHY system incorporates 24 heuristics which control the student/system

interaction. An example heuristic Is:

If the student glves as an explanation of causal dependence one Or more
factors that are not necessary,

then pick a counterexample with the wrong vaiue of th» factor and ask the
student why his causal dependence doesn's hold in that case.
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This rule forces the student to consider the necessity of a particular factor. For example, if
the stucdent gives rainfal* as a reason for growing rice, then the computer-generated
counterexample "Why do they grow rice In Egypt, where there isn't much rainfali?"
challenges ‘he student's explanation of rice growing. These heuristic rules are designed to
facilitate tutorial dialogues In which students must consider combinations of factors that are
necessary for rainfall, elimigate Irrelevant factors, and attempt to generalize from specific
cases to general condijions. (See Collins, 1976, for a complete discussion of the tutoring

rutes.) 3
_,_l:

WHY's knowledge base about rainfall is represented in script-like data structures, which
encode temporal relations In the rainfall process; for example, "First water evaporates f-om
an ocean or sea, then the water-laden air mass Is carrled over land by winds, which in turn
causes the alr mass to cool, which causes preclpltation." (See Schank & Abelson, 1977, on
scripts, as well as Article Representation.B7.) This knowledge representation is adequate for
capturing many of the characteristics of a tutorial dialogue, but there are other kinds of
knowledge about rainfall that aren't represented here, dlscussed below.

. The following excerpt Is from a dialogue with the current version of the WHY system.
The system prompis the student to suggest causes of ralnfall, to look for prior or
intermediate causes, and finally to suggest a ¢eneral rule. When such a rule is proposed, the
system finds a counterexample and forces revision of the rule to account for it. The system
proceeds in this way until a rule of sufficlent generality Is found. The protocol is annotated
with the heuristics employed by the system at each juncture in the conversation.

Heuristic I: Ask for a prediction about a particular case.

Do you think tlie Amazon jungle has hezvy rainfall or light rainfall?
** HEAVY RAINFALL

Heuristic 2: Ask for prior causes.
Why doed the Amazon jungle have heavy rainfall?
** BECAUSE ITS NEAR THE ATLANTIC
Yes, the Amazon jungle Is near the equatorial Atlantic.

Heuristic 3: Ask for intermediate causes.

How does that affect rainfall In the Amazon jungle?
X% THE WATER IN THE CURRENT IS WARM

-

(Section Omitted)

Heuristic 4: Ask for subsequent causes.

What happens after the moisture-filled air reaches the land?
A% | DON'T KNOW

Heuristic 5: Suggest a factor and ask if it is a cause. ,

SR
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Do you think the Andes mountain range has any effect on the rainfall
in the Amazon jungie?
A% YES

Heuristic 3: Ask for intermediate causes.

How?
x%x THE PREVAILING WIND HITS THE ANDES AND THE AIR COOLS

Heuristic 3: Ask for intermediate causes.

How does the fact that prevailing wind hits the Andes, lead to
alr cooling?

(Section Omitted)

Heuristic 6: Form a general rule for an insufficient cause

Do you think that any place with mountains has heavy rainfali?
** YES

Heuristic 7: Pick a countsrexample for an insufficient cause, and Heuristic 2: Ask for
prior causes.

Southern California has mountains. Why doesn't Southrrn Californla
have heavy rainfall?

Current Research

Tutorlal goals. One of the shortcomings of the existing system Is that it doesn't have
long-term "goais" for the tutorlai dialogue. implicit In the tutorial rules Is some idea about
local management of the Interaction, but a global strategy about the tutoring session is
absent. Human tutors, however, admit to having goals llke "Concentrate on one particular
part of the causal structure of rainfall at a time," or "Clear up one mis~onception before
discussing another." Stevens & Collins (1877) set about codifying ‘hese goals and
strategles for Incorporation into the WHY system. They analyzed tutoring protocols in which
human tutors sommented on what they thought the students did and didn't know, and on why
they respondad to the students as they did. From this analysis, two top-level goals became

apparent:

1. Refine the student's causal structure, starting with the most important
factors In a particular process and gradually incorporating more subtie

factors.

2. Refine the student's procedures for applying his causal model to novel
sltuations.

Mo o Py Py s e o
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Student misconceptions. The top-level goals invoive subgoalis of identifying and
correcting the student’s misconceptions. Stevens & Colliis (1877) ciassified these
subgoals Iinto five categories corresponding to types of bugs and how to currect them:

Factual Bugs. Dealt with by correcting the student. Teaching facts Is not
the goal of Socratic tutoring; interreiationships of facts are more important.

Outside-domain bugs. Misconceptions about causal structure, which the
tutor chooses not to explain in detail. For exampie, the "correct” reiationship
between the temperature of air and its moisture-holding capacity Is often .,
stated by the tutor as a fact, without futher expianation.

Overgenerallzation. When a student makes a general rule from an
insufficient set of factors (e.g., any place with mountains has heavy rainfall),
tiia tutor wili find counterexampies to probe for more factors.

Overdifferentiation. When a student counts factors as necessary when
they are not, the tutor will generate counterexamples to show that they are
not.

Reasoning bugs. Tutors wili attempt to teach students skiils such as forming
and testing hypotheses and collecting enough information before drawing a
conclusion.

If a student dispilays more than one bug, human tutors wili empioy a set of heuristics to
decide which one to correct first:

1. Correct errors before omissions.
2. Correct causally p:ior factors before later ones.
3. Make short corrections before longer ones.

4. Correct low-ievel bugs (In the causal network) before correcting higher
level ones.

Functional relationships. The bugs just discussed are ail domain independent, that is,
they wouid occur In tutorial dialogues about other compiex processes besides rainfall. But
some bugs are the resuits of specific misconceptions about the functionai interreiationships
of the concepts of the specific domain. For exampie, one common misconception about
rainfail Is that "cooling causes air to rise" (Stevens, Coilins, & Goidir, 1978). This is not a
simple factual misconception, nor is it domain independent. it is best characterized as an
error In the student's functional modei of rainfail.

In fact, the script representation used in the WHY system for capturing tihhe temporal
and causal relations of land, air, and water masses In rainfail proved Inadequate to get at ail
of the types of student misconceptions. Recent work has Investigated a more fiexibie
representation of functional relationships, which allows the description of the processes that
coliectively determine rainfall from multiple viewpoints--e.g., temporal-causal-subprocess view
captured in the scripts, functional viewpolnt which emphasizes the roles that different

¥
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objects play in the various processes (Stevens, Coliins, & Goidin, 1978). Misconceptlons
about rainfall are represented as errors In the student's model of these relationships. A
functional relationship has four components: (a) a set of actors, each with a role in the
process; (b) a set of factors that affect the process--the factors are all attributes of the
actors (e.g., water is an actor In the Evaporation relationship and Its temperature is a
factor); (c) the result of the process--this is always a change in an attribute of one of the
actors; and (d) the relationship that holds between the actors and the resuit, or how an
attribute gets changed. These funtional relationships may be the resuit of models from other
domains that are applled metaphorically to the domain under discussion (Stevens & Collins,

1978).

Summary

The WHY system started as an extension of SCHOLAR by the implementation of rules
that characterize Socratic tutoring heuristics. Subsequently, an effort was made to describe
the global strategies used by human tutors to gulde the dialogue. Since these were directed
towards dispelling students' misconceptions, five classes of misconceptions were
established, as well as means for correcting them. Many misconceptions are not domain
independent and the key to more versatile tutoring lies In continuing research on kpowledge

representation.
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‘C3. SOPHIE

SOPHIE (a SOPHisticated Instructional Environment) is an ICAI system developed by
John Seely Brown, Richard Burton, and their colleagues at Bolt, Beranek and Newman, Inc., to
explore the objective of a wider range of student initiatives during the tutorial interaction
(Brown, Burton, & Bell, 1975). The SOPHIE system provides the student with a learning
environment in which he iearns problem-solving skills by trying out his ideas, rather than by
instruction. The system has a model of the probiem-solving knowledge in its domain as well
as numerous heuristic strategies for answering the student's questions, criticizing his
hypotheses, and suggesting aiternative theories for his current hypotheses. SOPHIE enables
the student to have a one-to-one relationship with an "expert" who helps him create his own
ideas, experiment with these ideas and, when necessary, debug them.

Figure 1 lllustrates the component modules of the original SOPHIE-I system (Brown,
Rubinstein, & Burton, 1876) and the additional capabilities added for the SOPHIE-Il system,
discussed later in this article.

Natural
Language

SOPHIE-I SYSTEM

Hypothesis|——-]Semantic|———=|Question

Evaluator Network Answerer
Circuit
Simulator
I I AUGMENTATIONS FOR SOPHIE-II
Team Articulate
Game Exgert
Monitor Debugger/
Explainer

\ /

SOPHIE Menu

Figure 1. SOPHIE-i and SOPHIE-Ii.
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SOPHIE-I

SOPHIE teaches probiem-solving skiils in the contaxt of a simulated eiectronics
laboratory. The probiem facing tiie student is to find the "fauits" In @ maifunctioning piece of
equipment whose characteristics have been given to him by taking "measurements." The

. student obtains a sequence of measurements (such as voltages, currents, resistances, etc.)
to determine what is wrong with the equipment and asks questions about the measurements
and about what fauit hypotheses he shouid consider, given the Information he has discovered
so far. SOPHIE evaiuates the hypotheses by considering ail of the information that the
student siould have been abie to derive from his current set of measurements. Tie system
also judges the merits of a student's suggestion for a new measurement in iight of the prior
sequence of measurements. SOPHIE can decide If a measurement is valuabie, depending on
whether It eliminates or Isolates a fault, and wili inform the student when a proposed
measurement provides no new Information.

The foliowing portion of a sampie protocol iiiustrates some of the linguistic and
inferential capabilities of the SOPHIE system (from Brown & Burton, 1975). SOPHIE randomiy
selects a fault (In the performance of a circuit component), inserts it into a modei or
simuiation of the circuit, and teils tive student how the controis are set. The student is given
a schematic diagram of the circuit, and the dialogue refers to components in the schematic
diagram (e.qg., resistor 8 (R8), node connection 1 (N1), capacitor 6 (C6)). The student begins
his troubleshooting by performing measurements in the fauited circuit.

Welcome to Sophie, a reactive iearning environment. The piece of
equipment you are studying is a reguiated power suppiy. Wouid you iike

to start with a fauited instrument that needs fixing?
A% YES

The Instrument has a fauit and its present control settings are:
CcC 1.0 CURRENT CONTROL
CR HiGH CURRENT RANGE SWITCH
LOAD 20 LOAD RESISTANCE IN OHMS

vC 1.0 VOLTAGE CONTROL
VR HiGH VOLTAGE RANGE SWITCH

** WHAT IS THE OUTPLV

The output voitage is 11.7 voits.
Notice that "output" was disambiguated as "output voltage.”

. Wl-lAT IS IT IN A WORKING INSTRUMENT?

in a working circult the output voitage is 18.9 voits.
In case the student does not know what the required value of measurement should have
been, he can ask for any measurement in a properly functioning instrument. "¢ student

‘ then requests an internal measurement.

i ** WHAT IS THE VOLTAGE BETWEEN R8 AND Q1?7

- -
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The voltage at N1 Is 47.6 volts.

** REPLACE Q6

The student believes that he has discovered the problem (in transistor Q6) and tries to fix
it. Before a component is replaced, however, the system queries him as to how he thinks it
is faultea.

| am going to ask you some questions about how Q6 is faulted.
Are any junctions shorted?

**x | DON'T KNOW

Are any terminals open?

xx YES

Which terminal(s) are open?

** THE BASE

Q6 |s not faulted in that manner. Q6 not repiaced.

After learning that Q6 does not have an open base, the student asks if this was at least a
reasonable hypothesis.

*X |S |T POSSIBLE THAT Q6 HAS AN OPEN BASE?
Before the system’s evaluation procedures can be applied to the student’s idea or
hypothesis, the hypothesis must b completely specified. To help the student out, the

system suggests a plausible complete specification of it in an abbreviated form familiar to
the student.

Is the complete fault mode EB/EC/BC = Open/Ok/Open what you intended?
X* SURE

That fauit is consistent with ali of the measurements you have made.

The hypothesis is reasonable, but other measurements will indicate that another component
is faulty.
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Naturai Language Processing--Semantic Grammar

In an instruciional environment, It is Important that the student be provided with a
convenlent way in which to communicate his ideas to the system. The student will become
quickly frustrated If he has to try several ways of expressing an Idea before the system can
understard It. SOPHIE's natural language understander copes wlith varlous lingulstic problems
such as anaphoric references and context-dependent deletiens and ellipsis. which occur

frequently In natural dlalogues. \

SOPHIE's natural language capabllities are based on the concept of a semantic grammar
in which the usual syntactic categories such as noun, verb, and adjective are replaced by
semantically meaningful categorles (Burton, 1876b, and Burton and Brown, 1979b). These
categorles represent concepts known to the system--such as "measurements,”" '"circuit
elements," "transistors" and "hypotheses." For each concept there Is a grammar rule that
glves the alternate ways of expressing that concept In terms of its constituent concepts.
Each rule Is encoded as a LISP procedure that specifies the order of application of the

varlous alternatives In eech rule.

A grammar centered around semantic categories allows the parser to deal with a
certain amount of "fuzzlness" or uncertainty in Its understanding of the words in a given
statement; that is, If the parser Is searching for a particular instantiation of a semantic
category, and the current word In the sentence falls to satisfy this instantiation, it skips
over that word and continues searching. Thus, if the student uses certain words or concepts
that the system doesn't know, the parser can ignore these words and try to make sense of
what remains. In order to limit the negative consequences that may resuit from a
misunderstood question, SOPHIE responds to the student's question with a full sentence that
tells him what question Is belng answered. (See Article Natural {anguage.F7 about the
semantic grammar used In the LIFER system).

inferencing Strategies

In order to Interact with the student, SOPHIE performs several different logical and
tutorlal tasks. Firsi, there Is the task of answering hypothetical questions. For example, the
student might ask, "If the base-emitter junction of the voltage limiting transistor opens, then

what happens to the output voltage?"

A second task SOPHIE must perform is that of hypothesis evaluation, where the student
asks, "Given the measuraments | have made so far, could the base of transistor Q3 be
open?" The problem here Is not to determine if the assertion "the base of Q3 is open" s
true, but whether this assertlon is ioglcaily consistent witiv the data that have already been
coliected by the student. If It Is not consistent, the program explains why It Is not. When it
is conslstent, SOPHIE identifles which Irformation supports the assertion and which

Infcrmation Is Independent of It.

A third task that SOPHIE must perform Is hypothesis generation. In Its simplest form this
Involves constructing all possible hypcineses that are consistent with the known information.
This procedure enables SOPHIE to answer questlons llke, "What could be wrong with the
‘clrcult (glven the measurements that i have taken)?" The task Is solved using the generate-
and-test paradigm with the hypothesls evaluation task described above performing the "test”

function.
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Finally, SOPHIE can determine whether a given measurement is redundant, that is, if the
results of the measurement could have been pred'cted from a complete theory of the circuit,

given the previous measurements.

SOPHIE accomplishes all of these reasoning tasks using an inference mechanism that
relies principaily on a general-purpose simulator of the circuit under discussinn. For example,
to answer a question about a changed voltage resuiting from a hypothetical nodification to a
circuit, SOPHIE first interprets the question with Its parser and then, using this interpretation,
simulates the desired modification. The result is & Voltage Table that represents the
voitages at each terminal In the modified circuit. The originai ques*ion is then answered in

terms of tihese voltages.

The tasks of hypothesis evaluation and hypothesis generation are handied in a similar
manner, using the simulator. When evaiuating hypotheses, SOPHIE attempts to determine tive
logical consistency of a given hypothesis. To accomplish this task, & simuiation of the
hypothesis is performed on the circuit modei and measurements are taken of tihe resuit. If
the values of any of these measurements are not equivaient to the measurements taken by
the student, tiven a counterexample has been established and it is used to critique the

student's hypothesis.

When generating hypotheses, SOPHIE attempts to determine the set of possible faults
or hypotheses that are consistent with the observed behavior of the fauited instrument.
This task is performed by a set of speciaiist procedures that proj.cse a possibie set of
hypotheses to expiain a measurement and then simuiate them to make sure that they expiain
the output voitage and all of the measurements that the student has taken. Hypothesis
generation can be used to suggest possibie paths to expiore when the student has run out
of Ideas for what couid be wrong with the clrcuit or when he wishes to understand the full
implications of his iast measurement. it Is also used by SOPHIE to determine when a

measurement Is redundant.

SOPHIE-iI: The Augmented SOPHIE Lab

Extensions to SOPHIE Inciude: (a) a troubleshooting game invoiving two teams of students
and (b) the deveiopment of an articulate expert debugger/explainer. The simpie reactive
learning environment has also been augmented by the deveiopment of frame-oriented CAl
lesson materiai, used to prepare the student for the laboratory interaction (Brown,
Rubinstein, & Burton, 1976). The articulate expert not only iocates student-inserted faults
in a given instrument but can articutate exactly the deductions that led to its discovery, as
well as the more giobal strategies that guide the trouble-shooting scenario.

Experience with SOPHIE indicates that its major weakness is an inabiiity to foltow up on
student errors. Since SOPHIE Is to be reactive to the student, it wiil not take the initiative to
explore a student's understanding or suggest approaches that he does not consider.
However, the competitive environment of the troubleshooting game, in which partners share a
problem and work it out together, was found to be an effective means of exercising the
student's knowledge of the operation of the instrument being debugged. Finaily, an
experiment involving a minicourse--and exposure to the frame-based texts, the expert, and
tive original SOPHIE Lab--Indicated that long-term use of the system is more effective than a
singie, concentrated exposure to the material (Brown, Rubinstein, & Burton, 1976).
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Summary

The goal of the SOPHIE project was to create a learning environment in which the
student would be challenged to explore ideas on his own and to create conjectures or
hypotheses about a problem-solving sitvation. The student recelves detailed feedback as to
the logical validity. of his proposed solutions. In cases where the student's ideas have
logical flaws, SOPHIE can create relevant counterexamples and critiqgues. The SOPHIE
system comblnes domalin-specific knowledge and powerful domain-independent Inferenriv
mechanisms to answer questions that even human tutors might find it extremely difficuit to
answer,

Refereices

Brown, Burton, & Bell (1976) give a complete description of the early work on SOPHIE,
and Brown, Rubinstein, & Burton (1976) report on the later work. Aiso see Brown & Burton
(1976).
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c4, WEST

Development of the first computer coach was undertaken by Richard Burton and John
Seely Brown at Bolt, Beranek and Newman, Inc., for the children's board game called How the
West Was Won. The term "coach" describes a computer-based learning environment where
the student Is involved In an activity, like piaying a computer game, and the instructional
program operates by "looking over his shoulder" during the game and occasionally offering
criticisms or suggestions for improvement (Goldstein, 1977). This research focused on
identifylng: (a) diagnostic strategies required to infer a student's misunderstandings from his
observed behavior and (b) varlous explicit tutoring strategies for directing the tutor to say the
right thing at the right time (Burton & Brown, 1976, and Burton & Brown, 1979). The intention
of this work was to use these strategies to control the Interaction so that the instructional
program took every possible opportunity to offer help to the student without interrupting so
often as to become a nuisance and destroy the student's fun at the game. By guiding a
student's learning through discovery, computer-based coaching systems holid the promise of
enhancing the educational value of the Increasingly popular computer-gaming environments.

Phllosophy of the Instructional Coach

The pedagogical ideas underlying much of computer coaching reseaich in WEST can be
characterized as guided discovery learning. 1t assumes that the student constructs his
understanding of a situation or a task based on his prior knowledge. According to this theory,
the notion of misconceptlon or bug plays a central role in the construction process. Ideally, a
bug In the student's knowledge will cause an erroneous result In his behavior, which the
student will notice. If the student has enough Information to determine what caused the
error and can then correct it, the bug is referred to as constructive. The role of a tutor in an
Informal environment Is to glve the student extra information In sltuations that would
otherwlse he confusing to him, so that he can determine what caused his error and can
transform nonconstructlve bugs into constructive ones (see Fischer, Brown, & Burton, 1978
for further discusslon).

However, an limportant constraint on the coach is that it should not interrupt the
student too often. If the coach Immedlately points out the student's errots, there is a
danger that the student wlill never develop the necessary skllls for examining his own
behavior and looking for the causes of his mistakes himself. The tutor must be perceptive
enough to make relevant comments, but not be too Intruslve, destroying the fun of the game.
The research on the WEST system examined a wide variety of tutorial strategies that must
be Inciuded to create a successful coaching system,

How the West Was Won

How the West Was Won was originally a computer board game deslgned by Bonnie
Anderson of the Elementary Mathematics Project at the PLATO computer-based education
system at the University of lliinols (Dugdale & Kibbey, 1077). The purpose of this original
(nontutorlal) program was to give elementary-school students drill and practice in arithmetic.
The game resembles the popular Chutes and Ladders board game and, briefly, goes
something like this: At each turn a player receives three numbers (from spinners) with which
he constructs an arlthmetic expression using the operations of addition, subtraction,
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multiplication, and division. The numeric value of the completed expression Is the number of
spaces the player cr.n move, the object of the game being to get to the end first.

However, the strategy of combining the three numbers to make the biggest vaived
expression is not always the best strategy, hecause there are several special features on
the game board. Towns occur every ten spaces and if a player lands on one, he skips ahead
to the next town. There ‘are also shortcuts, and If iie lands on the beglinning of one a player
advances to the other end of the shortcut. Finally, If the player lands on the space that his
opponent Is occupying, the opponent Is bumped back two towns. The spinner values In WEST
are small, so these speclal moves are encouraged (l.e., landing on towns or shortcuts or nn

your opponent).

Diagnostic Modeling

There are two majcr related problems that must be solved by the computer coach.
They are (a) when to interrupt the student's problem-solving activity, and (b) what to say
once It has been Intarrupted. In general, solutions to these problems require both techniques
for determining what the student knows (procedures for constructing a diagnostic model) and
explicit tutoring princlples about Interrupting and advising. These, In turn, require theories
about now a student forms abstractions, how he learns, and when he Is apt to be most
receptive to advice. Unfortunately, few, If any, existing psychological theories are precise
enough to suggest anything more than cautlon. :

Since the student is primarlly engaged In & gaming or probiem-solving activity, diagnosis
of his strengths and weaknesses must be unobtrusive to his main activity. This objective
means that the ciagnostic component cannot use pre-stored tests or pose a lot of diaghostic
questions to the student. Instead, the computer coach must restrict itself mainly toinferring
a student's shortcomings from what he does in the context of playing the game or solving the
problem. This objectlve can create a difficult problem--just because a student does not use
a certaln sklll while playlng a game does not mean that he does not know that skill. Although
this point seems quite obvious, It poses a serious diagnostlc problem: The absence of a
potential skill carries dlagnostic value If and only If an expert In an equivalent situation would
have used that sklll. Hence, apart from his outright errors, the main window a computer-
based coach has on a student's misconceptions Is through a differential modeling technique
that compares what the student Is dolng with what the expert would be doing In his place.
This difference provides hypotheses about what the student does not know or has not’yet
mastered. (See the related discussion of overlay models in Article CS.)

Constructing the differential model requires that two tasks be performed by the coach,
using the computer Expert (the subprogram that Is expert at playing the game WEST). The
first task of the coach Is to evaluate the student's current move with respect to the set of
possible alternative moves that an Expert might have made in the exact same
clrcumstances. The second task Is to determine what underlyi» g skills were used to select
and compose the student's move and each of the "hetter” moves of the Expert. To
accomplish the evaluative task, the Expert need only use the results of Iits knowledge and
reasoning strategles, available as better moves. However, for the second task, the coach
has to conslder the "pleces" of knowledge Involved In move selection and In the generation
of better moves, since the absence of one of these pleces of knowledge might explain why
the student falled to make a better move.

2 T S S St SR AL A A S e
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Tutoring by Issue and Example -- A General Paradigm

One of the top-levei goals driving the coach Is the objective that its comments be both
reievant to the situation and memorable to the student. The Issues and Examples tutoring
strategy provides a framework for meeting these two constraints. Issues are concepts used
in the diagnostic process to identify, at any particular moment, what Is relevant. Examples
provire concrete instances of these abstract concepts. Providing both the description of a
generic issue (a concept used to seiect a strategy) and a concrete example of its use
increases the chance that the student will integrate this piece of tutorial commentary into
his knowiedge. In the Issues and Exampies paradigm, the issues embody the important
concepts underiying a student's behavior. They define the space of concepts that the
Coach can address--the facets of the student's behavior that are monitored by the Coach.

In WEST, there are three leveis of issues on which a Coach can focus: At the lown '
levei are the basic mathematical skiils that the student is practicing (the use «!
parentheses, the use of the various arithmetic operations, and the form or pattern of the
student's move as an arithmentic expression). The second level of Issues cencerns the
skills needed to piay WEST (ilke the speciai moves: bump, town, and shortcut) and the
development of a strategy for choosing moves. At the third ievel are the general skills of
game piaying (like watching your opponent to jearn from his moves), which are not addressed

by the WEST program.

Each of the issues is represented in two parts, a recognizer and an evaluctor. The issue
recognizer is data-directed; it watches the student's behavior for evidence that he does or
does not use a particuiar concept or skiil. The recognizers are used to construct a model of
the student's knowiedge. The issue evaluators are goal-directed; they interpret this modei
to determine the student's weaknesses. The issue recognizers of WEST are fairly
straightforward but are, nevertheiess, more compiex than simpie pattern matchers. For
exampie, the recognizer for the PARENTHESIS Issue must determine not only whether or not
parentheses are present In the student's expression, but also whether they were necessary

for his move, or for an optimai move.

Figure 1 is a diagram of the modeiing/tutoriai process underiying the issues and
txampies paradigm. Figure 1a presents the process of constructing a model of the student's
behavior. it is important to observe that without the Expert it is impossible to determine
whether the student is weak in some skiit or whether the skiii has not been used because
the need for it has arisen infrequentiy in the student’s experience.
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The Ccaching Process

“igure 1b presents the top ievel of the coaching process. When the student makes a
iess than optimai move (as determined by comparing his move with that of the Expert), the
Coach uses the evaluation component of each issue to create a iist of issues on which it has
assessed that the student is weak. From the Expert's list of better moves, the Coach
invokes the Issue recognizers, to determine which issues are iliustrated by these better
moves. From these two lists of Issues, the Coach seiects an issue and the move that
iilustrates it (l.e., creates an example of it) and decides, on the basis of tutoring principles,
whether or rot to interrupt. If the two lists have no issues in common, the reason for the
student's probiem lies outside the collection of Issues, and the Coach says nothing.

if tive Coach decides to Interrupt, the seiected Issue and Exampie are then passed to
the explanation generators, which produce the feedback to the student. Currently, the
explanations are stored in a procedures, called Speakers, attached to each issue. Each
Speaker is responsible for presenting a few lines of text explaining its issue. (See aiso the
related discussion of computer coaching in Article C5 on WUMPUS).

Tutoring Principles

General tutoring principies dictate that, at time,, even when reievant Issues and
Examples have been identified, it may be inappropriate to interrupt. For exampie, what if
there are two competing Issues, both applicabie to a certain situation? Which one should be
picked? The Issues in WEST are sufficiently independent that there is littie need to
consider their prerequisite structure, for exampie, whether the use of parentheses should be
tutored before division (but see the description of the syllabus in WUMPUS, Article C5).
instead, additionai tutoring principies must be Invoked to decide which one of the set of

applicabie Issues shouid be used.

in WEST, experiments have been conducted using two aiternate principies to guide this
decision. The first Is the Focus Strategy, which ensures that, everything eise being equal,
the issue most recently discussed is chosen--the Coach will tend to concentrate on a
particular issue until evidence Is present to indicate that it is mastered. The aiternative
principie Is the Breadth Strategy, where issues that have not recently been discussed tend
to be selected. This strategy minimizes a student's boredom and insures breadth of concept

coverage.

) The rest of WEST's strategles for deciding whether to raise an Issue and what to say
can be piaced in the four categorles listed below, with example rules of each:

1. Coaching Phliosophy. Tutoring principigs can enhalice a student’s likeiihood
of remembering what is said. For exampie, "When liiustrating an issue, use an
Example (an aiternative move) oniy when the result or vutcome of that move
is dramatically superior to the move made by the student.”

2. Maintaining interest in the Game. The Coach should not destroy the
student's Inherent Interest in the game by Interrupting too often. For
example, "Never tutor on two consecutive moves," or "If the student makes
an exceptional move, identify why It is good and congratulate him."
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3. Increasing Chances oY Learning. Four levels of hints are provided by the
WEST tutor, at the student's request: (a) isolate a weakness and directly
address that weakness, (b) delineate the space of possible moves at this
point in the game, (c) select the optimal meve and tell why it Is optimal, and
(d) describe how to make thr optimal move.

4. Environmental Considerations. The Coach should consider the game-playing
environment. For example, "If the student makes a possibly careless error,
one for which there Is evidence that he knows better, be forglving."

Nolse in the Model

When the student does not meke an optimal move, the program knows only that at least
one of the Issues required for that move was not employed by the student. Which of these
Issues blocked the student from making the move Is not known. In practice, blame Is
apportioned more or less equally among all of the Issues required for a missed better move.
One effect of this apportionment is the introduction of noise into the model, that is, blame will
almost certainly be apportioned to Issues that are, in fact, understood. Also, since the
system does nct account for the entire process that a person uses to derive a move, the set
of Issues is, by deflnition, Incomplete. This Is the second source of noise In the differential
model. A third source of noise in the model Is the difficulty of modeling certain human factors
such as borecdom or fatigue that cause Inconsistent behaviors. For example, students ..re
seldom completely consistent. They often forget to use techniques that they know, or get
tired and accept a move that Is easy to generate but which does not reflect their

knowledge.

Another source of noise Is inherent in the process of learning. As the ctudent plays the
game, he acquires new skllls. The student model, which has been accumulating <uring the
course of his play, will not be up to date, that is, It will still show the newly learned issues as
"weaknesses." Idezlly, the "old pieces" of the model should decay with time. Unforiunately,
the costs Involved in this computation are prohibitive. To avold this particular failing of the
model, the WEST Coach removes from conslideration any Issues that the student has useu
recently {In the last three moves), assuming that they are now par\t of his knawledge.

To combat the nolse that arises In the model, the Evaluator for each Issue tends to
assume that the student has mastery of the Issue. Some coaching opportunities iiay be
missed, but eventually, If the student has a problem addressed by an Issue, a pattern will

emerge.

Experiences with West

WEST has been used In elementary school classrooms. In a controlled experiment, the
coache version of WEST was compared to an uncoached version. The ccached students
showet a conslderably greater variety of patterns, Indicating that they had ac-juired many of
the more subtie patterns and had not fallen permanently into "ruts" that prevented them from
"seelng when such moves were Important. Moreover, and perhaps most Important of all, the
students In the coached group enjoyed playing the game considerably more than the
uncoached group (Goldstein, 1979).
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C5. WUMPUS

This article describes a computer coach for WUMPUS, a computer game In which the
player must track down and slay the vicious Wumpus while avoiding pitfalls that resuit in
certaln, If flctional, death (Yob, 1876). The coach descrined here Is WUSOR-II, one of tiree
"generations" of computer coaches for WUMPUS developed by Ira Goldstein and Brian Carr at
MIT (Carr & Goldstein, 1977). (For discusslons of WUSOR-1 and -lll, see Stansfield, Carr, &
Goldstein, 1976, and Goldstein, 1978, respectively.) To be a skilled wumpus-hunter one must
know about loglc, probability, decision theory, and geometry. A deficlt in one's knowledge
may resuit In being eaten by the Wumpus or falling through the center of the earth. In
keeping with the philosophy of computer coaching, students are highly motivated to learn
these fundamental skills.

The deslgn of the WUSOF Il system Involves the interactions of the specialist programs
shown In Figure 1. There are four modules: the Expert, the Psychologist, the Student Model,
and the Tutor. The Expert Informs the Psychologist of two facts: (a) if the player's move is
nonoptimal and (b) which skills are needed for him to discover better alternatives. The
Psychologist employs this comparison to formulate hypotheses about which domain-specific
skllls are known to the student. These hypotheses are recorded In the Student Model, which
represents the student's knowledge as a subset of the Expert's skills--an overlay model (see
Overview B and Carr & Goldstein, 1877). The Tutor uses the student model to guide its
Interactions with the player. Basically, It chooses to discuss skllls not yet exhibited by the
player in sltuations where thelr use would result In better moves. Goldstein (1977) provides
a more detalled discussion of the structure and function of these coaching modules. fAiso
see the discusslon of the WEST computer coach in Article C4.)

The central box of Flyure 1 contains a reprasentation for the problem-solving skills of
the domain belng tutored. It Is, In essence, a formal representation of the syllabu:.* lhe
Expert Is derlved from the skills represented therein, as Is the structure of the student
model. The Psychologist derlves expectations from this knowledge regarding which skiils the
student can be expected to acquire next, based on a model of the relative difficulty of items
In the syliabus. The Tutor derlves relationships between skills such as analogies and
refinements, which can be empioyed te improve its explanations of new skills (see Goldstein,

1979).

Theoretical Goals: Toward a Theory of Coaching

The approach to the design of computer coaches In WUSOR-I1l Is to construct rule-based
representation (see Article Representation.B3) for (a) the skills needed by the Expert to play
the game, (b) the modeling criterla used by the Psychologist, and (c) the alternative tutoring
strategles used by the Tutor. Each Is expanded below:

o maaee o
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Fig. 1. Simplified block diagram of a computer coach.
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The Expert uses rules that embody the knowledge or skills required to play the game
to analyze the player's behavior. The virtue of a rule-based representation of expertise is
that Its modularity beth allows tutoring to focus conclsely on the dlscusslon of specific skills
and permits modeling to take the form of hypotheses regarding which rules are known by the

player.

The Psychologist uses rules of evidence to make reasonable hypotheses about which of
the Expert's skllls the player possesses. Typlcal rules of evidence are:

increase the estimate that a player possesses a skill If the player explicitly
clalms acqualntance with the skili, and decrease the relliabllity If the player

expresses unfamillarity.

Increase the estimate that a player possesses a sklll If the sklli Is manifest In the
player's behavlor, and decrease the estimate If the sklll Is not manifest in a
sltuation where the Expert belleves it to be appropriate; hence, Impliclt as well
as overt evidence plays a role.

Decrease the estimate that a player possessas a skill If there Is a long interval
since the last conflrmation was obtained (thereby modeling the tendency for a
sklil to decay wilth little use).

The Tutor uses explanation rules to select the appropriate topic to discuss with the
player and to choose the form of the explanation. These rules include:

Rules of simplification that take a complex statement and reduce it to a simpler
assertion. Simplification rules are essential if the player is not to be

overwheimed by the Tutor's explanations.

Rules ¢ rhetoric that codify alternative explanation strategies. The two extremes
are e. - anation in terms of a general rule and explanaticn in terms of a concrete

instance.

The WUMPUS Expert

in WUMPUS, the piayer Is initially piaced somewhere In a randomiy connected wurren of
caves and toid the neighbors of his current iocation. His gos! is to locate the horrid Wumpus
and slay it with an arrow. Each move to a nelghboring cave ylelds Information regarding that
cave's neighbors. The difficulty In choosing & move arlses from the existence of dangers in
the warren--bats, plts, and the Wumpus itself. If the player moves into the Wumpus's lair, he
is eaten. |f he waiks into a pit, he fails to his death. Bats pick the piayer up and randomly

drop him elsewhere In the warren.

The player can minimize risk and locate the Wumpus by making the proper logistic and
probabllistic Inferences from warnings that he Is glven. These warnings are provided
whenever the player Is In the vicinity of a danger. The Wumpus can be smelled within one or
two caves. The squeak of dats can be heard one cave away and the breeze of a pit felt
one cave away. The game is won by shooting an arrow Into the Wumpus's lair. if the player
exhausts his set of five arrows without hitting the creature, the game |s iost.
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The Wumpus Expert uses a ruie-based representation, consisting of approximately 20

rules, to infer the risk of visiting new caves. Five of these rules are shown beiow:

L1. Positive Evidence Rule. A warning In a cave impiies that a danger exists in a
neighbor.

L2. Negative Evidence Rule. The absence of a warning impiies that no danger
exists in any neighbors.

L3. Elimination Rule. If a cave has a warning and all but one of its neighbors are
known to be safe, then the danger Is in the remaining neighbor.

P1. Equal Likelihood Rule. in the absence of other knowledge, ali of the
neighbors of a cave with a warning are equally likely to contaln a danger.

P2. Double Evidence Rule. Multiple warniags increase the likelihood that a given
cave contains a danger.

A Sample Protocol with the WUSOR-Ii Computer Coach

A transcript of an interactlon with the WUSOR-il coach is illustrated below.
player's responses are preceded by a L LN

Helio, Timmy. There are 16 caves, 2 bats, 2 pits, and 1 Wumpus. You
are now at cave 15 with neighbors 4, 14 and 0. Brrr! There is a draft. You
are near a pit. What a stench! The Wumpus is near. What now?

xx 4

You are now at cave 4 with neighbors 16, 14 and 2. Brrr! Squeak!
A bat is near. What now?

The goal of the Coach is to tutor a beginner in the relevant logical, probabilistic, and
strategic knowledge needed to play the game. For example, the Expert informs the Tutor
that cave 14 should be treated as more dangerous than 0 or 2 since there is multiple
evidence (from the drafts in 15 and 4) that 14 contains a pit. If the player now moved to
cave 14, a coaching situation might occur as follows:

% 14

Timmy, It isn't necessary to take such large risks with pits. One of
cave 2 and 14 contains a pit. Likewise one of cave 0 and 14 contains a pit.
This is multipie evidence of a pit In cave 14 which makes it quite likely
that cave 14 contains a pit. it is less likely that cave 0 contains a pit.

_Hence, we might want to explore cave 0 instead. Do you want to take back

your move?

The

- -
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Although It Is not apparent from these simple remarks, every module ol thr Coach
contributed to the dialogue. These contributions are summarized below:

The Expert analyzes aii possibie moves, using its set of skills. The outcome of its
analysls Is a ranking of possible moves with an attached list that assoclates tlie skills that
would be needed to make each move. For example, using the five skills listeri earlier, the
Expert recognizes that cave 14 Is the most dangerous move and cave O is the safest move.

Essentiaily, the Expert provides the foilowing proof for use by tie Psychoiogist and
Tutor modules. (The proof Is given here in Engiish for readability: the Expert's actual

analyses are in the programming ianguage LiSP.)

Lemma 1: The Wumpus cannot be in O, 2, or 14 since there is no smell In 4.
(Application of the Negative Evidence Ruie, L2, for 2-cave warning of Wumpus.)

Lemma 2: Caves O and 2 were better than 14 because there was single
evidence that caves O and 2 contained a pit, but double evidence for cave 14,
(Application of the Doubie Evidence Ruie, p2.)

Lemma &: Cave 2 is more dangerous than cave 0, since 2 contalns a bat, and the
bat could drop you In a fatal cave. (We know this fact because the squeak in 4
Implied a bat in 14 or 2; but the absence of a squeak In 15 implies no bat in 14.
Hence, by Elimination Rule, L3, there is a bat in 2.)

The Psychologist, after seeing Timmy move to cave 14, decreases the Student Model
weight indlcating famliliarity with the Doubie Evidence Rule, P2, since the Expert's proof
indicates that this heuristic was not applied. Table 1 is the Psychologist's hypotheses
regarding which skilis of the Expert the student possesses.

Table 1.
A Typical Student Model Maintained by the Coach

RULES APPROPRIATE ‘USED PER CENT KNOWN
L1 5 5 160 Yes
L2 4 3 75 Yes
L3 4 2 50 ?
L4 5 5 188 Yes
LS 4 1 25 No

Modeling ralses many issues. One subtiety is that the move to 14 above may be
evidence of a more elementary limitation--a failure to understand the logical implications of
the draft warning--l.e., that a pitis in a neighboring cave. The current state of the Student
Model is used by the Psychologist to determine, in the event of a nonoptimal move, which skill
Is in fact missing. The Student Model Indicates the level of play that can be expected from
this player--the player might be a beginner with Incomplete knowledge of the basic rules of
the game, a novice with understanding of the logical skills, an amateur with knowledge of the

e 7 TR
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logical and the more elementary protability skills, etc. The Psychologist would attribute the
student's error in the current situation to unfamiliarity with a skiil at his current level of play;
in this case, Timmy is a player who has mastered the loglcal skills and is learning the basic
probability heuristics. Hence, the coach's explanation focused on explaining the double

gvidence heurlstic.

The Tutor is responsible for abridging the Coach's response to the player's move te
cave 14. (The complete explanation generated by the Expert were the tiree lemmas shown
above.) Such pruning is imperative if the Coach is to generate comprehensible advice.
Hepce, the Tutor prunes the complete analysis on the basis of simplificatlon rules that delete
those parts of the argument that are already known to the player on the basis of the
Student Mode! and those portions that are too complex. Here, the coach deleted Lemma 1,
the discussion of the Wumpus danger, because It is based on the negative evidence skill
that the Student Model attributes to the player. Lemma 2, the eliminatiun argument for bats,
is potentially appropriate to discuss; but a simpiification strategy directs the Coach to focus
on a single skill. Additional information will be given by the Coach if requested by the player.

Conclusions

The novelty of this research Is that in a single sys'em there is significant domain
expertise, a broad range of possible interaction strategies available to the tutor, and @
modeling capability for the student's current knowledge state. Informal experience with over
20 players of various ages has shown WUSOR-II to be a helpful iearning aid, as judged by
interviews with the players. The short-term payoff from this research is an improved
understanding of the learning and teaching processes. The long-term payoff is the
development of a practical educational technology, given the expected decrease in

hardware costs.
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C6, BUGGY

BUGGY is a program that can accurately determine a student's misconceptions (buygs)
about basic aritimetic skills. The system, developed by John Seely Brown, Richard Burton
and Kathy Larkin at Bolt, Beranek and Newman, Inc., provides a mechanism for erplaining why
a student is making an arlthmetic mistake, as opposed to simply Identifying the mistake.
Having a detalled model of a student's knowledge that Indicates his misconceptions is
Important for successful tutoring.

A common assumption among teachers Is that students do not follow procedures very
well and that erratic behavior Is the primary cause of a student's inability to perform eaci
step correctly. Brown & Burton (1978) argue that students are remarkably competent
procedure followers, but they often follow the wrong procedures. By presenting exampies of
systematic Incorrect behavior, BUGGY allcws teachers to practice diagnosing the underiying
causes of a student's errors. Using BUGGY, teachers gain experlence at forming hypotheses
about the relatlunship between tie symptoms of a bug that a student manifests and the
underlylng misconception. This experlence helps teachers become more aware of methods or
strategles available for dlagnasing thelr student's problems properly.

Manifesting Bugs

Experience with BUGGY indicates that forming a model of what is wrong with a
student's method of performing a task is often more difficult than performing the task itseif.
Consider, for example, the foliowing additlon problems and their {erroneous) soiutions. They
were provided by a student with a *bug" In his addition procedure:

4] 328 989 66 216
+9 +917 + 52  +887 + 13

58 1345 1141 1853 229

Once you have discovered the bug, try testing your hypothesis by simuiating tive buggy
student--predict his results on the foliowing two test probiems:

446 281
+815 +399

The bug Is simpie. In procedural terms, after determining the carry, the student forgets
to reset the "carry register" to zero; he accumulates the amount carried, across the
coiumns. For example, in the student's second probiem (328 + 917 = 1345), he proceeds as
follows: 8 + 7 = 15, so he writes & and carries 1; 2 + 1 = 3 pius the 1 carried is 4; finaliy,
3+9=12, but the 1 carrled from the first column is stili there--it has not been reset--so
adding it to the final column gives 13. If this is the correct bug, then the answers to the
test problems will be 1361 and 700. (This bug is really not se unusual; a chiid oftep uses his
fingers to remember the carry and inight forget to bend them back after each column.)

The model bullt by BUGGY Incorporates both correct and Incorrect subprocedures that

simuiate the student's behavior on particuiar probiems and capture wiat parts of a student’s
skili are correct and what parts are incorrect. BUGGY represents a skill, such as addition, as

*A-w/: TR R
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a coliection of subskills, for exampie, one of which is knowing how to "carry" a digit into the
next column. The subprocedures in BUGGY that correspond to human subskills are linked into
a procedural net (Sacerdoti, 1974), which Is BUGGY's representation of the entire human skiil.
if all the sybprocedures in BUGGY's procedural net for addition work correctly, then BUGGY
will do addition probiems correctly. On the other hand, replacing correct subprocedures with
ones that are fauity wili result in systematic errors of the kind shown above. Brown and
Burton call a procedural network with one or more fauity subprocedures a diagnostic mode!
because it is a way of representing systematic errors. The model has been used in two
ways. First, it can diagnose a student's errors and pinpoint the bug(s) in the student's skill.
Second, it can heip to train a teacher to diagnose student errors by "playing the part" of a
student with one or more buggy subskills.

When BUGGY is to dlagnose a student's errors, its task Is to modify the correct
procedural network of, say, subtraction untii it accounts for all of the student's answers,
both right and wrong. This modification is done by systematicaliy replacing correct
subprocedures with incorrect variants until a consistent diagnostic modei is found. There are
currently 70 primitive faulty subprocedures for subtraction. These are explored
exhaustively while attempting to determire a consistent diagnostic model. if a singie variant
or bug is Insufficient to expiain a stvdent's behavior, then combinations of two bugs’are
tried. (Because of the overwheiming rumber of combinations of three or more bugs, these
are not used to form diagnostic modeis.) in this manner, 230 "bugs" have been identified,
each with a bug description. interactions among bugs and the ramifications of a buagy
subpror.edure's being calied by severai high-order procedures constltute major challenges
for designing efficient simuiations of muitipie bugs. Note aiso that this technique requires a
large amount of compute time and is amenabie only to domains where bugs can be expiicated

in a more or iess compiete way.

The procedural network for subtraction (and its bugs) was tested In an experiment
using the resuits o7 a test administered to 1,325 students in the fourth, fifth, and sixth
grades. Using the BUGGY modei, it was found that about 40% of the students demonstrated
consistently buggy behavior. That is, BUGGY was able to construct a diagnostic model for
student's errors demonstrating that they were using nonrandom, though incorrect procedures.

Using Buggy to Train Teachers

BI)GGY can aiso be used to train teachers to diagnose student errors. This facility is
illustrated by a protocol excerpted from Brown (1877) in which BUGGY presents a team of
teachers with incorrectiy soived math probiems and supervises their diagnosis of the bug.

Protocol of a Team Using BUGGY

Welcome to Bugiand. i have chosen a bug.
Here Is an exampie of the bug.

17
+5

13
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T he system presents an example in which the student didn't get the right answer.

Now you can give me problems to determine the bug.

*x 18 43
XX 46 +79
16 23

The teachers generate problems, and BUGGY solves them incorrectly, following a bv 2y
procedure. The team is trying to diagnose the bug in BUGGY'S addition procedr .. by
presenting BUGGY with problems to solve. However, they are using problems similar to the
original one, which is ¢ poor strategy because it may leave other symptoms of the bug
undiscovered.

*x GOT THE BUG!

The team thinks that they know what the problem is. Omitted here for space, but shown
below, BUGGY asks them to formulate the bug in English. This step has the effect of
making the team verbalize the bug clearly. 1t is a difficult task, and the results are often
ambiguous. BUGGY does not "read” the description of the bug, because it does not have
the natural language abilities to do so. Instead, it generates a series of problems for the
team to solve. The team must solve them incorrectly, using the bug that they think they
have identified, to convince BUGGY that they have in fact discovered the bug. )

Here are some problems to test your theories about the bug.
What Is: .

21
+39

% 51

That's not the bug | have. Using my bug:
21
+39
16
Try giving me some more axampies...

T he team fails BUGGY's test by being unable to solve the given problem. That is, their bug
is not the same one that BUGGY is using. If they had solved 5 problems "correctly” (that
is, incorrectly because of a bug), then BUGGY would credit them with a correct diagnosis.
Now, however they must set more problems for BUGGY to solve, in an attempt to deduce

the bug.

KX 51 99 68
XX $+1707 +99 +9

----- - -

21 36 23

41
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x* GOT THE BUGI
Please describe the bug you think | have:
*x THE STUDENT IS ADDING ALL THE DIGITS TOGETHER.

Here are some problems to test your theory about the bug.
What are:

33 1091 8 28 90
+99 +60 +34 +70 +6

x% 24 17 16 17 16

Very good. My description of the bug is:
The student always sums up all the digits, with no regard to columns.

Summary

The central idea of this research Is that procedural networks can be used to build
diagnostic models. This representation scheme facilitates an appropriate decomposition of a
skill Into subskills, to make explicit the control structures underiying a collection of skills, and
to execute directly the resuiting diagnostic model. Rather than being a subset or simplification
of expert rules, as In overlay modeling (Carr & Goldstein, 1977; see Articles B, C5 and C4),
the procedural network Is a model of & student's behavior that is structured In terms of
semantically meaningful deviations from the correct procedure. [ach subskill, whether
corract or Incorrect, is explicitly represented as a subprocedure In the network.

References

Brown & Burton (1978) Is the most recent and compiete report on BUGGY. Also see
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C7. EXCHECK

EXCHECK is an Inteliigent Computer-alded Instruction system designed and implemented
by Patrick Suppes and his colieagues at the Institute of Mathematical Studies in the Social
Sciences (IMSSS) at Stanford University. It is a general-purpose instructional system used
principally to present complete, university-ievel courses In logic, set theory, and proof
theory. In the courses taught using the EXCHECK system. lesson material is presented to
the student at his computer terminal, followed by exercises consisting of theorems that he Is
to prove using the program's theorem prover. The courses are taught on IMSSS's CA|
system, which uses computer-generated speech and split-screen displays. Several hundred
Stanford students take these courses each year.

From an Al point of view, the most Interesting aspects of the EXCHECK system are the
procedures and the underlying theorles of mathematical reasoning that permit this interaction
to take place in a natural style ciosely approximating standard mathematical practice. These
include naturai language facliities, natural-deduction-based proof procedures, theorem
provers, decislon procedures for some simple mathematical theories, procedures for analyzing
and summarlzing proofs, and procedures for conducting dialogues about some elementary
mathematical structures.

Examples of the kind of natural language accepted and generated are given in the
proofs and dialogues presented beiow. The baslc logic is a variant of Suppes's (19567)
formulation of natural deduction augmented by high-level inference procedures that are the
analogs of proof procedures used in standard mathematical practice.

Understanding informal Mathematical Reasoning

The mathematical reasoning involved In the set theory and proof theory courses IS
compiex and subtie. The fundamental Al problem of EXCHECK is making the program capabie
of understanding informal mathematical reasoning: The program must be able to follow
mathematical proofs presented in a "natural" manner. That is, just as the intent of natural
language processing is to handie languages that are actually spoken, the intent of natural
proof processing Is to handie proofs as they are actuaily done by practicing mathematicians.
in generai, such proofs are presented by giving a sketch of the main line of argument along
with any other mathematically significant information that might be needed to completely
reconstruct the proof. This style shouid be contrasted with the derivations familiar from
elementary logic, where each detail is presented and the focus of attention is on syntactic
manipuiations rat..2r than on the unde: /ing semantics.

A major aspect of the problem of machine understanding of natural proofs is finding
janguages that permit users to express thelr proofs in the fashion described above. Such
languages, In turn, must find thelr basis in an analysis or model of Informal mathematicai
reasoning. Finding these naturai proof languages should be compared to the probiem of
finding high-ievel "naturai" or “"English-like" programming languages. For more detailed
discusslons of these issues, see Blaine & Smith (1877), Smith (1976), and Smith et al.
(1976). A simple example of understanding Informai mathematical reasoning and fuller
discussion of the techniques involved follows.

o ————
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Student_Proof_
We present two proofs of the elementary theorem,
Thm: If Ac Bthen -~(Bc A)
where "c" is used for proper subset and "c" Is used for subset.

First, the proof Is given Iin the informal style of standard mathematical practice.

We want to show that If A c B, then ~(B c A).

Assume A c B. We show -(B c A) by indirect proof. Assume that B c A. Since Ac
B then, by definition, Ac Band A¢ B. Since Ac B andBc A then A =B. But this is
a contradiction and, hence, the assumptlon that B c A is false. Therefore, ~(B c
A).

The following typescript shows how one student did the proof In the EXCHECK system.
input from the student Is In boidface type and comments are in italics; everything else is
generated by the program. The program keeps track of the goal that the student is currently
trylng to establish; the Initial goal is the theorem to be proven. EXCHECK indicates
acceptance of an Inference by returning the top-level prompt *%; If a suggested Inference is
not acceptabie, EXCHECK returns an error message.

Derive: If Ac B then-(Bc A)
** hyp (1) **AcB

The hypothesis of the theorem is assumed. The goal is automatically reset to the
consequent of the theorem.

*X raa
assume (2) **Gg c A

The student begins an indirect proof (the command 'raa’ is @ mnemonic for reductio ad
absurdum). The program assumes the negation of current goal. The goal is now any
contradiction.

xx {definitlton Number or Name? ** proper subset
1 Df. proper subset
(3) AcBandAv B

T he definition of proper subset is applied to line 1.
xx 2 3estabilsh *B = A

2,3 Estabiish
(4) B=A

«
NS
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The student asks the theorem prover to check the simple set theoretic inference

xx 3 4contradiction

Using ** ok

3,4 Contradiction
(6) B-c A

The student indicates that lines 3 and 4 iead to a
contradiction. EXCHECK returns the negation of assumption (2).

%% ged
Correct

EXCHECK accepts the derivation.

The foliowing Informai review printout was generated by the program from the proof given in
the above typescript.

Derive: if Ac B then ~(Bc A)

Assume (1) AcB

By raa show: =(B c A)

Assume (2) Bc A

From 1, by definition of proper subset,
(3) AcBandA¢B

From 2,3 it foilows that,
(4) A=8B

3,4 iead to e contradiction; hence, assumption 2 is false:
(6) ~(Bc A)

Natural Inference Procedures

There are no slgnificant structurai differences hatween the detailed informal proof and
the student's proof as presented to EXCHECK. The same steps occur in the same relations
to each other. Such giobal or structural fidelity to natural proofs is a major research goal of
the EXCHECK project and depends upon the development of natural inference procedures.
Some of these, such as the HYPOTHESIS and INDIRECT PROOF procedures used in the above
proof, are familiar from standard logical systems. The procedure used in the appiication of
the definition of proper subset to iine (1) is calied IMPLIES. It is used to derive results that,
intultively speaking, follow by applying a previous result or Zefinition. it is considerably more
complex than the Inference procedures usually found in standard logica! systems. An even
more complex natural inference procedure used in the above proof is the ESTABLISH
procedure. In general, ESTABLISH Is used to derive results that are consequences of prior
results in the theory under consideration, in this case in the theory of sets. Eliminating the
need to cite specific results in the theory, which wouid disrupt the mam line or argument, is
important and Is discussed turther In the section on ESTABLISH, « «ow.
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The inference procedures in EXCHECK are Intended not only to match natural
inferences in strength but also to match them in degree and kind. Howev , there are
differences. EXCHECK inference procedures must always be invoked explicitly--in standard
practice, particular Inference procedures or rules are usuaily not cited explicitly. For
example, compare how the swdent expresses the inferences that resuit in iines (3) and (4)
with their counterparts_ in the Informal proof. The expliclt Invocation of inference procedures
basicalily requires that two pieces of information be given: first, the Inference procedure to
be used; and, second, the previous resuits to be used--in particular, explicit line numbers
must be used.

Explicitness Is not disruptive of mathematical reasoning--neither is the reduction of
complex Inferences to smaller Inferences nor the use of explicit line numbers disruptive, in
the sense of distracting the student from the main line of the mathematical argument. They
are both simple elaborations of the main structure. Hovever. having to think about what
inference rule to use can Interrupt the malin line of argument. The success of a system for
interactively dolng mathematics depends crucially unon having a few powerful and naturcl
inference procedures with clear criteria of use, which are sufficient to handie all the
inferences.

IMPLIES

IMPLIES Is used to derlve results by applying a previous resuit or definition as a rule of
Inference In a glven context. This form of inferencs is probabiy the most frequent naturally
occurring Inference. While the basic pattern Is simple, thie refinements that must be added to
the basic form to get a procedure that hand'es most of the naturally occurring cases result in
a computationally complex procedu~a. The foliowing Is a simple example of the basic pattern:

() Als a subset of B

i definition (Name or number) *subset
(i) (Y x)(xeA=xeB)

Iin this example, the student directed the program to apply the definition of subset .o line (i)
and IMPLIES generated the result: (¥ x)(x € A+ x ¢ B). While the student thinx~ he is
applying the definltion of subset to line (1), the procedure actually invoked is the IMPLIES
procedure. It Is Important to note that in a use of the IMPLIES procedure, the student
Indicates what axlom, definitlon, theorem, or line to apply to which lines, and the IMPLIES
procedure generates the formula that Is the result of the Inference.

The IMPLIES procedure seems to correspond closely to na've notiuns of Inference, in
that logically unsophisticatea »ut mathematically sophisticated users can use it very well
after seeing the basic exple . .ation and a few simple examples. However, the IMPLIES rule
does have a fault: It is a purely logical Inference procedure and ihat can occasionaily cause
probiems for users, because mathematiclans tend to think In terms of set *heoretic rather
than iogical consequence. (See the discussion of the ESTABLISH rule for more on this
distinction.)
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ESTABLISH

The followlng example of a simple use of ESTABLISH Is taken from the typescript above.

(2) Bc A
(3) AcBand Ay *

x2 3establish *B = A
2,3 Establish
(4) B=A

The ESTABLISH rule allows users to simply assert that some formula Is an elementary set-
‘theoretic truth or Is an elementary set-theoretlc consequence of prior resuits. In the above
example, ESTABLISH Is used to infer from Ac B and B ¢ A that A=B. A=Bls aset-theoretlc
consequence but not a logical consequence of AcB and Bc A If ESTABLISH handled only
logical consequence, the student would have had to explicltly cite the relevant set theoretic
theorems or deflnitions needed to reduce the inference to a purely logical Inference. This is
not only disruptive of the line of argument but also difficult to do. Even the most
experlenced logiclans and mathematiclans have difflculty ferreting out all the axioms,
definitions, and theorems needed to reduce even simple Inferences to purely logical

Inferences.

All of the examples so far are extremely simple if considered In terms of the full
capabllities of the ESTABLISH procedure. ESTABLISH uses a theorem prover that can prove
about 85% of the first 200 theorems in the set theory course.

Proof Analysis and Summarization

EXCHECK contains procedures that generate informal summaries and sketches of
proofs. Such analyses and summarles are useful not only as a semantic basis for the program,
to better understand proofs and to better present ptoofs, but also to give guidance to the
student (see the proof summary below for an exampie of the kind of guidance that can be
generated). The summarization procedures analyze the proof by breaking It into parts (or
"subproofs") and isolating the mathematically important steps. They also permit a goal-
oriented interpretation of the proof where the program keeps track of what is to be
established at that polnt (i.e., the current goal); which lines, terms, etc., are relevant; and
how the current line or part flts Into the whole structure. MYCIN's consultation explanation
system (see article Ct) uses a simllar approach. Goldsteln (1977) also uses summarization
techniques in the rhetorical modules of the WUMPUS coach (article C5).

“The summarles presented below were generated by EXCHECK from a student proof of
the Hausdorff maximal princlple. The orlginal line numbers have been retained (in
parentheses) In order to give a sense of how much of the proof has been omitted in the
summary. In the first summary only the top-level part of the proof is presented; the proofs
of its subparts are omitted. Also, all mathematically or loglcally insignificant Information is
omitted. In these proofs and summarles "D contalns E " Is synonymous with "E ¢ D". Also, C
Is a chain iff both C Is a set of sets, and given any two elements of C, at least one is a

subset of the other.
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Derive: If Als a famlly of sets then
every cihain contained in A Is contained in some maximal chain in A

Proof:
Assume (1) A is a family of sets
Assume (2) Cis a chaln and C c A
Abbreviate: {B: Bis a chain and Cc B and B¢ A}
by: Clchains
By Zorn's lemma,
(23) C!chalns has a maximal element
Let B be such that
(24) B is .a maximal-element of Clchalins
Hence,
(26) BisachainandCc BandBc A
it follows that,
(31) B is a maximal chain in A
Therefore,
(32) C is contained in some maximal chain in A

Figure 1. Informal summary of a preof of the Hausdorff
maximal principie.

The summary above is not the only one that could be generated; it essentially presents only
the main part of the proof. Subparts of the main part could have been included or even
handled Independently If so desired.

The proof analysis and summarization procedures wili also generate the following kind
of summary, which Is an attempt to sketch the basic idea of the proof.

Derive: if A is a family of sets then
every chain contained in A Is contained in some maximai chain In A

Proof:
Use Zorn's iemma to show that

{B: Bis a chainand Cc B and Bc A}

contains a maximai eilement B. Then show that B is a maximai chain In
A which contains C.

Figure 2. An example summarization,

The summarization in Figure 2 was obtaired from that in Figure 1 by tracing backwards
the history of the maximai chain in A that contains C. That is, the general form of the
theorem to be proven is (3 x)FM(x), which is proven by showing FM(t) for some term t.
Usually, in proofs of this form, the most important plece of information Is the term t. Tracing
backwards in this particular proof yieids that there are two terms involved. The first is the
set of all chains In A containing C, and the second is any maximal element of the set of all
chains in A containing C.
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Eiementary Exercises and Diaicgs

Another form of reasoning done by students Is the solution of probiems. A great many

problems in elementary mathematics take the form of asking the student to give finite

objec’s satisfying certain conditions. For exampie, glven the finite sets A and B the student -

might be asked to glve a function F that is a bijection (i.e., 1-1 and onto) from A to B. For a
large class of such problems there are programs that will generate a tree of formulas and
other Information from the originai statement of the problem. We cail such trees verification
trees for the problem. Essentlaily, the verification tree for a probiem constitutes a reduction
of the original (usually not directiy verifiabie) condition to a collection of directly verifiabie
conditions (the formuias at the ieaves). These trees have the property that tive failure of
the formula at a node in the tree explains the failure of formulas at any of its ancestors.
Similarly, the failure of a formula at a node is expialned by the faliure of formulas at any of
its descendants.

For example, In the above problem of supplying a bijection F from A onto B, suppose
that the student forgets to specify a vaiue for some eiement of A, say, 3. The first response
to the student migit be: "The domain of F isn't A.” The student might then ask: " Why?" The
program wouid then answer (going towards the ieaves), "Because there Is an element of A
that has not been assigned a vaiue in B." The student might then ask, "Which one?" Since
the routines that evaluate the formuias at the ieaves provide counterexamples if those
formuias faii, the program could then respond, "3." Or going back to the first response by the
program ("The domain of F Isn't A"), the student might say, "So?" The program could then
move a step towards the root (the originai statement of the conditions) and say, "Then F is
not a map from A Into B." The student might then agaln say, "So?", to which the program
could respond, "F is not a bljection from A onto B."

The highly structured information In the verification tree provides the semantic base for
a dialogue with the student in which the program can explain to the student what is wrong
with the answer. It should be noted that more complex forms of explanation are available.
In particuiar, the program could have said at the beginning that, "Because 3 is not given a
value by F, the domain of F Is not A and hence F Is not a bijection from A onto B."

Summary

A primary activity In mathematics Is finding and presenting proofs. In the EXCHECK
system an attempt is made to handie natural proofs--proofs as they are actuaily done by
practicing mathematiclans--instead of requiring that these proofs be expressed as
derivations in an elementary system of first order logic. This objective requires the analysis
of Inferences actuaily made and the design and implementation of languages and procedures
that permit such inferences to be easlly stated and mechanically verified. Some progress has
been made in handling natural proofs in eiementary mathematics, but there Is a considerable
amount of work yet to be done.
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