
"IW

Stanford Heuristic Programming Proiect
MemoHPP-79-17

Computer Science Department
Report No. STAN-CS-79-749

1^

July 1979

^ Applications-oriented AI Research: Education

O
by

William J. Clancey, James S. Bennett and Paul R. Cohen

o

a section of the

Handbook of Artificial Intelligence

edited by

Avron Barr and Edward A. Feigenbaum

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

D D C Eraizmiim
OCT 24 1979

SDTTE
B

DISTRIBUTION STATEMENT A
Approved for public release;

Distribution Unlimited

79 22 22 130
 »i» «fmimimmmmm

l /
vit jj^1'——" |

�
| '' 'i^ .-.�r--.. .. ^ l (|

! " :

Applications-oriented AI Research: Education
by

William J. Clancey, James S. Bennett, and Paul R. Cohen

a sectioii of the

Handbook of Artificial Intelligence

edited by

Avron Barr and Edward A. Feigenbaum

This research was supported by both the Defense Advanced Research Projects Agency
(ARPA Order No. 3423, Contract Ho. t^mM2L-JZz£:gQ22) and the National Institutes of
Health (Contract No. NIH RR-OOZSS-OßTThe views and conclusions of this document should
not be interpreteia~"BS"TIBCeS5arily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency, the National Institutes of
Health, or the United States Government.

Copyright Notice: The material herein Is copyright protected. Permission to quote or
reproduce in any form must be obtained from the Editors. Such permission is hereby granted
to agencies of the United States Government.

I^^^Ä^^^TJ^E^Cw-A

"PPS

TSB^HSi^SSri^h» Ml*-' •r~~^äCa JW-«««CI r-arjp
>

William J. Clancey
Clancey, W. J., Bennett, J. S., and Cohen, P. R. (1982). Applications-oriented AI Research: Education. In A. Barr and E. A. Feigenbaum (Eds.), Handbook of Artificial Intelligence, Volume 2 (pp. 223–294). Los Altos, CA: William Kaufmann�

Al Applications in Education

Table of Contents

A. Historical Overview *
B. Issues in ICAI Systems Design T?
C. ICAI Systems \l

1. SCHOLAR \l
2. WHY H
3. SOPHIE H
4. WEST "
5. WUMPUS if.
6. BUGGY il
7. EXCHECK ',-5

References

Index 55

ACCESSION for

NTIS White Section
DDC Buff Section ��
UNANNOUNCED Q
JUSTIFICATION _______

BY ...

DISTIilByTION/AyAIUlBlLITy C00[C
Dist. AVAIL, and/or SPFTCIÄL

A

S

Foreword

Those of us involved in the creation of the Handbook of Artificial Intelligence, both
writers and editors, have attempted to make the concepts, methods, tools, and main results
of artificial Intelligence research accessible to a broad scientific and engineering audience.
Currently, Al work is familiar mainly to its practicing specialists and other interested
computer scientists. Yet the field is of growing interdisciplinary interest and practical
importance. With this book we are trying to build bridges that are easily crossed by
engineers, scientists In other fields, and our own computer science colleagues.

in the Handbook we Intend to cover the breadth and depth of Al, presenting general
overviews of the scientific issues, as well as detailed discussions of particular techniques
and important Al systems. Throughout we have tried to keep in mind the reader who is not a
specialist in Al.

As the cost of computation continues to fall, new areas of computer applications
become potentially viable. For many of these areas, there do not exist mathematical "cores"
to structure calculatlonal use of the computer. Such areas will inevitably be served by
symbolic models and symbolic Inference techniques. Yet those who understand symbolic
computation have been sneaking largely to themselves for twenty years. We feel that it is
urgent for Al to "go publh" in the manner Intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fill the vacuum. Lay reviews, in particular Margaret Boden's
Artificial Intelligence and Natural Man, have tried to explain what is important and
interesting about Al, and how research In Al progresses through our programs. In addition,
there are. a few textbooks that attempt to present a more detailed view of selected ar4as
of Al, for the «erious student of computer science. But no textbook can hope to describe all
of the sub-areas, to present brief explanations of the important ideas and techniques, and to
review the forty or fifty most important Al systems.

The Handbook contains several different types of articles. Key Al ideas and techniques
are described In core articles (e.g., basic concepts in heuristic search, semantic nets).
Important Individual Al programs (e.g., SHRDLU) are described in separate articles that
indicate, among other things, the designer's goal, the techniques employed, and the reasons
why the program is important. Overview articles discuss the problems and approaches in
each major area. The overview articles should be particularly useful to those who seek a
summary of the underlying issues that motivate Al research.

• .^^.�^v'^^«C^^x.r~'^*"^S53 ffiaaew
s

Eventually the Handbook will contain approximately two hundred articles. We hope that
the appearance of this material will stimulate interaction and cooperation with other A!
research sites. We look forward to being poised of errors of omission and commission. For a
field as fast moving as Al, it is important that Its practitioners alert us to important
developments, so that future editions will reflect this new material. We intend that the
Handbook of Artificial Intelligence be a living and changing reference work.

'

Tho articles in this edition of the Handbook were written primarily by graduate students
in Al at Sta iford University, with assistance from graduate students and Al professionals at
other institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The authors of this'report, which contains the section of the Handbook on educational
applications research, are William Clancey, James Bennett, and Paul Cohen. Others who
contributed to or commented on earlier versions of this section include Lee Biaine, John Seely
Brown, Richard Burton, Adele Goldberg, Ira Goldstein, Albert Stevens, and Keith Wescourt.

Avron Barr
Edward Feigenbaum

Stanford University
July, 1979

'
fi*a*^£&*~m*:^^ auarijfcaiinr »%�''-'»" '->»- -—!?«�•«--«

Handbook of Artificial Intelligence

Topic Outline

Volumes I and II

Introduction

The Handbook of Artificial Intelligence
Overview of Al Research
History of Al
An Introduction to the Al Literature

Search

Overview
Problem Representation
Search Methods for State Spaces, AND/OR Graphs, and Game Trees
Six Important Search Programs

Representation of Knowledge

Issues and Problems in Representation Theory
Survey of Representation Techniques
Seven Important Representation Schemes

A! Programming Languages

Historical Overview of Al Programming Languages
Comparison of Data Structures and Control Mechanisms In Ai Languages
LISP

Natural Language Understanding

Overview - History and Issues
Machine Translation
Grammars
Parsing Techniques
Text Generation Systems
The Early NL Systems
Six Important Natural Language Processing Systems

Speech Understanding Systems

Overview - History and Design Issues
Seven Major Speech Understanding Projects

\ v^vsr

mmmmm

I
'(V'^.&f**-*

Applications-oriented Al Research — Part 1

Overview
TEIRESIAS - Issues in Expert Systems Design
Research on Al Applications in Mathematics (MACSYMA and AM)
Miscellaneous Applications Research

Applications-oriented Al Research — Part 2: Medicine

Overview of Medical Applications Research
Six important Medical Systems

Applications-oriented Al Research -- Part 3: Chemistry

Overview of Applications in Chemistry
Applications in Chemical Analysis
The DENDRAL Programs
CRYSALIS
Applications in Organic Synthesis

Applications-oriented Al Research — Part 4: Education

Historical Overview of Al Research in Educational Applications
Issues and Componets of Intelligent CAI Systems
Seven Important ICAI Systems

Automatic Programming

Overview
Techniques for Program Specification
Approaches to AP
Eight Important AP Systems

volume:
The following sections of the Handbook are still in preparation and will appear in the third

Theorem Proving
Vision
Robotics
Information Processing Psychology
Learning and Inductive Inference
Planning and Related Problem-solving Technique«

/
•sm&ps&'i*****'*''

•
A. Historical Overview

Educational applications of computer technology have been under development since
the early 1960s. These applications have Included scheduling courses, managing teaching
aids, and grading tests. The predominant application, however, has involved using the
computer as a device that Interacts directly with the student, rather than as an assistant to
the human teacher. For this kind of application, there have been three general approaches.

The "ad lib" or "environmental approach" Is typified by Papert's LOGO laboravnry
(Papert, 1970), that allowed students more or less free-style use of the machine. Students
are Involved in programming; It is conjectured that learning problem-solving methods takf s
place as a side effect of using tools that are designed to suggest good problem-solv^ig
strategies to the student. The second approach uses games and simulations as instructional
tools; once aga'n the student Is Involved in an activity—for example, doing simulated
genetics experiments—for which learning is an expected side effect. The third computer
application In education is computer-assisted instruction (CAI). Unlike the first two
approaches, CAI makes an explicit attempt to Instigate and control learning (Howe, 1973).
This third use of computer technology In education Is the focus of the following discussion.

^The goal of CAI research is to construct instructional programs that incorporate well-
prepared course material in lessons that are optimized for each student. Early procjrams
were either electronic "page-turners" which printed prepared text or drill-and-practice
monitors, which printed problems and responded to the student's solutions using prestored
answers and remedial comments. In the Intelligent CAI (ICAI) programs of the 1970s, course
material Is represented independently of teaching procedures so that problems and remedial
comments can be generated differently for each student. Research today focuses on the
design of programs that can offer instruction in a manner that is sensitive to the student's
strengths, weaknesses, and preferred style of learning. The role of Al in computer-based
Instructional applications Is seen as making possible a new kind of learning environment.^-

This overview surveys how Al techniques have been used in research attempting to
create intelligent computer-based tutors. In the next article, some design issues are
discussed and typical components of ICAI systems are described. Subsequent articles
describe some important applications of artificial intelligence techniques in instructional
programs.

Frame-oriented CAI Systems

The first instructional programs took many forms, but all adhered to essentially the
same pedagogical philosophy. The student was usually given some instructional text
(sometimes without using the computer) and asked a question that required a brief answer.
After the student responded, he was told whether his answer was right or wrong. The
student's response was sometimes used to determine his "path" through the curriculum the
sequence of problems he Is given (see Atkinson & Wilson, 1969). When the student made an
error, the program branched to remedial material.

The courseware author attempts to anticipate every wrong response, prespecifying
branches to appropriate remedial material based on his Ideas about what might be the
underlying misconceptions that would cause each wrong response. Branching on the basis of

rmmmmmmmmmmmmmmmmmrmmmifmmimmmmmmmmmm

'^S^tiR*^^

Al Applications in Education

response was the first step toward individualization of instruction (Crowder, 1962). This style
of CAI has been dubbed ad-hoc, frame-oriented (AFO) CAI by Carbonell (1970b), to stress its
dependence on author-specified units of information. (The term "frame" as it is used in this
context predates the more recent usage in Al—see Article RBpresBntation.B7--and refers to
a block or page or unit of information or text.) Design of ad-hoc frames was originally based
on Skinnerian stimulus/response principles. The branching strategies of some AFO programs
have become quite involved, incorporating the best learning theory that mathematical
psychology has produced (Atkinson, 1972; Fletcher. 1976; Kimball. 1973). Many of these
systems have been used succesfuily and are available commercially.

Intelligent CAI

In spite of the widespread application of AFO CAI to many problem areas, many
researchers believe that most AFO courses are not the best use of computer technology:

In most CAI systems of the AFO type, the computer does little more
than what a programmed textbook can do, and one may wonder why
the machine is used at all....When teaching sequences are extremely
simple, perhaps trivial, one should consider doing away with the
computer, and using other devices or techniques more related to the
task. (Carbonell, 1970b, pp. 32, 193)

In this pioneering paper, Carbonell goes on to define a second type of CAI that is known
today as "knowledge-based" or "intelligent" CAI (ICAI). Knowledge-based systems and the
previous CAI systems both have representations of the subject matter they teach, but ICAI
systems also carry on a natural language dialogue with the student and use the student's
mistakes to diagnose his ml3<'nderstandings.

Early u.5es of Al techniques in CAI were called "generative CAI" (Wexler, 1970), since
they stressed the ability to generate problems using a large database representing the
subject they taught. (See Koffman & Blount, 1976, for a review of some early generative
CAI programs and an example of the possibilities and limitations of this style of courseware.)
However, the kind of courseware that Carbonell was describing In his paper was to be more
than just a problem generator—it was to be a computer tutor that had the inductive powers
of its human counterparts. ICAI programs offer what Brown (1977) calls a reactive learning
environment, in which the student is actively engaged with the instructional system and his
Interests and misunderstandings drive the tutorial dialogue. This goal was expressed by
other researchers trying to write CAI programs that extended the medium beyond the limits
of frame selection:

Often it is not sufficient to tell a studen» he is wrong and Indicate the
correct solution method. An intelligent CW system should be able to
make hypotheses based on a student's error history as to where the
real source of his difficulty lies. (Koffman & Blount, 1976)

The Use of Al Techniques in ICAI

The realization of the computer-based tutor has involved increasingly complicated

w
a

3WSS^y5*«»^*��'^i^l/,**^iPr,*TO,,—**"£* �—*— -r

A Historical Overview 3

computer programs and has prompted CAI researchers to use artificial Intelligence
techniques. Artificial Intelligence work in natural language understanding, representation of
knowledge, and methods of inference, as well as specific Al applications like algebraic
simplification, calculus, and theorem proving, have been applied by various researchers
toward making CAI programs that «re more intelligent and more effective. Early research on
ICAI systems focused on represen.ation of the subject matter. Benchmark efforts include
SCHOLAR, the geography tutor of Carbonell and Collins (see article Cl), EXCHECK, the logic
and set theory tutors by Suppes et al. (article F7), and SOPHIE, the electronics
troubleshooting tutor of Brown and Burton (article C3). The high level of domain expertise in
these proflrams permits them to be responsive in a wide range of problem-solving
Interactions.

These ICAI programs are quite different from even the most complicated frame-
oriented, branching program.

Traditional approaches to this problem using decision theory and
stochastic models have reached a dead end due to their
oversimplified representation of learning It appears within reach
of Al methodology to develop CAI systems that act more like human
teachers. (Laubsch, 1975)

However, an Al system that is expert in a particular domain is not necessarily an expert
teacfter of the material-'ICAI systems cannot be Al systems warmed over" (Brown, 1977). A
teacher needs to understand what the student is doing, not Just what he is supposed to do.
Al programs often use very powerful problem-solving methods that do not resemble those
used by humans; in many cases. CAI researcners borrowed Al techniques for representing
subject domain expertise but had to modify them, often making the inference routines 'ess
powerful, in order to force them to follow human reasoning patterns, so as to better explain
their methods to the student, as well as to understand his methods (Smith. 1976; Goldberg.
1973).

In the mid-1970s, a second phase in the development of ICAI tutors has been
characterized by the inclusion of expp-tise in the tutor regarding (a) the student's learning
behavior and (b) tutoring strategies (Brown & Goldstein. 1977). Al techniques are used to
construct models of the learner that represent his knowledge in terms of "issues" (see
article C4) or "skills" (Barr & Atkinson. 1975) that should be learned. This model then
controls tutoring strategies for presenting the material. Finally, some ICAI programs are now
using Al techniques to explicitly represent these tutoring strategies, gaining the advantages of
flexibility and modularity of representation and control (Burton & Brown. 1979; Goldstein.
1977; Clancey, 1979a).

References

The best general review of research In ICAI is Brown & Goldstein (1977). Several
papers on recent work are collected in a special Issue of the International Journal of Man-
Machine Studies. Volume 11, 1979.

m

^''^^^S^'^^ —'�' 'y "^-'

TW-

AI Applications in Education

B Issues in ICAI Systems Design

ThP main components of ICAI systems are (a) its problem-solving expertise, the
Knowledge tnLt the ^em tries to im/art to the student, (b) the ^udent mode, .nd.cat.ng
what the student does and does not know, and (c) tutoring strateg-es, wh.ch specify how the
System Presents material to the student). (See Reif. 197/i. for an excellent d.scuss.ono
he^iTfe'renct and ir^errelations of tM typ.s of Knowledge ^^^^^ ^

proaram) Not all of tK components a,c fully developed In evt.ry system. Beca^e oT J'1^
s ze and compLity of .uelligent CAI programs, most researchers tend t0 concen rate the.r
effort on the development of a single part of what would constitute a fully usable system.
Each component is described briefly below.

The Expertise Module—Representing Domain Knowledge

The "expert" component of an ICAI system Is charged with the task of generating
problems and evaluating'the correctness of student -,UtiT/^ t^bL^taHncoTp^a fd
of the subject matter was originally envisioned as a huge static database that incorporated
a the acs to be taught. Thfs idea was implicit in the early drill-and-practice P-grams and
was made explicit in generative CAI (see Article A). Representation of subject matte
expertise in this way, using semantic nets (Article RepresenlalioaBa), has been useful for
gene ting and answering questions involving causal --^-^-«^Sj^tr WHY
Collins, 1973; Laubsch, 1975; and see Articles Cl and C3 on the SCHOLAR and WHY
systems).

Recent systems have used procedural representation of/t
07in

Q
knoW^ f°;^amp^

how to take measurements and make deductions (see Article RB^e^|
nla; ^f^. .T^'

knowledge is represented as procedural experts that correspond to subsk.lls ^at ytudent
must learn In order to acquire the complete skill being ta.ght ^^Bw^Jf'^l
Production rules (Article Rapr«l«it.HoaB3) havV^ "S^Q;° ^17 97^ In
representations of skills and problem-sükinc, methods (Goldstein, 1977; Clancey. tO^aX. In
addition. Brown & Burton (1975) have pointed out XM multiple ^^I^^^BI
useful for answering student questions and for evaluating partial solul.ons to a > roblern ^'^j
a aemantlo net of facts about an electronic circuit and procedures simulating the functiona
SehaX Of the c""t) Stevens & Collins (1978) considered an evolving series o
"slmul^cn" models .hat can be used to reason metaphorically «bout the behavior of causal
systems.

It should be noted that not all ICAI systems can actually solve the P^blJ» they poae
to a student. For example, BIP, the BASIC Instructional Program (Barr, Beard, & Atkmson,
1076) can" write or analyze computer programs: BIP uses sample input/output pflfa
suppled by the course authors) to test students" programs. Similarly, the procedu al

exper s in SOPHIE-I could not debug an electronic circuit. In contrast, the product.on rule
representation of domain knowledge used in WUMPUS and ^IDON enables these prog^
soh/e problems independently, as well as to criticize student solutions .(Go,f ^"l,if/7'^
Clancey 1979a). Being able to solve the problems, preferrably in all possible way.
clrrecÄ and incorrect is necessary if the ICAI program Is to make f.ne-grained
suggestions p.oout the completion of partial solutions.

An impcrtant idea in this connection is that of an articuiate expert (Goldstein. 1977).

mmm

Issues in ICAI Systems Design 6

Whereas typical expert Al progt. is have data structures and processing algorithms that do
not necessarily mimic the reasoning steps used by humans and are, therefore, considered
"opaque" to the user, an articulate expert for an ICAI system must be designed to enable
the explanatior of each problem-solving decision that it makes in terms that correspond (at
some level of abstraction) to those of a human problem solver. For example, the electronic
circuit simulator underlying SOPHIE-I (see Article C3), which is used to check the consistency
of a student's hypotheses and to answer some of his questions, is an opar,iie expert on the
functioning of the circuit. It is a complete, accurate and efficient model of ihe circuit, but its
mechanisms are never revealed to the student since they are certainly not the mechanisms
that he is expected to acquire. In WEST, on the other hand, while a (compete and efficient)
opaque expert Is used to determine the range of possible moves that the student could have
made with a given roll of the dice, an articulate expert, which only models pieces of the
game-playing expertise, is used to determine possible causes for less-than-optimal student
moves.

ICAI systems are distinguished from earlier CAI approaches by the separation of
teaching strategies from the subject expertise to be taught. However, the separat an of
subject-area knowledge from instructional planning requires a structure for organizing the
expertise that captures the difficulty of various problems and the interrelationships of
course material. Modeling a student's understanding of a subject is closely related
conceptually to figuring out a representation for the subject itself or for the language used
to discuss it.

Trees and lattices showing prerequisite interactions have b(;en used to organize the
introduction of new knowledge or topics (Koffman & Blount, 1975). In BIP this lattice took
the form of a curriculum net that related the skills to be taught to example programming tasks
that exercised each skill (Barr, Beard, & Atkinsoh, 1976). Goldstein (1979) called the
lattice a syllabus in the WUMPUS program and emphasized the developmental path that a
learner takes in acquiring new skills. For arithmetic skills used in WEST, Burton & Brown
(1976) use levels of issues. Issues proceed from the use of arithmetic operators to
strategies for winning the game, to meta-level considerations for improving performance.
Burton and Brown believe that when the skills are "structurally independent," the order of
their presentation is not particularly crucial. This representation is useful for modeling the
student's knowledge and coaching him on different levels of abstraction. Stevens, Collins, &
Goldin (1978) have argued further that a good human tutor does not merely traverse a
predetermined network of knowledge in selecting material to present. Rather, it is the
process of ferreting out student misconceptions that drives the dialogue.

The Student Model

The modeling module is used to represent the student's understanding of the material
to be taught. Much recent ICAI research has focused on this component. The purpose of
modeling the student Is to make hypotheses about his misconceptions and suboptimal
performance strategies so that the tutoring module can point them out, indicate why they are
wrong, and suggest corrections. It is advantageous for the system to be able to recognize
alternate ways of solving problems, including the incorrect methods that the student might
use resulting from systematic misconceptions about the problem or from inefficient
strategies.

5 Al Application« in Education

Some early frame-oriented CAI systems used mathematical stochastic learning models, but
this approach failed because it only modeled the probability that a student would give a
specific response to a stimulus. In general, knowing the probability of a response is not the
same as knowing what a student understands-the former has little d.agnost.c power
(Laubsch, 1975),

Typical uses of Al techniques for modeling student knowledge include (a) simple pattern
recognition applied to the student's response history and (b) flags in the subject matter
semantic net or in the rule base representing areas that the student has mastered. In these
ICAI systems, a student model is formed by comparing the student's behavior to that of the
computer-based "expert" in the same environment. The modeling component marks each skill
according to whether evidence indicates that the student knows the material or not. Carr &
Goldstein (1977) have termed this component an overlay model-Xhe student's understanding
is represented completely in terms of the expertise component of the program (see Article
C5).

In contrast, another approach is to model the student's knowledge not as a subset of
the expert's, but rather as a perturbation or deviation from the expert's knowledge—a
"bug", (r-e, for example, the SOPHIE and BUGGY systems-Articles C3 and CB.) There is a
major difference between the overlay and "buggy" approaches to modelling; In the latter
approach it is not assumed that, except for "knowing" less, the student reasons as the
expert does; the student's reasoning can be substantially different from expert rear jnmg.

Other information that might be accumulated in the student model includes the
student's preferred modes for interacting with the program, a rough characterization of his
level of ability, a consideration of what he seems to forget over time, and an indication of
what his goals and plans seem to be for learning the subject matter.

Major sources of evidence used to maintain the student model can be characterized
as: (a) implicit, from student problem-solving behavior; (b) explicit, from direct questions
asked of the student; (c) historical, from assumptions based on the student's experience;
and (d) structural, from assumptions based on some measure of the difficulty of the subject
material (Goldstein, 1977). Historical evidence is usually determined by asking the student
to rate his level of expertise on a scale from "beginner" to "expert." Early programs like
SCHOLAR used only explicit evidence. Recent programs have concentrated on inferring
"implicit" evidence from the student's problem-solving behavior. This approach is
complicated because it is limited by the program's ability to recognize and describe the
strategies being used by the student. Specifically, when the expert program indicates that
an inference chain is required for a correct result and the student's observable behavior is
wrong, how is the modeling program to know which of the intermediate steps are unknown or
wrongly applied by the student? This Is the apportionment of creditlblame problem; it has been
an important focus of WEST research.

Because of inherent limitations in the modeling procöss, it is useful for a "critic" in the
modeling component to measure how closely the student mode! actually predicts the
student's behavior. Extreme inconsistency or an unexpected demonstration of expertise in
solving problems might Indicate that the representation being used uy the program does not
capture the student's approach. Finally, Goldstein (197/) has suggested that the modeling
process should attempt both tc measure whether or not the student is actually learning and
to discern what teaching methods are most effective. Much work remains to be done in this
area.

' '

Issues in ICAI Systems Design

The Tutoring Moduie

The tutoring module of ICAI systems must integrate knowledge about natural language
dialogues, teaching methods, and the subject area to be taught. This is the module that
communicates with the student: selecting problems for him to solve, monitoring and critic!, ng
his performance, providing assistance upon request, and selecting .Gmed.al matenal The
design of this module involves issues like "When is It appropriate to offer a hint?' or How
far should the student be allowed to go down the wrong track?"

These are Just some of the problems which stem from the basic fact
that teaching Is a skill which requires knowledge additional to the
knowledge comprising mastery of the subject domain. (Brown, 1977)

This additional knowledge, beyond the representation of the subject domain and of the
student's knowledge, is about how to teach.

Most ICAI research has explored teaching methods based on diagnostic modeling in
which the program debugs the student's understanding by posing tasks and evaluating his
response (Collins, 1976; Brown & Burton, 1975; Koffman & Biount, 1975). The student is
expected to learn from the program's feedback which skills he uses wrongly, which skills he
does not use (but could use to good advantage), etc. Recently, there has been more
concern with the possibility of saying Just the right thing to the student so that he will
realize his own inadequacy and switch to a better method (Carr & Goldstein, 1977; Burton &
Brown, 1979; Norman, Centner, and Stevens, 1976). This new direction is based on attempts
to make a bug "constructive" by establishing for the student that there is something
inadequate in his approach, and giving enough information so that the student can use what
he already knows to focus on the bug and characterize it so that he avoids this failing In the
future.

However, it is by no means clear how "Just the right thing" is to be said to the student.
We do know that it depends on having a very good model of his understanding process (the
methods and strategies he used to construct a solution). Current research is focussing on
means for representing and isolating the bugs themselves (Stevens, Collins, & Goldm, 1978;
Brown & Burton, 1978).

Another approach is to provide an environment that encourages the student to think in
terms of debugging his own knowledge. In one B1P experiment (Wescourt and Hemphill.
1978) explicit debugging strategies (for computer programming) were conveyed in a written
document and then a controlled experiment was undertaken to see whether this traingmg
fostered a more rational approach for detecting faulty use of (programming) skills.

Brown, Colllfrs, and Harris (1978) suggest that one might foster the ability to construct
hypotheses and test them (the basis of understanding in their model) by setting up problems
In which the student's first guess is likely to be wrong, thus "requiring him to focus on how
he detects that his guess is wrong and how he then intelligently goes about revising it.

The Socratic method used in WHY (Stevens & Collins, 1977) involves questioning the
student in a way that will encourage him to reason about what he knows and thereby modify
his conceptions. The tutor's strategies are constructed by analyzing protocols of real-world
student/teacher Interactions.

Al Applications in Education

t

Another teaching strategy that has been successfully implemented on several systems
is called coaching (Goldstein, 1977). Coaching programs are not concerned with covering a
predetermined lesson plan within a fixed time (in contrast with SCHOLAR). Rather, the goa!
of coaching is to develop the acquisition of skill and general problem-solving abilities, and it
works by engaging the student in a computer game (see Article A). In a coaching situation,
the Immediate aim of the student is to have fun, and skill acquisition is an indirect
consequence. Tutoring comes about when the computer coach, which is "observing" the
student's play of the game, interrupts him and offers new information or suggests new
strategies. A successful computer coach must be able to discern what skills or knowledge
the student might acquire, based on his playing style, and to judge effective ways to
intercede in the game and offer advice. WEST and WUMPUS (Articles C4 and C5) are both
coaching programs.

Socratic tutoring and coaching represent different styles for communicating with the
student. All mixed-initiative tutoring involves following some dialogue strategy, which
involves decisions about when and how often to question the student and methods for
presentation of new material and review. For example, a coaching program, by design, is
non-intrusive and only rarely lectures. On the other hand, a Socratic tutor questions
repetitively, requiring the student to pursue certain lines of reasoning. Recently ICAI
research has turned to making explicit these alternative dialogue management principles.
Collins (1976) has pioneered the careful investigation and articulation of teaching
strategies. Recent work has explored the representation of these strategies as production
rules (see CJancey, 1979a and Article 02 on Collins and Stevens' WHY system).

For example, the tutoring module in the GUIDON program, which discusses MYCIN-like
"case diagnosis" tasks with a student (see Clancey, 1979a, and Article C1 on MYCIN), has an
explicit representation of discourse knowledge. Tutoring rules select alternative dialogue
formats on the basis of economy, domain logic, and tutoring or student modeling goals.
Arranged into procedures, these rules cope with various recurrent situations in the tutorial
dialogue, for example: introducing a new topic, examining a student's understanding after he
asks a question that indicates unexpected expertise, relating an inference to one just
discussed, giving advice to the student after he makes a hypothesis about a subpr^ipm, and
wrapping up the discussion of a topic.

Conclusion

In genera!, ICAI programs have only begun to deal with the problems of representing
and acquiring teaching expertise and of determining how this knowledge should be integrated
with general principles of discourse. The programs described in the articles to follow have all
investigated some aspect of this problem, and none offer an "answer" to the question of how
to build a computer-tutor. Nevertheless, these programs have demonstrated potential
tutorial skill, sometimes often snowing striking Insight Into students' misconceptions.
Research continues toward making viable Al contributions to computer-based education.

References

Goldstein (1977) gives a clear discussion of the distinctions between the modules
discussed here, concentrating on the broader, theoretical issues. Burton & Brown (1976)

y.

B Issues in ICAI Systems Design

also discuss the components of ICAI systems and their interactions and P^sent a good
example. Self (1974) is a classic discussion of the kinds of knowledge needed in a
computer-based tutor.

, '

«PUMW

' / y.

10 Al Applications in Education

C. ICAI Systems

C1. SCHOLAR

An important aspect of tutoring is the ability to generate appropriate questions for the
student. These questions can be used by the tutor to indicate the relevant material to be
learned, to determine the extent of a student's knowledge of the problem domain, and to
identify any misconceptions that he might have. Given that the knowledge base of a tutorinc)
program can't contain all of the "facts" that are true about the domain, the tutor should be
able to reason about what it knows and make plausible inferences about facts in the domain. In
addition to responding to the student's questions, the tutor should be able to take the
initiative during a tutoring dialogue by generating good tutorial questions.

SCHOLAR . one such mixed-initiative computer-based tutorial system; both the system
and the student can initiate conversation by asking questions. SCHOLAR was the pioneering
effort in the development of computer tutors capable of coping with unanticipated student
questions and of generating subject matter in varying levels of detail, according to the
context of the dialogue. Both the student's input and the program's output are in English
sentences.

The original system, created by Jaime Carbonell, Allan Collins, and their colleagues at
Bolt, Beranek end Newman, Inc., tutored students about simple facts in South American
geography (Carbonell, 1970b). SCHOLAR uses a number of tutoring strategies for composing
relevant questions, determining whether or not the student's answers are correct, and
answering questions from the student. Both the knowledge representation scheme (see
below)^ and the tutorial capabilities are applicable to other domains besides geography. For
example, NLS-SCHd-AR was developed to tutor computer-naive people in the use of a
complex text-editing program (Grignetti, Hausman, & Gould, 1975).

In addition to investigating the nature of tutorial dialogues and human plausible
reasoning, the SCHOLAR research project explored a number of Al issues, including:

\
1. How can real-world knowledge be stored effectively for the fast, easy

retrieval of relevant facts needed in tutoring?

2. What general reasoning strategies are needed to make appropriate inferences
from the typically incomplete database of the tutor program?

3. To what extent can these strategies 'le independent of the domain
being discussed (i.e., be dependent or om of the representation)?

The Knowledge Base~-Semantic Nets

In SCHOLAR, knowledge about the domain being tutored is represented in a semantic net
(see Article RepresentatioaBa). Each node or "unit" In the net, corresonding to some
geographical object or concept, Is composed of the name associated with that node and a
set of properties. These properties are lists of attribute-value pairs. For example, Figure 1
shovja a representation of the unit for Peru:

Ml ���"�'-

r. SCHOLAR ^

PERU:
((EXAMPLE-NOUN PERU))

,, 0) "importance' of unit is high

(SUPERC (I 0) COUNTRY)
(SUPERP (I 6) SOUTH/AMERICA)

link to superordinate units

(LOCATION (I 0) values of LOCATION attribute follow:

(IN (I 0) (SOUTH/AMERICA (I 0) WESTERN))
(ON (I 0) (COAST (I 0) (OF (I 0) PACIFIC))
(LATITUDE (I 4) (RANGE (10)-18 0))
(LONGITUDE (I 5) (RANGE (I 0) -82 -68))
(BORDERING/COUNTRIES (I 1)

(NORTHERN (I 1) (LIST COLUMBIA ECUADOR))
(EASTERN (I 1) BRAZIL)

Figure 1. The unit for PERU,

Attributes can be English words (other units) that are de^ed elsewhere in ;'- n^ ^^
several special attributes such as "SUPRA" for superattnbute, "SUPERC for superconcepi
or supero din te "SUPERP" for superpart. or case structure attributes "f^'" P«^..^
below). An example of SUPRA might be the fact that »fertile« refers to so^ ad so
refers to "topography"; of SUPERP, that Peru Is part of South ^er.ce; of SUPERC hat Peru
is a country Values can also be importance tags, like the expressions "(I 0) after LOCATION
n Figure and "ID" after EASTERN: the lower the number, the more important the property.
SCHOLAR uses these tags to measure the relevance of a node with respect to the top.c
under discussion (see below).

Tutorial Dialogue

An Important part of the SCHOLAR research has been an emphasis on the nature of
tutorial drogue in particular the Socratic style of tutoring, where the tutor a tempts to
diaanoL the student's misconceptions and then present material that will force the student
to irhia own errws Collins. Warnock. «. Passaflume. 1974). Many human tutodal protoco s
have been analysed to see what strategies human students follow, m order to try to
incoUate these strategies In the system (see also Article Ca on the groups con.numg
esear h fn th" direction). The fol.owing example is an excerpt '^ « ""l

d
0;d^„^

South American geography tutor. The student's questions and answers are preceded by .
and annotations are shown in italics:

B ^

f

12 Al Applications in Education

What is the language of Argentina?
«* PROBABLY SPANISH

Very good.
Approx what is the area of Argentina?

Student changes topic...

«« TELL ME SOMETHING ABOUT PERU

Peru is a country.
It is located in South America
The capital of Peru is Lima.
Now answer the question you didn't answer before.

...and finally answers the question.

** THE AREA OF ARGENTINA IS 1,100,000 SQUARE MILES

Approximately true, but a more exact value is 1,200,000.
The eastern bordering country of Peru is •--.

Student makes an error and is corrected...

«* CATHOLICISM

Wrong. Catholicism Is not a country but a religion.
The correct answer Is: Brazil
Where is Peru?

...and once again changes topic.

** Is Asuncion hot?
Since Asuncion is part of Paraguay, yes.

** WHAT IS THE MOST IMPORTANT DIFFtRENCE BETWEEN PERU AND PARAGUAY?
The primary difference is: The population of Peru is larger by a
factor of 7.8.

The natural language processing used by SCHOLAR is based on a case grammar system
(Article Natural Languaoe.B3b), and the semantic Interpretation of a student's response is
heavily guided by the geography knowledge in the semantic net. Matural language
processing Is important In SCHOLAR because it allows the student to take the initiative and
ask questions that were not anticipated by the program. However, comprehension of English
Input is facilitated by a taxonomy of expected "question types." The case grammar is also
used by the system to constrt ^t questions and presentations of new material from the
semantic network. English output Is composed of short, simple sentences, with no embedded
clauses and a limited repertoire of verbs—generally some form of the verb "to be."

A simple agenda is used to keep track of topics that are being discussed. Timing

/

C1 SCHOLAR 13

i

considerations and relevance (Importance tags) affect the generation «"J Pruning oMopk*
on this agenda. Continuity between questions is weak, however, since SCHOLAR does not
plan a series of questions to make a point. SCHOLAR is capable of diagnosing a student s
confusion only by following up one question with a related question.

Making Inferences

SCHOLAR'S Inference strategies, for answering student questions and evaluating
student answers to Its questions, are designed to cope with the Incompleteness of the
information stored In the semantic net database. Some of the Important strateg.es used to
reason with Incomplete knowledge are given below. These abilities Jave been explored
further in current research dealing with default reasoning (Relther. 1978) and plausible
reasoning (Collins, 1978).

Intersection search. Answering questions of the form "Can X be a Y7" ie;0;. "•» B"eno8
Aires a city In Brazil?") Is done by an Intersection search: The superconcept (SUPERC) arcs
of both nodes for X and Y are traced until an Intersection Is found (,e « common
superconcept node is found). If there Is no Intersection, the answer is "NO. if there is an
Intersection node Q, SCHOLAR answers as follows:

If 0=Y, then "YES";
If Q=X, then "NO, Y IS AN X."

For example, the question "Is Buenos Aires In Brazil?" is answered YES because Brazil is a
SUPERC of Buenos Aires in the net (Q=Y):

SOUTH AMERICA

/ (Superconcept)

BRAZIL (Y)

(Superconcept)

BUENOS AIRES (X)

But. the question "is Brazil In Buenos Aires?" gets the response "NO. BRAZIL is a country."

SOUTH AMERICA
/ (Superconcept)

BRAZIL (X)

(Superconcept)

BUENOS'AIRES (Y)

Common superordinate. Otherwise, if Q Is not X or Y. the program focuses on the two
elements that have Q as a crmmon superordinate. if they are contradictory (contain suitable

/
s

14 Al Appiisfltlons in Education

CONTRA properties) or have distinguishing, mutually exclusive properties (e.g., different
LOCATIONS), the answer is "NO"; otherwise the system answers "I DON'T KNOW." Answering
"Is X a part of Y7" questions is similar, except SUPERP (superpart) arcs are used for thn
intersection process.

Open and closed sets. In order to look for all objects in the system that satisfy some
condition (e.g., "How many cities in Columbia are on the Atlantic?"), a distinction must be
made about whether the resulting set of these objects Is closed (explicitly contains all such
objects) or open (contains some and need not contain all such objects). In SCHOLAR'S net,
sets are tagged by the course author as either open or closed, thus giving an indication of
the incompleteness of the system's knowledge.

While it Is easy for SCHOLAR to answer questions (such as, "Is France a country in
South America?") about closed sets, similar questions about open sets require the use of
special techniques—SCHOLAR must be able to reason about the extent of its knowledge. For
example, if we ask SCHOLAR whether or not rubber is a product of, say, Guyana and if there
is no explicit information about Guyanese rubber production in the semantic net, SCHOLAR
starts to reason with what It knows: It compares the Importance tags of the agricultural
products of Guyana with the importance tags for rubber in countries that it knows produce
rubber. It happens that Peru is a known rubber producer. SCHOLAR looks at the i-tag of
rubber for Peru and compares this tag to the largest (least important) l-tags associated with
Guyana. If it finds that these are comparable, SCHOLAR infers that it knows as much about
Guyana (up to some large l-tag value) as it knows about Peru. Therefore SCHOLAR infers
that It would know about rubber production in Guyana if it were important. S.nce rubber is
not listed for Guyana, SCHOLAR makes the plausible (though uncertain) conclusion that rubber
is not produced there. At this point SCHOLAR answers that it doesn't know for certain and
gives the information about rubber and Peru.

SCHOLAR'S use of knowledge about the extent of Its knowledge in this kind of plausible
reasoning Is unique in Al research and represents an application of meta-level knowledge (see
HepresentB t lon.Overview).

Summary

The inferenclng strategies used by SCHOLAR are independent of the confnt of the
semantic net, and are applicable In different domains. The inferences produced are fairly
natural; that Is, they cope with the incomplete knowledge by employing reasoning processes
similar to those that people use. The SCHOLAR project as a whole provides an ongoing
environment for research on discourse, teaching strategies, and human plausible reasoning
(see Article CS on recent research, including the WHY system).

References

Carbonell (1970a) Is a classic paper, defining the field of ICAI and introducing the
SCHOLAR system Collins (1976) is an illuminating study of human tutorial dialogues. Collins
et al. (1976) discusses Inference mechanisms, and Collins (1978) reports extei-ded
research on human plausible reasoning. Grignettl, Hausman, & Gould (1976) describes NLS-
SCHOLAR.

&- mi. �iiiiiiip«iiiiMwiiiiii"i»inwi''

��Uni j».. .MI j — ». '

C2
WHY

lö

C2. WHY

Recent .sea.. .Y ..an C=^ r^^^-P-^" ^ ^'^ ^ Beranek and Newman. Inc. has focused on devetop g PR ^ a system t

discuss complex systems. Their P^^;.8"*'^ °n
m t0 investigate the nature of tutor.al

tutors facts about South American geography ^ *' *" J^-where the causal and temporal
dialogues about subject matter that ""^^XBTIJM'BSX and where student's
interrelations between the concepts m the doma'" ^^^^ tton8 about why processes
errors could involve not only forf ^^^ ^^^fj.^ing a new system, called WHY. that
work the way they do. Stevens «. Co^\(1

c
9/Je

a;ieoph^cal process that is a function of r^r^i.--:-Siar^rb^ted L< . ^ »^ ^
sufficient to account for rainfall.

1978)!

below.)

2 Wha, types o. .isconceptlons do „u.ep.s h.ve? How do lu..r3 di.c,n„se
' r." . miscooooptions from the errors stodents make?

3. Whe. ere .h. .betreotteo. end viewpoints «,.. tutors use to expiain Physioai
processes?

By a„.,y2.n8 tutoriai dieiogues ^'--^'r^^^^rporerMo'rTu'Jai tZ�.
Identify eiements of a theory of ,u'0;1"V. ^('"tS for further investigation. The
which is then XtV^s^rrhoTaTerlero/iteratiohs of this sort. Th. wo*
ZlXt'^lZ^ TZl topic above, the nature of Socratic tutor.ng.

Socratic Tutoring Heuristics

Collins (1976) argues that ^^^ ^ ^^ tryZ'to ^rS
is best accomplished by dealing with ^f^J^Xr^orm complex subjects where
from"them. Socratic dialogue is especial y ap^ri^J°[^7 the phenomenon under
'actors interact and where ^JlTe^Z ^TeTJ^

consideration, in an effort to ^^^^ ""ch control the student/system
version of the WHY system incorporates 24 heuristics wmc
interaction. An example heuristic is:

,/ the student gives as an expian.tion of caus.i dependence one or more
factors that are not necessary,

,*„ pick a counterex.Wie with the wrong v.;ue of «h" <.ctor and ask the
student why his causal depondeoco doeso', hold In that case.

*r<EiC_iÄäjf"v~ ^

(Section Omitted)

Heuristic 4: Ask for subsequent causes.

What happens after the moisture-filled air reaches the land?
** I DON'T KNOW

Heuristic 5.- Suggest a factor and ask if it is a cause.

16 Al Applications in Education

This rule forces the student to consider the necessity of a particular factor. For example, if
the student gives rainfall-- as a reason for growing rice, then the computer-generated
counterexample "Why do they grow rice in Egypt, where there isn't much rainfall?"
challenges "he student's explanation of rice growing. These heuristic rules are designed to
facilitate tutorial dialogues in which students must consider combinations of factors that are
necessary for rainfall, eliminate irrelevant factors, and attempt to generalize from specific
cases to general conditions. (See Collins, 1976, for a complete discussion of the tutoring
rules.)

s
WHY's knowledge base about rainfall is represented in script-\'\ke data structures, which

encode temporal relations In the rainfall process; for example, "First water evaporates f-om
an ocean or sea, then the water-laden air mass is carried over land by winds, which in turn
causes the air mass to cool, which causes precipitation." (See Schänk & Abelson, 1977, on
scripts, as well as Article RepresentatioaB?.) This knowledge representation is adequate for
capturing many of the characteristics of a tutorial dialogue, but there are other kinds of
knowledge about rainfall that aren't represented here, discussed below.

The following excerpt is from a dialogue with the current version of the WHY system.
The system prompts the student to suggest causes of rainfall, to look for prior or
intermediate causes, and finally to suggest a general rule. When such a rule is proposed, the
system finds a counterexample and forces revision of the rule to account for it. The system
proceeds In this way until a rule of sufficient generality is found. The protocol is annotated
with the heuristics employed by the system at each Juncture in the conversation.

Heuristic 1: Ask for a prediction about a particular case.

Do you think the Amazon jungle has he«vy rainfall or light rainfall?
** HEAVY RAINFALL

Heuristic 2: Ask for prior causes.

Why doe^j the Amazon jungle have heavy rainfall?
** BECAUSE ITS NEAR THE ATLANTIC
Yes, the Amazon jungle is near the equatorial Atlantic.

Heuristic 3: Ask for intermediate causes.

How does that affect rainfall In the Amazon jungle?
*« THE WATER IN THE CURRENT IS WARM

V-^vörd<-'_' ''-ti ' ?r T ^Imiitr h i '*"""! Il'l'l llllliijnrTii"" "'i III1 '^StxJUifi-irr^iia^itp.

'

C2 WHY 17

Do you think the Andes mountain range has any effecl on the rainfall
in the Amazon Jungle?
*• YES

Heuriitic 3: Ask for intermediate causes.

How?
** THE PREVAILING WIND HITS THE ANDES AND THE AIR COOLS

Heuristic 3; Ask for intermediate causes.

How does the fact that prevailing wind hits the Andes, lead to
air cooling?

(5ecfton Omitted)

Heuristic 6: Form a general rule for an Insufficient cause

Do you think that any place with mountains has heavy rainfall?
** YES

Heuristic 7: Pick a counterexample for an insufficient cause, and Heuristic 2: Ask for
prior causes

Southern California has mountains. Why doesn't Southrrn California
have heavy rainfall?

Current Research

Tutorial goals. One of the shortcomings of the existing system is that it doesn't have
long-term "goals" for the tutorial dialogue. Implicit In the tutorial rules is some idea about
local management of the Interaction, but a global strategy about the tutoring session is
absent. Human tutors, however, admit to having goals like "Concentrate on one particular
part of the causal structure of rainfall at a time," or "Clear up one misconception before
discussing another." Stevens & Collins (1977) set about codifying hese goals and
strategies for incorporation into the WHY system. They analyzed tutoring protocols in which
human tutors commented on what they thought the students did and didn't know, and on why
they responded to the students as they did. From this unalysis. two top-level goals became
apparent:

1. Refine the student's caudal structure, starting with the most important
factors In a particular process and gradually incorporating more subtle
factors.

2. Refine the student's procedures for applying his causal model to novel
situations.

�««�msn»»*1

I
'5'i;^C~:"1*^äw,/jMi^ ,/j^ VB ..«^f - *^---« -�" -Tg»-'., 'i,». »ii

18 Al Applications in Education

Student misconceptions. The top-level goals involve subgoals of identifying and
correcting the student's misconceptions. Stevens & Collins (1977) classified these
subgoals into five categories corresponding to types of bugs and how to correct them:

Factual Bugs. Dealt with by correcting the student, Teaching facts is not
the goal of Socratic tutoring; interrelationships of facts are more important.

Outside-domain bugs. Misconceptions about causal 'tructure, which the
tutor chooses not to explain in detail. For example, the "correct" relationship
between the temperature of air and its moisture holding capacity is often .
stated by the tutor as a fact, without futher explanation.

Overgeneralization. When a student makes a general rule from an
insufficient set of factors (e.g., any place with mountains has heavy rainfall),
the tutor will find counterexamples to probe for more factors.

Overdifferentiation. When a student counts factors as necessary when
they are not, the tutor will generate counterexamples to show that they are
not.

Reasoning bugs. Tutors will attempt to teach students skills such as forming
and testing hypotheses and collecting enough information before drawing a
conclusion.

If a student displays mtw« than one bug, human tutors will employ a set of heuristics to
decide which one to correct first;

1. Correct errors before omissions.

2. Correct causally p;ior factors before later ones.

3. Make short corrections before longer ones.

4. Correct low-level bugs (in the causal network) before correcting higher
level ones.

Functional relationships. The bugs Just discussed are all domain independent, that is,
they would occur in tutorial dialogues about other complex processes besides rainfall. But
some bugs are the results of specific misconceptions about the functional interrelationships
of the concepts of the specific domain. For example, one common misconception about
rainfall Is that "cooling causes air to rise" (Stevens, Collins, & Goldin, 1978). This is not a
simple factual misconception, nor is It domain Independent. It is best characterized as an
error in the student's functional model of rainfall.

In fact, the script representation used In the WHY system for capturing the temporal
and causal relations of land, air, and water masses In rainfall proved inadequate to get at all
of the types of student misconceptions. Recent work has investigated a more flexible
representation of functional relationships, which allows the description of the processes that
collectively determine rainfall from multiple viewpoints—e.g., temporal-causal-subprocess view
captured in the scripts, functional viewpoint which emphasizes the roles that different

amp
/ X

C2 WHY 19

objects play in the various processes (Stevens. Collins. & Goldin. 1978). Misconceptions
about rainfall are represented as errors in the student's model of K***'***�*�**-*
functional relationship has four components: (a) a set of actors, each w.th a rde In he
process; (b) a set of factors that affect the process--the factors are all attributes of the
actors e.g.. water is an actor In the Evaporation relationship and its temperature is a
factor); (c) the result of the process--this is always a change in an a tribute of o^ of the
actors and (d) the relationship that holds between the actors and the result, or how en
attribute gets changed. These funtional relationships may be the result Rodels f^mo her
domains that are applied metaphorically to the domain under discuss.on (Stevens & Collins.
1978).

Summary

The WHY system started as en extension of SCHOLAR by the implementation of rules
that characterize Socratic tutoring heuristics. Subsequently, an effort was made to describe
the global strategies used by human tutors to guide the dialogue. Since these were d.rected
towards dispelling students' misconceptions, five classes of m;.sconcept,on

t
s H^

established, as well as means for correcting them. Many misconceptions are not domain
independent and the key to more versatile tutoring lies in continuing research on knowledge
representation.

References

The most recent reference on the research reported here is SXe^%Co^s'^Go^
(1978). The tutorial rules are discussed fully in an excellent article by Collins (1976). The
later work on the goal structure of a tutor is reported in Stevens & Collms. 1977 Fmally
recent work on conceptual models and multiple viewpoints of complex systems is discussed
In Stevens & Collins (1978).

MMK*"

/

'|

t^Q,�-^ —*"ysr- �-IWiii'i». - ���—

20 Al Applications in Education

C3. SOWIE

SOPHIE (a SOPHisticated Instructional Environment) is an ICAI system developed by
John Seely Brown, Richard Burton, and their colleagues at Bolt, Beranek and Newman, Inc., to
explore the objective of a wider range of student initiatives during the tutorial interaction
(Brown, Burton, & Bell, 1975). The SOPHIt system provides the student with a learning
environment in which he learns problem-solving skills by trying out his ideas, rather than by
instruction. The system has a model of the problem-solving knowledge in its domain as well
as numerous heuristic strategies for answering the student's questions, criticizing his
hypotheses, and suggesting alternative theories for his current hypotheses. SOPHIE enables
the student to have a one-to-one relationship with an "expert" who helps him create his own
ideas, experiment with these ideas and, when necessary, debug them.

Figure 1 illustrates the component modules of the original SOPHIE-I system (Brown,
Rubinstein, & Burton, 1976) and the additional capabilities added for the SOPHIE-II system,
discussed later in this article.

Natural
Language

SOPHIE-I SYSTEM

Hypothesis
Evaluator

Semantic
Network

Question
Answerer

Team
Game
Monitor

\
SOPHIE Menu

AUGMENTATIONS FOR SOPHIE-II

Articulate
Expert
Debugger/
Explainer

/

Figure 1. SOPHIE-I and SOPHIE-II.

r!&^^-?iK5«J,,~r*^LÄ
A

-�^2?** --Vai*.** "tJM^jsxmA
>

C3 SOPHIE 21

SOPHIE-I

SOPHIE teaches problem-solving skills in the context of a simulated electronics
laboratory. The problem facing the student is to find the "faults" in a malfunctioning piece of
equipment whose characteristics have been given to him by taking "measurements." The
student obtains a sequence of measurements (such as voltages, currents, resistances, etc.)
to determine what Is wrong with the equipment and asks questions about the measurements
and about what fault hypotheses he should consider, given the information he has discovered
so far. SOPHIE evaluates the hypotheses by considering ail of the Information that the
student should have been able to derive from his current set of measurements. The system
also judges the merits of a student's suggestion for a new measurement in light of the prior
sequence of measurements. SOPHIE can decide If a measurement is valuable, depending on
whether it eliminates or isolates a fault, and will inform the student when a proposed
measurement provides no new information.

The following portion of a sample protocol illustrates some of the linguistic and
inferential capabilities of the SOPHIE system (from Brown & Burton, 1975). SOPHIE randomly
selects a fault (in the performance of a circuit component), inserts it into a model or
simulation of the circuit, and tells the student how the controls are set. The student is given
a schematic diagram of the circuit, and the dialogue refers to components in the schematic
diagram (e.g., resistor 6 (R8), node connection 1 (N1), capacitor 6 (05)). The student begins
his troubleshooting by performing measurements in the faulted circuit.

Welcome to Sophie, a reactive learning environment. The piece of
equipment you are studying is a regulated power supply. Would you like
to start with a faulted instrument that needs fixing?
** YES

The instrument has a fault and its present control settings are:

CURRENT CONTROL
CURRENT RANGE SWITCH
LOAD RESISTANCE IN OHMS

VOLTAGE CONTROL
VOLTAGE RANGE SWITCH

** WHAT IS THE OUTPL "f*

The output voltage is 11.7 volts.

Notice that "output" was disambiguated as "output voltage."

«« WHAT IS IT IN A WORKING INSTRUMENT?

In a working circuit the output voltage is 19.9 volts.

In case the student does not know what the required value of measurement should have
been, he can ask for any measurement in a properly functioning instrument. " ^ student
then requests an internal measurement.

** WHAT IS THE VOLTAGE BETWEEN R8 AND 017

cc 1.0
CR HIGH
LOAD 20
VC 1.0
VR HIGH

�il ' ". .' . ' ''

/
/

^Är\^ __ ^y" TVr-f^Timini ,, j "^TirrffriTir^ir^Yn i Tr- r^w" r nn m i �*»^ 'mum-* .'imm*

m

22 Al Applications in Education

The voltage at N1 is 47.6 volts.

** REPLACE Q6

The student believes that he has discovered the problem (in transistor Q6) and tries to fix
it. Before a component is replaced, however, the system queries him as to how he thinks it
is faulted.

I am going to ask you some questions about how Q6 is faulted.
Are any junctions shorted?

** I DON'T KNOW

Are any terminals open?

** YES

Which terminal(s) are open?

*« THE BASE

06 is not faulted in that manner. Q6 not replaced.

After learning that Q6 does not have an open base, the student asks if this was at least a
reasonable hypothesis.

«* IS IT POSSIBLE THAT Q6 HAS AN OPEN BASE?

Before the system's evaluation procedures can be applied to the student's idea or
hypothesis, the hypothesis must it completely specified. To help the student out, the
system suggests a plausible complete specification of it in an abbreviated form familiar to
the student.

Is the complete fault mode EB/EC/BC = Open/Ok/Open what you intended?

** SURE

That fault is consistent with all of the measurements you have made.

The hypothesis is reasonable, but other measurements will indicate that another component
is faulty.

ii UIIIIJ.IMIM. " /*

^^^^""^^ -,-*!
" WWIM^I

C3 SOPHIE 23

Natural Language Processing—Semantic Grammar

In an instruc'cional environment, it is important that the student be provided with a
convenient way in which to communicate his ideas to the system. The student wilf become
quickly frustrated If he has to try several ways of expressing an idea before the system can
understand it. SOPHIE'S natural language understander copes with various linguistic problems
such as anaphoric references and context-dependent deletions and ellipsis, which occur
frequently In natural dialogues. >

SOPHIE'S natural language capabilities are based on the concept of a semantic grammar
In which the usual syntactic categories such as noun, verb, and adjective are replaced by
semantically meaningful categories (Burton, 1976b, and Burton and Brown, 1979b). These
categories represent concepts known to the system-such as "measurements," "circuit
elements," "transistors" and "hypotheses." For each concept there is a grammar rule that
gives the alternate ways of expressing that concept in terms of its constituent concepts.
Each rule Is encoded as a LISP procedure that specifies the order of application of the
various alternatives In each rule.

A grammar centered around semantic categories allows the parser to deal with a
certain amount of "fuzziness" or uncertainty in its understanding of the words in a given
statement; that is, If the parser is searching for a particular instantiation of a semantic
category, and the current word In the sentence falls to satisfy this instantiation, it skips
over that word and continues searching. Thus, if the student uses certain words or concepts
that the system doesn't know, the parser can ignore these words and try to make sense of
what remains. In order to limit the negative consequences that may result from a
misunderstood question, SOPHIE responds to the student's question with a full sentence that
tells him what question Is being answered. (See Article Natural Language.F? about the
semantic grammar used in the LIFER system).

Inferencing Strategies

In order to Interact with the student, SOPHIE performs several different logical and
tutorial tasks, Firss there is the task of answering hypothetical questions. For example, the
student might ask, "If the base-emitter junction of the voltage limiting transistor opens, then
what happens to the output voltage?"

A second task SOPHIE must perform is that of hypothesis evaluation, where the student
asks, "Given the measurements I have made so far, could the base of transistor Q3 be
open?" The problem here Is not to determine if the assertion "the base of Q3 Is open" is
true, but whether this assertion Is logically consistent with the data that have already been
collected by the student. If It Is not consistent, the program explains why it Is not. When it
Is consistent, SOPHIE Identifies which Information supports the assertion and which
information is Independent of it.

A third task that SOPHIE must perform is hypothesis generation. In Its simplest form this
Involves constructing all possible hypriheses that are consistent with the known information.
This procedure enables SOPHIE to answer questions like, "What could be wrong with the
circuit (given the measurements that I have taken)?" The task Is solved using the generate-
and-test paradigm with the hypothesis evaluation task described above performing the "test"
function.

 � ""' �����WHMiWiil --;��

24 Al Application* In Education

Finally SOPHIE can determine whether a given measurement is redundant, that is, if the
results of Se measurement could have been predicted from a complete theory of the circuit,
given the previous measurements.

SOPHIE accomplishes all of these reasoning tasks using an inference ««^^J*^
relies principally on a general-purpose simulator of the circuit under discussion. For example
oanswTr a question about a changed voltage resulting from a hypothetical nodlflcation to a

^rcursOPHE^st interprets the question with its parser and t'-n. using this interpre^t.o.
simulates the desired modification. The result is a Voltage Table that represents the
voTages at each terminal in the modified circuit. The original question is then answered in
terms of these voltages.

The tasks of hypothesis evaluation and hypothesis generation are handled in a similar
manner using the simulator. When evaluating hypotheses. SOPHIE attempts to determine e
Togical consistency of a given hypothesis. To accomplish this task« ^7 *<7 ° the

hypothesis is performed on the circuit model and measurements are taken o^le resu,^ „
the values of any of these measurements are not equivalent to the measurements taken by
Ihe student then a counterexample has been established and it is used to critique the
student's hypothesis.

When generating hypotheses. SOPHIE attempts to determine the set of possible faults
or hypo heses that are consistent with the observed behavior of the faulteo "»trument.
This task Is performed by a set of specialist procedures that propose a possible set of
Spotfese to' expll a measurement and then simulate them to make sure that they explam
the output voltage and all of the measurements that the student has taken. Hypothes.s
generation ca be used to suggest possible paths to explore when the student has run ou
of ideas for what could be wrong with the circuit or when he wishes to understand the full
rmpSons of his last measurement. It Is also used by SOPHIE to determ.ne when a
measurement Is redundant.

SOPHIE-II: The Augmented SOPHIE Lab

Extensions to SOPHIE Include: (a) a troubleshooting game involving two teams of students
and (b) the development of an articulate expert debuggerlexplainer The ^P'« react'v«
learning environment has also been augmented by the development of ^e:o;'«n^ C*1

lesson material, used to prepare the student for the laboratory mteract.on (Brown,
Rubinste:. I Burton. 1976). The articulate expert not only locates ^^'Xove ^
in a given instrument but can articulate exactly the deductions that led to its discovery, as
well as the more global strategies that guide the trouble-shooting scenario.

Experience with SOPHIE indicates that its major weakness is an inability to ^"°w UP °"
student errors. Since SOPHIE is to be reactive to the student, it will not M***�^**
explore a student's understanding or suggest approaches that he does not consider
However, the competitive environment of the troubleshooting game, in which partners share a
Noblem and work it out together, was found to be an effective means of exercising the
student's knowledge of the operation of the instrument ^«/^"M^;/'"^' !J
experiment Involving a minicourse-and exposure to the frame-based *e*Xs'"fj*^'*"*
the original SOPHIE Lab-indicated that long-term use of the system is �re effect.ve than a
single, concentrated exposure to the material (Brown, Rubinstein. & Burton. 1976).

/ / >

��

C3 SOPHIE 25

Summary

The goal of the SOPHIE project was to create a learning environment in which the
student would be challenged to explore ideas on his own and to create conjectures or
hypotheses about a problem-solving sitcation. The student receives detailed feedback as to
the logical validity of his proposed solutions. In cases where the student's ideas have
logical flaws, SOPHIE can create relevant counterexamples and critiques. The SOPHIF
system combines domain-specific knowledge and powerful domain-independent infernnr."
mechanisms to answer questions that even human tutors might find it extremely difficult t"
answer.

References

Brown, Burton, & Bell (1976) give a complete description of the early work on SOPHIE,
and Brown, Rubinstein, & Burton (1976) report on the later work. Also see Brown & Burton
(1976).

��

'�' �����������''** �� r

26 Al Applications in Education

C4. WEST

Development of the first computer coach was undertaken by Richard Burton and John
Seely Brown at Bolt, Beranek and Newman, Inc., for the children's board game called How the
West Was Won. The term "coach" describes a computer-bajed learning environment where
the student is involved in an activity, like playing a computer game, and the instructional
program operates by "looking over his shoulder" during the game and occasionally offering
criticisms or suggestions for improvement (Goldstein, 1977). This research focused on
identifying: (a) diagnostic strategies required to infer a student's misunderstandings from his
observed behavior and (b) various explicit tutoring strategies for directing the tutor to say the
right thing at the right time (Burton & Brown, 1976, and Burton & Brown, 1979). The intention
of this work was to use these strategies to control the interaction so that the instructional
program took every possible opportunity to offer help to the student without interrupting so
often as to become a nuisance and destroy the student's fun at the game. By guiding a
student's learning through discovery, computer-based coaching systems hold the promise of
enhancing the educational value of the increasingly popular computer-gaming environments.

Philosophy of the Instructional Coach

The pedagogical ideas underlying much of computer coaching researcii in WEST can be
characterized as guided discovery learning. It assumes that the student constructs his
understanding of a situation or a task based on his prior knowledge. According to this theory,
the notion of misconception or bug plays a central role in the construction process. Ideally, a
bug in the student's knowledge will cause an erroneous result in his behavior, which the
student wMI notice. If the student has enough information to determine what caused the
error and can then correct it, the bug is referred to as constructive. The role of a tutor in an
Informal environment is to give the student extra information in situations that would
otherwise be confusing to him, so that he can determine what caused his error and can
transform nonconstructive bugs into constructive ones (see Fischer, Brown, & Burton, 1978
for further discussion).

However, an important constraint on the coach is that it should not interrupt the
student too often. If the coach immediately points out the student's errors, there is a
danger that the student will never develop the necessary skills for examining his own
behavior and looking for the causes of his mistakes himself. The tutor must be perceptive
enough to make relevant comments, but not be too intrusive, destroying the fun of the game.
The research on the WEST system examined a wide variety of tutorial strategies that must
be included to create a successful coaching system.

How the West Was Won

How the West Was Won was originally a computer board game designed by Bonnie
Anderson of the Elementary Mathematics Project at the PLATO computer-based education
system at the University of Illinois (Dugdale & Kibbey, 1977). The purpose of this original
(nontutorial) program was to give elementary-school students drill and practice in arithmetic.
The game resembles the popular Chutes and Ladders board game and, briefly, goes
something like this: At each turn a player receives three numbers (from spinners) with which
he constructs an arithmetic expression using the operations of addition, subtraction.

E HKSllS^i. '^ßm^B^^r^g^^tf^rSi^^^.^vi'' -.>#• w .^ — ��-. vg.
s

-r-

C4 WEST 27

multiplication, and division. The numeric value of the completed expression is the number of
spaces the player CCT move, the object of the game being to get to the end first.

However, the strategy of combining the three numbers to make the biggest valued
expression is not always the best strategy, because there are several special features on
the game board. Towns occur every ten spaces and if a player lands on one, he skips ahead
to the next town. There are also shortcuts, and If iie lands on the beginning of one a player
advances to the other end of the shortcut. Finally, if the player lands on the space that his
opponent is occupying, the opponent Is bumped back two towns. The spinner values in WEST
are small, so these special moves are encouraged (I.e., landing on towns or shortcuts "• on
your opponent).

Diagnostic Modeling

There are two majrr related problems that must be solved by the computer coach.
They are (a) when to Interrupt the student's problem-solving activity, and (b) what to say
once it has been intarrupted. In general, solutions to these problems require both techniques
for determining what the student knows (procedures for constructing a diagnostic model) and
explicit tutoring principles about interrupting and advising. These, in turn, require theories
about how a student forms abstractions, how he learns, and when he Is apt to be most
receptive to advice. Unfortunately, few, if any, existing psychological theories are precise
enough to suggest anything more than caution.

Since the student is primarily engaged in a gaming or problem-solving activity, diagnosis
of his strengths and weaknesses must be unobtrusive to his main activity. This objective
means that the diagnostic component cannot use pre-stored tests or pose a lot of diagnostic
questions to the student Instead, the computer coach must restrict itself mainly to inferring
a student's shortcomings from what he does in the context of playing the game or solving the
problem. This objective can create a difficult problem—just because a student does not use
a certain skill while playing a game does not mean that he does not know that skill. Although
this point seems quite obvious, it poses a serious diagnostic problem: The absence of a
potential skill carries diagnostic value if and on'y If an expert in an equivalent situation would
have used that skill. Hence, apart from his outright errors, the main window a computer-
based coach has on a student's misconceptions is through a differential modeling technique
that compares what the student is doing with what the expert would be doing in his place.
This difference provldei hypotheses about what the student does not know or has not yet
mastered. (See the related discussion of overlay models In Article C5.)

Constructing the differential model requires that two tasks be performed by the coach,
using the computer Expert (the subprogram that is expert at playing the game WEST). The
first task of the coach is to evaluate the student's current move with respect to the set of
possible alternative moves that an Expert might have made in the exact same
circumstances. The second task is to determine what underlying skills were used to select
and compose the student's move and each of the "better" moves of the Expert. To
accomplish the evaluative task, the Expert need only use the results of its knowledge and
reasoning strategies, available as better moves. However, for the second task, the coach
has to consider the "pieces" of knowledge involved in move selection and in the generation
of better moves, since the absence of one of these pieces of knowledge might explain why
the student failed to make a better move.

»««���.! lawmmmmmmm

f^^as^^g^^ 1>«J—
:-

28 Al Applications in Education

Tutoring by Issue and Example — A General Paradigm

One of the top-level goals driving the coach is the objective that its comments be both
relevant to the situation and memorable to the student. The Issues and Examples tutoring
strategy provides a framework for meeting these two constraints. Issues are concepts used
in the diagnostic process to identify, at any particular moment, what is relevant. Examples
prov'rle concrete Instances of these abstract concepts. Providing both the descnpt.on of a
generic Issue (a concept used to select a strategy) and a concrete example of its use
Increases the chance thai the student will integrate this piece of tutorial commentary into
his knowledqe. In the Issues and Examples paradigm, the Issues embody the important
concepts underlying a student's behavior. They define the space of concepts that the
Coach can address--the facets of the student's behavior that are monitored by the Coach.

In WEST, there are three levels of Issues on which a Coach can focus; At the lowrv
level are the basic mathematical skills that the student is practicing (the use v<
parentheses, the use of the various arithmetic operations, and the *orm or pattern of the
student's move as an arithmentic expression). The second level of Issues concerns the
skills needed to play WEST (like the special moves: bump, town, and shortcut) and the
development of a strategy for choosing moves. At the third level ere the general skills of
game playing (like watching your opponent to learn from his moves), which are not addressed
by the WEST program.

Each of the Issues is represented in two parts, a recognizer and an evalualor. The issue
recognizer is data-directed; it watches the student's behavior for evidence that he does or
does^not use a particular concept or skill. The recognizers are used to construct a model oi
the student's knowledge. The Issue evaluators are goal-directed; they Interpret this model
to determine the student's weaknesses. The Issue recognizers of WEST are fa.rly
straightforward but are. nevertheless, more complex than simple pattern matchers. For
example, the recognizer for the PARENTHESIS Issue must determine not only whether or not
parentheses are present In the student's expression, but also whether they were necessary
for his move, or for an optimal move.

Figure 1 Is a diagram of the modeling/tutorial process underlying the Issues and
Examples paradigm. Figure 1a presents the process of constructing a model of the student's
behavior. It Is Important to observe that without the Expert it is impossible to determine
whether the student is weak In some skill or whether the skill has not been used because
the need for It has arisen infrequently in the student's experience.

/
^i^imigsm*?*^ .«»"Ui m ' �»"��'gyi'<»l

/

C4
WEST 29

GAMIKG EMVIRONMENT
OR

PROBLEM SOLVING
SITUATION-

STUDENTS
BEHAVIOR

EXPERT
BEHAVIOR

(OVER SAME
ENVtROKMEHT)

ASETRACTEO
STUDENT
BEHAVIOR

ABSTRACfEO
EXPERT
CEHAVIOR

DIFFERENTIAL
MODEL

MOUELLER

STUDENT'S
CURRENT
MOVE

(3EHAVtOR)

EXPERTS
CURRENT
UOVE

ISSUE WHERE
STUDENT IS
WEAK

ISSUES
EXHIBITED BY
BETTER MOVES

TUTOR

ISSUE ^EXAMPLE
(TUTOP, HYPOTHESIS
OF STUDCKT'S WEAK-
NESS ILLUSTRATED BY
A BETTER MOVE)

1 1 DATA STRUCTURE OR
OBSERVABLE BEHAVIOR o PROCESS

 INPUT
OUTPUT

OUTPUT
(FEEDBACK)

;

Figure 1. Diagram of the Modeling/Coaching Process

7
'if^^^^^ii^^W'^.~j^fm^tr^v'm ^ y 'm ��"��

30 Al Applications in Education

The Coaching Process

I igure lb presents the top level of the coaching process. When the student makes a
less than optimal move (as determined by comparing his move with that of the Expert), the
Coach uses the evaluation component of each Irsue to create a list of Issues on which it has
assessed that the student is weak. From the Expert's list of better moves, the Coach
invokes the Issue recognizers, to determine which issues are illustrated by these better
moves. From these two lists of Issues, the Coach selects an Issue and the move that
illustrates It (I.e., creates an example of It) and decides, on the basis of tutoring principles,
whether or rot to interrupt. If the two lists have no Issues in common, the reason for the
student's problem lies outside the collection of Issues, and the Coach says nothing.

If the Coach decides to interrupt, the selected Issue and Example are then passed to
the explanation generators, which produce the feedback to the student. Currently, the
explanations are stored In a procedures, called Speakers, attached to each Issue. Each
Speaker is responsible for presenting a few lines of text explaining its Issue. (See also the
related discussion of computer coaching in Article C5 on WUMPUS).

Tutoring Principles

General tutoring principles dictate that, at time., even when relevant Issues and
Examples have been identified, it may be inappropriate to interrupt. For example, what if
there are two competing Issues, both applicable to a certain situation? Which one should be
picked? The Issues in WEST are sufficiently independent that there is little need to
consider their prerequisite structure, for example, whether the use of parentheses should be
tutored before division (but see the description of the syllabus in WUMPUS, Article C5).
Instead, additional tutoring principles must be invoked to decide which one of the set of
applicable Issues should be used.

In WEST, experiments have been conducted using two alternate principles to guide this
decision. The first Is the Focus Strategy, which ensures that, everything else being equal,
the Issue most recently discussed is chosen--the Coach will tend to concentrate on a
particular Issue until evidence is present to Indicate that it Is mastered. The alternative
principle is the Breadth Strategy, where Issues that have not recently been discussed tend
to be selected. This strategy minimizes a student's boredom and Insures breadth of concept
coverage.

The rest of WEST'S strategies for deciding whether to raise an Issue and what to say
can be placed In the four categories listed below, with example rules of each:

1. Coaching Philosophy. Tutoring principles can enhance a student's likelihood
of remembesing what is said. For example. "When illustrating an Issue, use an
Example (an alternative move) only when the result or outcome of that move
1-5 dramatically superior to the move made by the student."

2. Maintaining Interest In the Gsme. The Coach should not destroy the
student's Inherent Interest in the game by interrupting too often. For
example, "Never tutor on two consecutive moves." or "If the student makes
an exceptional move, Identify why It is good and congratulate him."

^^/%^yj<»^^^r»jM^*-**,','",ll't"' *» ��y ",il-u—

C4 WEST 31

Increasing Chances ov' Learning. Four levels of hints are provided by the
WEST tutor, at the student's request: (a) isolate a weakness and directly
address that weakness, (b) delineate the space of possible moves at this
point in the game, (c) select the optimal move and tell why it is optimal, and
(d) describe how to make th' optimal move.

Envlronmertal Considerations. The Coach should consider the game-playing
environment. For example, "If the student makes a possibly careless error,
one for which there is evidence that he knows better, be forgiving."

Noise in the Model

When the student does not make an optimal move, the program knows only that at least
one of the Issues required for that move was not employed by the student. Which of these
Issues blocked the student from making the move is not known. In practice, blame is
apportioned more or less equally among all of the Issues required for a missed better move.
One effect of this apportionment is the Introduction of nolst into the model, that is, blame will
almost certainly be apportioned to Issues that are, in fact, understood. Also, since the
system does net account for the entire process that a person uses to derive a move, the set
of Issues is, by definition, incomplete. This is the second source of noise in the differential
model. A third source of noise in the model is the difficulty of modeling certain human factors
such as boredom or fatigue that cause inconsistent behaviors. For example, students <re
seldom completely consistent. They often forget to use techniques that they know, or get
tired and accept a move that is easy to generate but which does not reflect their
knowledge.

Another source of noise is inherent in the process of learning. As the ttudent plnys the
game, he acquires new skills. The student model, which has been accumulating during the
course of his play, will not be up to date, that is, it will still show the newly learned issues as
"weaknesses." ideelly, the "old pieces" of the model should decay with time. Unfortunately,
the costs involved m this computation are prohibitive. To avoid this particular failing of the
model, the WEST Coach removes from consideration any Issues that the student has useo
recently (in the last three moves), assuming diat they are now part of his knowledge.

To combat the noise that arises in the model, the Evaluator for each ISSUP »^nds to
assume that the student has mastery of the Issue. Some coaching opportunities niay be
missed, but eventually, if the student has a problem addressed by an Issue, a pattern will
emerge.

Experiences with West

WEST has been used In elementary school classrooms. In a controlled experiment, the
coached version of WEST was compared to an uncoached version. The coached students
showeci a considerably greater variety of patterns, indicating that they had ac-uired many of
the more subtle patterns and had not fallen permanently into "ruts" that prevented them from
seeing when such moves were important. Moreover, and perhaps most important of all, the
students in the coached group enjoyed playing the game considerably more than the
uncoached group (Goldstein, 1979).

/

. mmmmmmmmmmmn mmmmm-m—m mmm

^^^B^^sss^^^rnKm^--- ^w&mi$&m*^^.&r**-

32 Al Applications in Education
)

References

The most recent and most complete discussion of the WEST coach is Burton 8, B» v.,,
(1979).

/

«Ht-.'i'--•''* i^$SP«k&&S^^
A

C6

C6. WUMPUS

WUMPUS 33

This artic'e describes a eomputtr coach for WUMPUS, a computer cjame in which the
player must track down and slay "the vicious Wumpus while avoiding pitfalls that result in
certain, if fictional, death (Yob, 1975). The coach descrioed here is WUSOR-II one of three
"aenerations" of computer coaches for WUMPUS developed by Ira Goldstein and Brian Carr at
MIT (Carr & Goldstein, 1977). (For discussions of WUSOR-I and -III, see Stansfieltl, Carr, &
Goldstein, 1976, and Goldstein, 1979. respectively.) To be a skilled Wumpus-hunter one must
know about logic, probability, decision theory, and geometry. A deficit in one s knowledge
may result In being eaten by the Wumpus or falling through the center of the earth. In
keeping with the philosophy of computer coaching, students are highly motivated to learn
these fundamental skills.

The design of the WUSOh II system involves the interactions of the specialist programs
shown In Figure 1. There are four modules: the Expert, the Psychologist, the Student Model,
and the Tutor. The Expert informs the Psychologist of two facts: (a) if the player's move is
nonoptimal and (b) which skills are needed for him to discover better alternatives. The
Psychologist employs this comparison to formulate hypotheses about which domain-specific
skills are known to the student. These hypotheses are recorded in the Student Model which
represents the student's knowledge as a subset of the Expert's skills--an overlay model (see
Overview B and Carr & Goldstein, 1977). The Tutor uses the student model to fluide 'ta
interactions with the player. Basically, it chooses to discuss skills not yet exhibited by he
player in situations where their use would result in better moves. Goldstein (1977 provides
a more detailed discussion of the structure and function of these coachir.g modules. 'Also
see the discussion of the WEST computer coach in Article C4.)

The central box of Figure 1 contains a representation for the problem-solving skills of
the domain being tutored. It Is, in essence, a formal representation of the syllabu-- fhe
Expert is derived from the skills represented therein, as is the structure of the student
model The Psychologist derives expectations from this knowledge regarding which skills the
student can be expected to acquire next, based on a model of the relative difficulty of item?
In the syllabus. The Tutor derives relationships between skills such as analogies and
refinements, which can be employed to improve Its explanations of new skills (see Goldstein.
1979).

Theoretical Goals: Toward a Theory of Coaching

The approach to the design of computer coaches in WUSOR-II is to construct rule-based
representation (see Article RepresentatioaBS) for (a) the skills needed by the Expert to play
the game, (b) the modeling criteria used by the Psychologist, and (c) the alternative tutormg
strategies used by the Tutor. Each Is expanded below:

^"'N**^ /�•'^^^^. J^fft^j^ ^ yr- ,�'

:-��

"��»��'

1

14 At Applications In Education

COACH
PSYCHOLOGIST

MOVE
ANALYSIS

EXPERT

ST"

RULES
DEFINING
"EXPERT

PLAY

COMPLEXITY
DATA

i
i

 i
PROBLEM
SOLVING

I KNOWLEDGE
 1

i
i
i

UPDATE
MODEL

_t.
OVERLAY J-STUDENT""'!

'"n MODEL !

STUDENT'S
CURRENT STATE

Fig. 1. Simplified block diagram of a computer coach.

�-*—�..— .,�!�„,�!!!„ mma

-^^r^^^^^^i *äZ^-'*?&&!^£-äi*^

__t

A

C6 WUMPUS 35

The Expert uses rules that embody the knowledge or skills required to play the game
to analyze the player's behavior. The virtue of a rule-based representation of expertise is
that Its modularity both allows tutoring to focus concisely on the discussion of specific skills
and permits modeling to take the form of hypotheses regarding which rules are known by the
player.

The Psychologist uses rules of evidtnce to make reasonable hypotheses about which of
the Expert's skills the player possesses. Typical rules of evidence are:

Increase the estimate that a player possesses a skill If the player explicitly
claims acquaintance with the skill, and decrease the reliability if the player
expresses unfamlliarlty.

Increase the estate that a player possesses a skill If the skill Is manifest in the
player's behavior, and decrease the estimate if the skill Is not manifest in a
situation where the Expert believes It to be appropriate; hence, implicit as well
as overt evidence plays a role.

Decrease the estimate that a player possesses a skill If there Is a long interval
since the last confirmation was obtained (thereby modeling the tendency for a
skill to decay with little use).

The Tutor uses explanation rules to select the appropriate topic to discuss with the
player and to choose the form of the explanation. These rules include:

Rules of simplification that take a complex statement and reduce it to a simpler
assertion. Simplification rules are essential if the player is not to be
overwhelmed by the Tutor's explanations.

Rules ** rhetoric that codify alternative explanation strategies. The two extremes
are e. ination in terms of a general rule and explanation in terms of a concrete
instance.

The WUMPUS Expert

In WUMPUS, the player Is initially placed somewhere In a randomly connected wurren of
caves and told the neighbors of his current location. His goal is to locate the horrid Wumpus
and slay it with an arrow. Each move to a neighboring cave yields Information regarding that
cave's neighbors. The difficulty in choosing a move arises from the existence of clangers In
the warren--bats, pits, and the Wumpus itself. If the player moves Into the Wumpus's lair, he
is eaten. If he walks Into a pit, he falls to his death. Bats pick the player up and randomly
drop him elsewhere in the warren.

The player can minimize risk and locate the Wumpus by making the proper logistic and
probabilistic inferences from warnings that he is given. These warnings are provided
whenever the player Is In the vicinity of a danger. The Wumpus can be smeiled within one or
two caves. The squeak of aats can be heard one cave away and the breeze of a pit felt
one cave away. The game Is won by shooting an arrow into the Wumpus's lair. If the player
exhausts his set of five arrows without hitting the creature, the game is lost.

ZSSPZ '/^feS^^fr^y'V.'.^1*».^!'--^''^ -yy
/

36 Al Applications in Education

The Wumpus Expert uses a rule-based representation, consisting of approximately 20
rules, to infer the risk of visiting new caves. Five of these rules are shown below:

LI. Positive Evidence Rule. A warning in a cave implies that a danger exists in a
neighbor.

L2. Negative Evidence Rule. The absence of a warning implies that no danger
exists in any neighbors.

L3. Elimination Rule. If a cave has a warning and all but one of its neighbors are
known to be safe, then the danger is in the remaining neighbor.

P1. Equal Likelihood Rule. In the absence of other knowledge, all of the
neighbors of a cave with a warning are equally likely to contain a danger.

P2. Double Evidence Rule. Multiple warni.igs increase the likelihood that a given
cave contains a danger.

A Sample Protocol with the WUSOR-II Computer Coach

A transcript of an interaction with the WUSOR-II coach is illustrated below. The
player's responses are preceded by a **.

Hello, Timmy. There are 16 caves, 2 bats, 2 pits, and 1 Wumpus. You
are now at cave 15 with neighbors 4, 14 and 0. Brrr! There is a draft. You
are near a pit. What a stench! The Wumpus is near. What now?

You are now at cave 4 with neighbors 16, 14 and 2. Brrr! Squeak!
A bat is near. What now?

The goal of the Coach is to tutor a beginner in the relevant logical, probabilistic, and
strategic knowledge needed to play the game. For example, the Expert informs the Tutor
that cave H should be treated as more dangerous than 0 or 2 since there is multiple
evidence (from the drafts in /5 anri 4) that 14 contains a pit. If the player now moved to
cave 14, a coaching situation might occur as follows:

«« 14

Timmy, it Isn't necessary to take such large riska with pits. One of
cave 2 and 14 contains a pit. Likewise one of cave 0 and 14 contains a pit.
This is multiple evidence of a pit In cave 14 which makes it quite likely
that cave 14 contains a pit. It is less likely that cave 0 contains a pit.
Hence, we might want to explore cave 0 instead. Do you want to take back
your move?

C6 WUMPUS 37

Although it is not apparent from these simple remarks, every module o(thr Coacl"
contributed to the dialogue. These contributions are summarized below.

The Expert analyzes all possible moves, using its set of skills. The outcome of its
analysis is a ranking of possible moves with an attached list that associates the skills that
would be needed to make each move. For example, using the five skills listed earlier, the
Expert recognizes that cave 14 Is the most dangerous move and cave 0 is the «afest move.

Essentially, the Expert provides the following proof for use by the Psychologist and
Tutor modules. (The proof is given here In English for readability! the Expert's actual
analyses are In the programming language LISP.)

Lemma 1: The Wumpus cannot be In 0, 2, or 14 since there is no smell in 4.
(Application of the Negative Evidence Rule, 12, for 2-cave warning of Wumpus.)

Lemma 2i Caves 0 and 2 were better than 14 because there was single
evidence that caves 0 and 2 contained a pit, but double evidence for cave 14.
(Application of the Double Evidence Rule, P2.)

Lemma Ö: Cave 2 Is more dangerous than cave 0, since 2 contains a bat, and the
bat could drop you In a fatal cave. (We know this fact because the squeak In 4
implied a bat in 14 or 2; but the absence of a squeak in 15 implies no bat in 14.
Hence, by Elimination Rule, L3, there is a bat in 2.)

The Psychologist, after seeing Timmy move to cave 14, decreases the Student Model
weight indicating familiarity with the Double Evidence Rule, P2, since the Expert's proof
indicates that this heuristic was not applied, Table 1 is the Psychologist's hypotheses
regarding which skills of the Expert the student possesses.

Table 1.

A Typical Student Model Maintained by the Coach

RULES

LI
L2
L3
LA
15

APPROPRIATE

5
A
4
5
4

ED PER CENT

5 100
3 75
2 50
5 100
1 25

KNOWN

Yes
Yes

7
Yes
No

Modeling raises many issues. One subtlety is that the move to 14 above may be
evidence of a more elementary limitation-a failure to understand the logical implications of
the draft warning--i.e., that a pit is in a neighboring cave. The current statr of the Student
Model is used by the Psychologist to determine, in the event of a nonoptimal move, which skill
is in fact missing. The Student Model indicates the level of play that can be expected from
this player--the player might be a beginner with incomplete knowledge of the basic rules of
the game, a novice with understanding of the logical skills, an amateur with knowledge of the

7
Ä

38 Al Applications in Education

logical and the more elementary probability skills, etc. The Psychologist would attribute the
student's error in the current situation to unfamiliarity with a skill at his current level of play;
in this case, Timmy is a player who has mastered the logical skills and is learning the basic
probability heuristics. Hence, the coach's explanation focused on explaining the double
evidence heuristic.

i

The Tutor is responsible for abridging the Coach's response to the player's move to
cave 14. (The complete explanation generated by the Expert were the three lemmas shown
above) Such pruning is imperative if the Coach is to generate comprehensible advice.
Hepce, the Tutor prunes the complete analysis on the basis of simplification rules that delete
those parts of the argument that are already known to the player on the basis of the
Student Model and those portions that are too complex. Here, the coach deleted Lemma 1,
the discussion of the Wumpus danger, because it is based on the negative evidence skill
that the Student Model attributes to the player. Lemma 2, the elimination argument for bats,
is potentially appropriate to discuss; but a simplification strategy directs the Coach to focus
on a single skill. Additional information will be given by the Coach if requested by the player.

Conclusions

The novelty of this research is that in a jin^ systtm there is significant domain
expertise, a broad range of possible interaction strategies available to the tutor, and a
modeling capability for the student's current knowledge state. Informal experience with over
20 players of various ages has shown WUSOR-II to be a helpful learning aid, as judged by
interviews with the players. The short-term payoff from this research is an improved
understanding of the learning and teaching processes. The long-term payoff is the
development of a practical educational technology, given the expected decrease in
hardware costs.

References

Cerr & Goldstein (1977) describe WUSOR, the overlay model, and related theory,
see Goldstein (1977), Goldstein (1979), and Stansfield, Carr, & Goldstein (1976).

Also

;

C6 BUGGY 39

C6. BUGGY

BUGGY is a program that can accurately determine a student's misconceptions (bugs)
about basic arithmetic skills. The system, developed by John Seely Brown, Richard Burton
and Kathy Larkin at Bolt, Beranek and Newman, Inc., provides a mechanism for explaining why
a student is making an arithmetic mistake, as opposed to simply identifying the mistake.
Having a detailed model of a student's knowledge that Indicates his misconceptions is
important for successful tutoring.

A common assumption among teachers is that students do not follow procedures very
well and that erratic behavior is the primary cause of a student s inability to perform each
step correctly. Brown & Burton (1978) argue that students are remarkably competent
procedure followers, but they often follow the wrong procedures. By presenting examples of
systematic Incorrect behavior, BUGGY allows teachers to practice diagnosing the underlying
causes of a student's errors. Using BUGGY, teachers gain experience at forming hypotheses
about the relatlünship between the symptoms of a bug that a student manifests and the
underlying misconception. This experience helps teachers become more aware of methods or
strategies available for diagnosing their student's problems properly.

Manifesting Bugs

Experience with BUGGY indicates that forming a model of what is wrong with a
student's method or performing a task is often more difficult than performing the task itself.
Consider, for example, the Toliowing addition problems and their (erroneous) solutions. They
were provided by a student with a "bug" In his addition procedure:

41
+ 9

59

328
+917

1345

989
+ 52

66
+887

1141 1653

216
+ 13

229

Once you have discovered the bug, try testing your hypothesis by simulating the buggy
student—predict his results on the following two test problems;

446
+815

281
+399

The bug is simple. In procedural terms, after determining the carry, the student forgets
to reset the "carry register" to zero; he accumulates the amount carried, across the
columns. For example, in the student's second problem (328 + 917 = 1345), he proceeds as
follows: 8 + 7 = 15 , so he writes 5 and carries 1; 2 + 1 = 3 plus the 1 carried is 4; finally.
3 + 9 = 12 , but the 1 carried from the first column is still there—it has not been reset—so
adding it to the final column gives 13. If this is the correct bug, then the answers to the
test problems will be 1361 and 700. (This bug is really not so unusual; a child oftep uses his
fingers to remember the carry and might forget to bend them back after each column.)

The model built by BUGGY incorporates both correct and incorrect mbprocedures that
simulate the student's behavior on particular problems and capture what parts of a student's
skill are correct and what pans are incorrect. BUGGY represents a ski'l, such as addition, as

i0 Al Applications in Education

a collection of subskills. for example, one of which is knowing how to "carry" a digit into the
next column. The subprocedures in BUGGY that correspond to human subskills are linked Into
a procedural net (Sacerdoti, 1974), which Is BUGGY's representation of the ^6 human skill
If all the sgbprocedures in BUGGY's procedural net for addition work correctly, then BUGGY
will do addition problems correctly. On the other hand, replacing correct subprocedures with
ones that are faulty will result in systematic errors of the kind shown above. Brown and
Burton call a procedural network with one or more faulty subprocedures a diagnostic model
because it is a way of representing systematic errors. The model has been used m two
ways. First, it can diagnose a student's errors and pinpoint the bug(s) in the student s skill.
Second, it can help to train a teacher to diagnose student errors by "playing the part of a
student with one or more buggy subskills.

When BUGGY is to diagnose a student's errors, its task is to modify the correct
procedu.al network of, say, subtraction until It accounts for all of the student's answers
both right and wrong. This modification is done by systematically replacing correct
subprocedures with Incorrect variants until a consistent diagnostic model is found. There are
currently 70 primitive faulty subprocedures for subtraction. These are explored
exhaustively while attempting to determine a consistent diagnostic model, if a single variant
or bug is insufficient to explain a student's behav.or, then combinations of two bugs are
tried (Because of the overwhelming number of combinations of three o^ more bugs, these
are not used to form diagnostic models.) In this manner, 330 "bugs" have been identif.eo,
each with a bug description. Interactions among bugs and the ramifications of a buggy
subpror;edure's being called by several high-order procedures constitute major challenges
for designing efficient simulations of multiple bugs. Note also that this technique requires a
large amount of compute time and Is amenable only to domains where bugs can be explicated
in a more or less complete way.

The procedural network for subtraction (and its bugs) was tested In an experiment
using the results of a test administered to 1,325 students in the fourth, fifth, and sixth
grades. Using the BUGGY model, it was found that about 40% of the students demons rated
consistently buggy behavior. That is, BUGGY was able to construct a diagnostic model for
student's errors demonstrating that they were using nonrandom. though incorrect procedures.

Using Buggy to Train Teachers

BUGGY can also be used to train teachers to diagnose student errors. This facility is
illustrated by a protocol excerpted from Brown (1977) in which BUGGY presents a team of
teachers with incorrectly solved math problems and supervises their diagnosis of the bug.

Protocol of a Team Using BUGGY

Welcome to Bugland. I have chosen a bug.
Here is an example of the bug.

17
+5

13

����

r>«^^~^a^^--^^ , _—sta -'

C6 BUGGY 41

The system presents an example in which the student didn't get the right answer.

Now you can give me problems to determine the bug.

** 18 43
•« +6 +79

16 23

The teachers generate problems, and BUGGY solves ihem incorrectly, following a bv gy
procedure. The team is trying to diagnose the bug in BUGGY'S addition procedi .* by
presenting BUGGY with problems to solve. However, they are using problems similar to the
original one, which is a poor strategy because it may leave other symptoms of the bug
undiscovered.

** GOT THE BUGI

The team thinks that they know what the problem is. Omitted here for space, but shoiun
below, BUGGY asks them to formulate the bug in English. This step has the effect of
making the team verbalize the bug clearly. It is a difficult task, and the results are often
ambiguous. BUGGY does not "read" the description of the bug. because it does not have
the natural language abilities to do so. Instead, it generates a wies of problems for the
team to solve. The team must solve them incorrectly, using the bug that they think they
have identified, to convince BUGGY that they have in fact discovered the bug.

Here are some problems to test your theories about the bug.
What is:

21
+39

*« 51

That's not the bug I have. Using my bug:
21

+39

15
Try giving me some more examples...

The team fails BUGGY's test by being unable to solve the given problem. That is, their bug
is not the same one that BUGGY is using. If they had solved 5 problems "correctly" (that
is, incorrectly because of a bug), then BUGGY would credit them with a correct diagnosis.
Now, however they must set more problems for BUGGY to solve, in an attempt to deduce
the bug.

*« 51 99 68
«« +1707 +99 +9

21 36 23

-—«- 7
i-.:i. �;% ~S^^£l#t^^.T^^*4r jrejww

/

A 2 Al Applications in Education

«* GOT THE BUG!

Please describe the bug you think I have:

•« THE STUDENT IS ADDING ALL THE DIGITS TOGETHER.

Here are some problems to test your theory about the bug.
What are:

33 1091 8 28 90
+99 +60 +34 +70 +6

««24 17 15 17 16

Very good. My description of the bug is:
The student always sums up all the digits, with no regard to columns.

Summary

The central idea of this research is that procedural networks can be used to build
diagnostic models. This representation scheme facilitates an appropriate decomposition of a
skill into subskills, to make explicit the control structures underlying a collection of skills, and
to execute directly the resulting diagnostic model. Rather than being a subset or simplification
of expert rules, as in overlay modeling (Carr & Goldstein, 1977; see Articles B, C5 and C4),
the procedural netvork Is a model of a student's behavior that is strucvjred in terms of
serrantically meaningful deviations from the correct procedure. Each subskill, whether
corract or Incorrect, Is explicitly represented as a subprocedure in the network.

References

Brown & Burton (1978) is the most recent and complete report on BUGGY. Also see
Brown, Burton, Hausmann, Goldstein, Muggins & Miller (1977) and Brown, Burton, and Larkin
(1977).

. :

/ X

• . »�����v'
f- - ~ isg*- -^��- »* " �" *��"

C7 EKCHECK 43

C7. EXCHECK

EXCHECK Is an Intelligent Computer-aided Instruction system designed and implemented
by Patrick Suppes and his colleagues at the Institute of Mathematical Studies in the Social
Sciences (IMSSS) at Stanford University. It Is a general-purpose instructional system used
principally to present complete, university-level courses in logic, set theory, and proof
theory. In the courses taught using the EXCHECK system, lesson material is presented to
the student at his computer terminal, followed by exercises consisting of theorems that he is
to prove using the program's theorem prover. The courses are taught on IMSSS's CAi
system, which uses computer-generated speech and split-screen displays. Several hundred
Stanford students take these courses each year.

From an Ai point of view, the most interesting aspects of the EXCHECK system are the
procedures and the underlying theories of mathematical reasoning that permit this interaction
to take place In a natural style closely approximating standard mathematical practice. These
Include natural language facilities, natural-deduction-based proof procedures, theorem
provers, decision procedures for some simple mflthematlcal theories, procedures for analyzing
and summarizing proofs, and procedures for conducting dialogues about some elementary
mathematical structures.

Examples of the kind of natural language accepted and generated are given in the
proofs and dialogues presented below. The basic logic is a variant of Suppes's (1957)
formulation of natural deduction augmented by high-level inference procedures that are the
analogs of proof procedures used in standard mathematical practice.

Understanding Informal Mathematlcftl Reasoning

The mathematical reasoning involved in the set theory and proof theory courses is
complex and subtle. The fundamental Al problem of EXCHECK Is making the program capable
of understanding Informal mathematical reasoning: The program must be able to follow
mathematical proofs presented in a "natural" manner. That is, just as the intent of natural
language processing is to handle languaget. that are actually spoken, the intent of natural
proof processing is to handle proofs as they are actually done by practicing mathematicians.
In general, such proofs are presented by giving a sketch of the main line of argument along
with any other mathematically significant Information that might be needed to completely
reconstruct the proof. This rtyle should be contrasted with the derivations familiar from
elementary logic, where each detail is presented and the focus of attention is on syntactic
manipulations rati.ar than on the undt /Ing semantics.

A major aspect of the problem of machine understanding of natural proofs is finding
languages that permit users to express their proofs in the fashion described above. Such
languages, in turn, must find their basis In an analysis or model of Informal mathematical
reasoning. Finding these natural proof languages should be compared to the problem of
finding high-level "n-itural" or "English-like" programming languages. For more detailed
discussions of these issues, see Blalne & Smith (1977), Smith (i976), and Smith et ai.
(1976). A simple example of understanding Informal mathematical reasoning and fuller
discussion of the techniques Involved follows.

^^f^^^^^^C^^ '3&&&^£&I»*^'-TI w** *<rrJ^i'---»-,^"yc—="- �"' »"��

44 Al Applications in Education

Student Proof
��

We presept two proofs of the elementary theorem,

Thm: If A c B then -(B c A)

where "c" Is used for proper subset and "c" Is used for subset.

First, the proof Is given in the informal style of standard mathematical practice.

We want to show that If A c B, then -(B c A).

Assume A c B. We show -(B c A) by Indirect proof. Assume that B c A. Since A c
B then, by definition, A c B and A »« B. Since A c B and B c A then A = B. But this is
a contradiction and, hence, the assumption that. B c A is false. Therefore, -(B c
A).

.
The following typescript shows how one student did the proof in the EXCHECK system.

Input from the student Is In boldface type and comments are in italics; everything else is
generated by the program. The program keeps track of the goal that the student is currently
trying to establish; the Initial goal is the theorem to be proven. EXCHECK indicates
acceptance of an Inference by returning the top-level prompt **; If a suggested inference is
not acceptable, EXCHECK returns an error message.

Derive: If A c B then -(B c A)

** hyp (1) •« Ac B

The hypothesis of the theorem is assumed. The goal is automatically reset to the
consequent of the theorem.

** raa
assume (2) ** G B c A

The student begins an indirect proof (the command 'raa' is a mnemonic for reductio ad
absurduml The program assumes the negation of current goal. The goal is now any
contradiction.

** 1 definition Number or Name? •• proper subset
1 Df. proper subset

(3) Ac B and A »« B

The definition of proper subset is applied to line I.

** 2,3establlsh «8 s A
2,3 Establish

(4) B = A

� i . ,

/

^ �.. 5^^"''w:y^^ — ~ y " "»� •" -�—---.y ;��

C7 EXCHECK 45

The student asks the theorem, prover to check the simple set theoretic inference

«* 3,4contradlction
Using ** ok
3,4 Contradiction

(5) B-cA

The student indicates that iines 3 and 4 lead to a
contradiction. EXCHECK returns the negation of assumption (2).

** qed
Correct

EXCHECK accepts the derivation.

The following Informal review printout was generated by the program from the proof given in
the above typescript.

Derive: If A c B then -(B c A)

Assume (1) A c B
By raa shows -(B c A)
Assume (2) Be A
From 1, by definition of proper subset,

(3) Ac B and A»« B
From 2,3 it follows that,

(4) A = B
3,4 lead to e contradiction; hence, assumption 2 is false:

(5) -(Be A)

Natural Inference Procedures

There are no significant structural differences between the detailed informal proof and
the student's proof as presented to EXCHECK. The same steps occur in the same relat.ons
to each other. Such global or structural fidelity to t.atural proofs is a major research goal of
the EXCHECK project and depends upon the development of n«mra/ inference procedures.
Some of these, such as the HYPOTHESIS and INDIRECT PROOF procedures used in the above
proof, are familiar from standard logical systems. The procedure used in the applioatton of
the definition of proper subset to line (1) Is called IMPLIES. It is used to derive results that,
intuitively speaking, follow by applying a previous result or definition. It is considerably more
complex than the inference procedures usually found in standard logical systfmsi J^" ^eu
more complex natural Inference procedure used In the above proof is the ESTABLISH
procedure. In general. ESTABLISH Is used to derive results that are consequences of prior
results In the theory under consideration. In this case in the theory of sets. Eliminating the
need to cite specific results In the theory, which would disrupt th« mam line or argument, is
important and Is discussed further in the section on ESTABLISH, y -ow.

vmma "755 «MM«

s

'

46 Al Application« in Education

The inference procedures in EXCHECK are intended not only to match natural
inferences in strength but also to match them in degree and kind. Howev , there are
differences. EXCHECK inference procedures must always be invoked explicitly--in standard
practice, particular inference procedures or rules are usually not cited explicitly. For
example, compare how the scudent expresses the inferences that result in lines (3) and (4)
with their counterparts In the Informal proof. The explicit invocation of inference procedures
basically requires that two piecR;; of Information be given: first, the Inference procedure to
be used; and, second, the previous results to be used--in particular, explicit line numbers
must be used.

Explicitness is not disruptive of mathematical reasoning--neither is the reduction of
complex Inferences to smaller inferences nor the use of explicit line numbers disruptive, in
the sense of distracting the student from the main line of the mathematical argument. They
are both simple elaborations of the main structure. Hov evar. having to think about what
inference rule to use can interrupt the main line of argument. The success of a system for
Interactively doing mathematics depends crucially unon having a few powerful and natural
inference procedures with clear criteria of use, which are sufficient to handle all the
Inferences.

IMPMES

IMPLIES Is used to derive results by applying a previous result or definition as a rule of
Inference in a given context. This form of inferenca is probably the most frequent naturally
occurring inference. While the basic pattern is simple, the refinements that must be added to
the basic form to get a procedure that handles most of the naturally occurring cases result in
a computationally complex procedirq. The following is a simple example of the basic pattern:

(i) A Is a subset of B

i definition (Name or number) "subset

(i) (V x)(x « A -> x c B)

In this example, the student directed the program to apply the definition of subset o line (i)
and IMPLIES generated the result: (V x)(x € A -» x « B). While the student tliiiiK ��he is
applying the definition of subset to line (i), the procedure actually invoked is the IMPLIES
procedure. It Is important to note that in a use of the IMPLIES procedure, the student
indicates what axiom, definition, theorem, or line to apply to which lines, and the IMPLIES
procedure generates the formula that is the result of the inference.

The IMPLIES procedure seems to correspond closely to na'ue notions of inference, in
that logically unsophisticated lut mathematically sophisticated users can use it very well
after seeing the basic explf ation and a few simple examples. However, the IMPLIES rule
does have a fault: It is a purely logical inference procedure and that can occasionally cause
problems for users, because mathematicians tend to think In terms of set 'heoretic rather
than logical consequence. (See the discussion of the ESTABLISH rule for more on this
distinction.)

——• -•'*.:

C7 EXCHECK 47

ESTABLISH

The following example of a simple use of ESTABLISH is taken from the typescript above.

(2) Be A
(3) A c B and A ^

*2,3estabiish «B = A
2,3 Establish

(4) B = A

The ESTABLISH rule allows users to simply assert that some formula is an elementary set-
theoretic truth or is an elementary set-theoretic consequence of prior results. In the above
example ESTABLISH is used to infer from A c B and B c A that A = B. A = B is a set-theoret c
consequence but not a logical consequence of A c B and Be A. If ESTABLISH handled only
'ogical consequence, the student would have had to explicitly cite the relevant set theoret.c
theorems or definitions needed to reduce the inference to a pure y logical inf

c
ere"ce- Th'8'*

not only disruptive of the line of argument but also difficult to do. Even the most
experienced logicians and mathematicians have difficulty ferreting out all the axioms,
definitions, and theorems needed to reduce even simple inferences to purely log.cal
inferences.

Ail of the examples so far are extremely simple if considered in terms of the full
capabilities of the ESTABLISH procedure. ESTABLISH uses a theorem prover that can prove
about 857. of the first 200 theorems in the set theory course.

Proof Analysis and Summarization

EXCHECK contains procedures that generate informal summaries and sketches of
proofs. Such analyses and summaries are useful not only as a semantic basis for the program
to better understand proofs and to better present proofs, but also to g.ve ö",dance to ^^
student (see the proof summary below for an examp.e of the kind of guidance that can be
generated) The summarization procedures analyze the proof by breaking it "^o parts (or
"subproofs") and isolating the mathematically important steps. They also P^'» a ÖO«l
oriented interpretation of the proof where the program keeps track of "hat is to be
established at that point (i.e., the current goal); which lines, terms, etc.. are relevant; and
how ' e curren line or part fits into the whole structure. MYClN's consultation explana ion
syLm (see article Cl) uses a similar approach. Goldstein (1977) also uses summarization
techniques in the rhetorical modules of the WUMPUS coach (article C5).

The summaries presented below were generated by EXCHECK from a »tudent proo, of
the Hausdorff maximal principle. The original line numbers have been retamed (In
parentheses) in order to give a sense of how much of the proof has been omitted In the
summary in the first summary only the top-level part of the proof is presented; the proofs
oHts subparts are omitted. Also, ail mathematically or logically insignificant Information Is
omitted, in these proofs and summaries "D contains E "is S^>7U*��Vielst'on?* a
is a chain iff both C is a set of sets, and given any two elements of C. at least one .s a
subset of the other.

y

r^s^-^!:^r*~r»«u«*r\r, JSt'^i^TZSSssmzzzsz
y

h VJ»"" WL—^'I-'-

48 Al Application« in Education

7'&^3M^--r*^^

.

,

Derive: If A is a family of sets then
every chain contained in A is contained in some maximal chain In A

Proof:
Assume (1) A is a family of sets

Assume (2) C is a chain and C c A
Abbreviate: {B: B is a chain and C c B and B £ A}

by: Clchains
By Zorn's lemma,

(23) Clchains has a maximal element
Let 6 be such that

(24) B is,a maximal-element of Clchains
Hence,

(25) B Is a chain and C c B and B c A
it follows that,

(31) 8 is a maximal chain In A
Therefore,

(32) C is contained in some maximal chain in A

Figure 1. informal summary of a proof of the llausdorff
maximal principle.

The summary above is not the only one that could be generated; it essentially presents only t
the main part of the proof. Subparts of the main part could have been included or even
handled independently If so desired.

The proof analysis and summarization procedures will also generate the following kind
of summary, which Is an attempt to sketch the basic idea of the proof.

Derive: If A is a family of sets then
every chain contained in A is contained in some maximal chain in A

Proof:
Use Zorn's lemma to show that

(B; B Is a chain and C c B and B c A)

contains a maximal element B. Then show that B is a maximal chain in
A which contains C.

Figure 2. An example summarization.

The summarization in Figure 2 was obtained from that in Figure 1 by tracing backwards
the history of the maximal chain in A that contains C. That is, the general form of the
theorem to be proven is (3 x)FM(x), which is proven by showing FM(t) for some term t.
Usually, In proofs of this form, the most Important piece of Information is the term t. Tracing
backwards in this particular proof yields that there are two terms involved. The first is the
set of all chains in A containing C, and the second is any maximal element of the set of all
chains in A containing C.

> /

i

,—,

C7 EXCHECK 49

Elementary Exercises and Dialers

Another form of reasoning done by students is the solution of problems. A great many
problems in elementary mathematics take the form of asking the student to give finite
obJec'.s satisfying certain conditions. For example, given the finite sets A and B the student
might be asked to give a function F that is a bijection (I.e., 1-1 and onto) from A to B. For a
large class of such problems there are programs that will generate a tree of formulas and
other information from the original statement of the problem. We call such trees verification
trees for the problem. Essentially, the verification tree for a problem constitutes a reduction
of the original (usually not directly verifiable) condition to a collection of directly verifiable
conditions (the formulas at the leaves). These trees hi,ve the property that the failure of
the formula at a node In the tree explains the failure of formulas at any of its ancestors
Similarly, the failure of a formula at a node Is explained by the failure of formulas at any of
its descendants.

For example. In the above problem of supplying a bijection F from A onto B, suppose
that the student forgets to specify a value for some element of A, say, 3. The first response
to the student might be: "The domain of F isn't A." The student might then ask: " Why?" The
program would then answer (going towards the leaves), "Because there is an element of A
that has not been assigned a value in 8," The student might then ask, "Which one?" Since
the routines that evaluate the formulas at the leaves provide counterexamples if those
formulas fail, the program could then respond, "3." Or going back to the first response by the
program ("The domain of F isn't A"), the student might say, "So?" The program could then
move a step towards the root (the original statement of the conditions) and say, "Then F is
not a map from A into B." The student might then again say, "So?", to which the program
could respond, "F Is not a bijection from A onto B."

The highly structured information in the verification tree provides the semantic base for
a dialogue with the student in which the program can explain to the student what is wrong
with the answer. It should be noted that more complex forms of explanation are available.
In particular, the program could have said at the beginning that. "Because 3 is not given a
value by F, the domain of F is not A and hence F is not a bijection from A onto B."

Summary

A primary activity in mathematics is finding and presenting proofs. In the EXCHECK
system an attempt is made to handle natural proofs-proofs as they are actually done by
practicing mathematicians-instead of requiring that these proofs be expressed as
derivations in an elementary system of first order logic. This objective requires the analysis
of inferences actually made and the design and implementation of languages and procedures
that permit such inferences to be easily stated and mechanically verified. Some progress has
been made in handling natural proofs in elementary mathematics, but there is a considerable
amount of work yet to be done,

References

See Blaine & Snith (1977), Smith et al. (1976), Smith & Blaine (1976) Suppes (1957)
and Suppes (1960).

^%^,$&*£& jgjP^fay^ay^i^lp-^ 9 mm M .. y»..
y

—f—�PWI »i I>I

."

60 Al Applications in Education

References

Atkinson, R, C. Ingredients for a theory of instruction. American Psyrhologist, 1972, 27,
921-931.

Atkinson, R. C, & Wilson, H. A. (Eds.) Computer-assisted instruction. New York: Acacemic
Press, 1969.

Barr, A., & Atkinson, R. C. Adaptive instructional strategies. Paper presented at the IPN
Symposium 7: Formalized Theories of Thinking and Learning and their Implications
for Science Instruction, Kiel, September 1975.

Barr, A., Beard, M., & Atkinson, R. C. A rationale and description of a CAI program to teach
the BASIC programming language. Instructional Science, 1975, 4, 1-31.

Barr, A., Beard, M., & Atkinson. R. C. The computer as a tuto. al laboratory: The Stanford BIP
project. International Journal of Man-Machine Studies, 1976, 8, 567-596.

Blaine, L. H., & Smith, R. L. Intelligent CAI: The role of curriculum In suggesting computational
models of reasoning. Proceedings: 1977 Annual Conference, ACM, Seattle, 1977.

Brown, J. S., Rubinstein, R., & Burton, R. Reactive Learning Environment for Computer
Assisted Electronics Instruction (BBN Report No. 3314). Cambridge: Bolt, Beranek, &
Newman, 1976.

Brown, J. 5. Uses of artificial intelligence and advanced computer technology in education.
In R. J. Seidel & M. Rubin (Eds.), Computers and Communications: Implications for
Education. New York: Academic Press, 1977.

Brown, J. S., & Burton, R. Multiple Representations of Knowledge for Tutorial Reasoning. In
D. G. Bobrow & A. Collins (Eds.), Representation and Understanding: Studies in
Cognitive Science. New York: Academic Press, 1975. Pp. 311-349.

Brown, J. S., & Burton, R. R. Diagnostic models for procedural bugs in basic mathematical
skills. Cognitive Science, 1978, 2(2), 155-192.

Brown, J. S., Burton, R. R., & Bell, A. G. Sophie: A Sophisticated Instructional Environment for
Teaching Electronic Troubleshooting (An Example of Al in CAI). International Journal
of Man-Machine Studies, 1975, 7.

Brown, J. S., Burton, R, R., Hausmann, C, Goldstein, I., Muggins, B., & Miller, M. Aspects of a
theory for automated student modelling (BBN Report No. 3549). Cambridge, Mass.:
Bolt, Beranek and Newman, 1977.

Brown, J. S., Burton, R. R., & Larkin, K .M. Representing and Using Procedural Bugs for
Tducational Purposes. Proceedings of the Annual Conference of the Association for
Computing Machinery, Seattle, Oct. 1977, 247-255.

 » wmmmKmmmtmmmmummmmmmmmimmm

/

Reference* 51

Brown, J. S., Burton, R. R., Miller, M., deKleer, J., Purcell, S., Hausmann, C, & Bobrow, R. Steps
toward a theoretical foundation for complex, knowledge-based CAI (BBN Report No.
3135). Cambridge, Mass.: Bolt, Beranek and Newman, 1976.

Brown, J. S., Collins, A., & Harris, G. Artificial Inteliigence and Learning Strategies. In H.
O'Neii (Ed.), Learning Strategies. New York: Academic Press, 1976.

Brown, J. S., & Goldstein, I. P. Computers in a Learning Society, Testimony for tha House
Science & Technology Subcommittee on Domestic and International Planning, Analysis,
& Cooperation, October 1977.

Burton, R. R. Semantic grammar: An engineering technique for constructing natural
language understanding systems BBN Report 3463. Cambridge, Mass.: Bolt, beranek
and Newman, December, 1976. (b)

Burton, R. R., & Brown, J. S. A Tutoring and Student Modelling Paradigm for Gaming
Environments. Proc. for the Symposium on Computer Science and Education, Irvine,
CA, February 1976. (Also, SIGCSE Bulletin, 1976, 8, 236-246.).

Burton, R R., & Brown, J. S. An investigation of computer coaching for informal learning
activities. International Journal of Man-Machine Studies, 1979, 11, 5-24. (a)

Burton, R. R., & Brown, J. S. Toward a natural-language capability for computer-assisted
instruction. In H. O'Neii (Ed.), Procedures for Instructional Systems
Development. New York: Academic Press, 1979. Pp. 273-313. (b)

Carboneil, d. R. Al in CAI: An artificial intelligence approach to computer-aided instruction.
IEEE Transactions on Man-machine Systems, 1970, IVMS-11(4), 190-202. (a)

Carboneil, J. R. Mixed-initiative Man-computer Instructional Dialogues (BBN Rep. No.
1971). Cambridge, Mass.: Bolt, Beranek, & Newman, 1970. (b)

Carboneil, J. R., & Collins, A. Natural Semantics in Artificial Intelligence. IJCAl 3, 1973, 344-
351.

Carr, B., & G 'dstein, I. Overlays: A theory of modeling for computer aided instruction, Al
Memo 40o, Massachusetts Institute of Technology, Cambridge, Mass., 1977.

Cläncey, W. Tutoring rules for guiding a case method dialogue. International Journal of
Man-Machine Studies, 1979, 11, 25-49. (a)

Clancey, W. Dialogue management for rule-based tutorials. IJCAl 6, 1979. (b)

Collins, A. Processes In Acquiring Knowledge. In R. C. Anderson, R. J. Spko, & W. E.
Montague (Eds.) Schooling and the Acquisition of Knowledge. Hillsdale, N.J.: Erlbaum
Assoc, 1976. Pp. 339-363

Collins, A. Fragments of a Theory of Human Plausible Reasoning. TINLAP-2, 1976, 194-201.

.: ., ��I
•�•�������" ������' '- 'I. I ""��

52 Al Applications in Education

Collins. A.. Warnock, E. 11.. Alello. N.. & Miller. M. L. Reasoning from 'complete Knowledge. In
D. G. Bobrow & A. Collins. Representation and Under.tanding. New York: Academ.c
Press. 1975. Pp. 383-415.

Collins, A., Warnock. E. H., & Passaflume. J. J. Analysis and synthesis of tutorial dialogues
(BBN Report 2789). Cambridge. Mass.: Bolt. Beranek. & Newman, 1974.

Crowder. N. A. Intrinsic and extrinsic programming, in J. E. Coulson (Ed.). Proceedings of the
conference on application of digital computers to automated instruct.on. New York:
Wiley. 196?. 58-55.

Dugdale. S.. & Kibbey. D. Elementary mathematics with PLATO. Urbana. IL: University of
Illinois (Computer-based Education Research Laboratory), July 1977.

Fischer, G.. Brown. J. S.. & Burton. R. R. Aspects of a theory of simplification, debugging, and
coaching. Proceedings of the 2nd Annual Conf. of Canadian Society for
Computational Studies of Intelligence, July 1978.

Fletcher. J. D. Modeling the learner in computer-assisted instruction. Journal of
Computer-Based Instruction, 1976. 1. 118-126.

Goldberg. A. Computer-assisted Instruction: The application of theorem-proving to
adaptive response analysis (Tech. Rep. 203). Stanford. CA: Stanford Uo-vers.ty.
Institute for Mathematical Studies In the Social Sciences. 1973.

Goldstein, I. The Computer as Coach: An athletic paradigm for Intellectual education, Al
Memo 389. Massachusetts Institute of Technology. Cambridge. Mass.. 1977.

Goldstein, I. The genetic epistemology of rule systems. International Journal of Man-
Wlachlne Studies. 1979. 11, 51-77.

Goldstein. I.. & Papert. S. Artificial Intelligence, language, and the study of knowledge.
Cognitive Science. 1977, 1(1), 84-123.

Grignetli, M. C, Hausmann. C. & Gould. L. An intelligent on-line assistant and tutor-NLS-
SCHOLAR. Proceedings of the National Computer Conference. San Diego, Caiir.,
1975. pp. 775-781

Groen, G. J. The theoretical Ideas of Plaget and educational practice. In P- Suppes (Ed.),
Impact of research on education: Some case studies. Washington, D.O.: National
A« «lemy of Education, 1978. Pp. 267-317.

Hart. R. 0., & Koffman, E. B. A Student Oriented Natural Language Environment for Learning
' LISP. IJCAI 4. 1976, 391-396.

Howe. J. A. M. Individualizing computer-assisted instruction. In A. Ellthorn & D. Jones (Eds.)
Artificial and human thinking. Amsterdam: Elsevier, 1973. Pp. 94-101.

Mp».

>

^^Q^, ^;J#^j;^^ii«i®^'^

Reference« 53

»

•

Kimball. R. B. Self-optimizing computer-assisted tutoring: Theory and Practice (Tech.
Rep. 206). Stanford, Calif.: Stanford University, Institute for Mathematical Studies in
the Social Sciences, 1973.

Koffman, E. B., & Blount, S. E. Artificial Intelligence and automatic programming in CAI.
Artificial Intelligence, 1976, 6, 216-234.

Laubsch, J. H. Sone Thoughts about Representing Knowledge In Instructional Systems.
IJCAI 4, 1976, 122-126.

Miller M L, & Goldstein, I, Problem solving grammars as formal tools for Intelligent CAI.
Proc. of the Fall Conference of the Association for Computino Machinery, Seattle.
October. 1977.

Miller M L. A structured planning and debugging environment for elementary
'programming. International Journal of Man-Machine Studies. 1979. In press.

Norman, D. A., Gentner, D. R., & Stevens, A. L. Comments on learning schemata and memory
representation. In D. Klahr (Ed.). Cognition and Instruction. HWsdale: Erlbaum
Associates. 1976.

Papert. S. Teaching children programming. IFIP Conference on Computer Education.
Amsterdam: North Holland, 1970.

Reither, R. On Reasoning hy Default. TINLAP-2 1978,210-218.

Ruth, G. Analysis of algorithm Implementations (MAC TR-130). Cambridge. Mass.:
Massachusetts Institute 'jf Technology. 1974.

Sacerdoti. E. D. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 1974,
5, 115-135,

Schänk, R. C, & Abelson, R. P. Scripts, Plans, Goals, and Understanding. Hillsdale. N.J.:
Lawrence Erlbiium, 1977.

Self, J. A. Student models in computer-aided instruction. International Journal of Man-
Machine Studies, 1974, 6. 261-276.

Smith, R. L. Artificial Intelligence in CAI. Unpublished working paper. IMSSS. Stanford
University, 1976.

Smith, R. L„ ft Blalne, L. H. A generalized system for university mathematics instruction.
SIGCUE Bulletin, 1976, 8(1), 280-288.

Smith, R. U Graves W. H., Blalne, L. H.. & Marinov, V. G. Computer-assisted axiomatic
mathematics: Informal rigor. In 0. Lacarme & R. Lewis (Eds.), Computers in education.
IFIP (Part 2). Amsterdam: North-Holland, 1976. Pp. 803-809.

/

^v^sfk^"^^*^^ " * '�--""f*

64 Al Applications in Education

Stansfield, J. L, Carr, B. P.. & Goldstein, I. P. WUMPUS Advisor I: A First Implementation of
a program that tutors logical and probabilistic reasoning skills, MIT A! Memo 381,
October 1976.

Stevens, A. L, & Collins, A. The Goal Structure of a Socratic Tutor (BBN Rep. No.
3616). Cambridge, Mass.: Bolt, Beranek, & Newman, ^977.

Stevens, A. L, & Collins, A. Multiple Conceptual Models of a Complex System (BBN Rep. No.
3923). Cambridge, Mass.: Bolt Beranek & Newman, 1976. To appear in R. Snow, P.
Federico, and W. Mantague (Eds), Aptitude, learning and Instruction: Cognitive
Process Analysis, forthcoming.

Stevens, A. L, Collins, A., & Goldin. S. Diagnosing Student's Misconceptions in Causal
Models (BBN Rep. No. 3766). Cambridge, Mass.: Bolt, Beranek, & Newman, 1978.

Suppes, P. Introduction to logic. New York: Van Nostrand Reinhold, 1957.

Suppes, P. Axiomatic set theory. New York: Van Nostrand, 1960. (Slightly rev. ed. pub!.
by Dover, New York, 1972)

Suppes, P., & Morningstar, M. Computer-assisted instruction at Stanford, 1966-68:
Data, models, and evaluation of the arithmetic programs. New York: Academic ��

Press, 1972.

Wescourt, K. T., & Hemphill, L. Representing and teaching knowledge for
troubleshooting/debugging. IMSSS Tech. Report No. 292, Stanford University, 1978.

Wexler, J. D. information networks In generative computer-assisted instruction. IEEE Trans.
Man-Machine Systems, 1970, 11, 181-19' .

Yob, G. Hunt the Wumpus. Creative Computing, Sept.-Oct. 1976, pp. 61-64.

%*,*F^'"^'!iKp^ '

Index 55

Index

anaphoric references 23
Anderson, Bonnie 26
arithmetic skills 39
articulate expert 4, 24
Atkinson, Richard C. 2

BIP 4, 5
Brown, John Seoly 3, 4, 20, 26, 39
BUGGY 6, 39-42
Burton, Richard 3, 20, 26, 39

CAI 1
Carbonell, Jaime 2, 3, 10
Carr, Brian 33
case grammar 11,12
case method tutor 8, 16
Clancey, William 8
closed seta 14
Collins, Allan 3, 7, 10, 16
computer coach 5, 7, 26, 30-32, 33
computer coach 8
computer gaming 7, 24, 26, 33
conceptual bugs 39
constructive bugs 26
courseware author 1,14

diagnosis of student errors 2, 12, 26
diagnostic model 27, 40, 42
diagnostic modeling 7
diagnostic models 39
diagnostic strategies 26
dialogue management 8, 12, 16, 1 7, 30, 35
differential modeling 27
discourse model 12, 30, 36
discussion agenda 12

expert program 33
expertise module 4-5, 27, 35
explanation 3, 30, 35, 38, 47

frame-oriented CAI 1, 5, 24
functional relationships 18

generate-and-test 23
generative CAI 2, 4
geography tutor 10
Goldstein, Ira 6, 7, 33
GUIDON 4, 8

heuristics 15
How the West Was Won 26
hypothpsis evaluation 23, 24
hypothesis generation 23, 24

ICAI 1, 2-3-49
importance tags 11
IfiCotMete KUovAeü'jr 1 '•
hdiviuüsilsätion of instnK'tioo 2
inference 3
inference procedures 43
inference strategies 13, 23
informal mathematical reasoning 43
informal proofs ^3
intersection search 13
issue evaluators 28
issue recognizers 28
issues and examples tutoring 28

Koffman, Elliot 2

education applications 1-49
ellipsis 23
EXCHECK 3, 43-49
EXCHECK informal proof 47

learning by discovery 26
LIFER 23
LISP 23, 37
LOGO 1

^k«;

*K33Z *l!msm*C$Sm*ar'^.w let* ' ' ' ' J^1""

66 Al Applications in Education

meta-level knowledge 14
mixed-Initiative dialogue 6, 10, 20
multiple representations 4
MYCIN 47

natural deduction 43
natural inference procedures 45
natural language interface 43
natural language understanding 2, 12, 23,

43
NLS-SCHOLAR 10

open problems 14
open sets 14
overlay model 6, 27, 33, 42

Papert, Seymour 1
pattern matching 6, 46
PLATO Project 26
plausible reasoning 10, 13, 14
problem-solving expertise 3, 4-5, 20, 27,

36
proc;e(i<jrai knowledge 33
procedural net 40
procedural networks 42
proceducal representation of knowledge 4
production rules 4, 8, 36
proof checking 43
proof summary 43
protocol analysis 11,17

scripts 16
search 40
semantic grammar 23
semantic net 4, 6, 10, 12
set theory 43
simulation 24
Socratic method 7, 11, 15
SOPHIE 3, 6, 20-25
S0PHIE-I 4,5,20, 21-23
SOPHIE-II 20, 24
Stevens, Albert 7, 15
stochastic learning models 6
student model 1, 3, 5-6, 6, 28, 31, 33, 37
Suppes, Patrick 3, 43
syllabus 30

teaching strategies 8
temporal relations 16
text generation 12
tutorial goals 1 7
tutorial programs 1-3-49
tutorial rules 16
tutoring principles 30
tutoring strategies 3, 7-8, 10, 11, 26, 27,

28,30

Wescourt, Keith 7
WEST 5, 8, 26-32
WHY 4, 7,8, 14, 15-19
WUMPUS 4, 5, 8, 30, 33-38, 47
WUSOR 33-38

reactive learning environment 2, 20, ?4
reasoning from Ircomplete knowledge 10
representation oV knowledge 2, 4-6, 10,

16, 19
rule-based representation 36
rule-based systems 36 ��

SCHOLAR 3, 4,8, 10-14

/
r^jS^^fc-^^W''*^

